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EXACTLY BOLVABLE NOFLINEAR PARTIAL DIFFERFNTIAL
EQUATIONS OF THE THIRD ORDER

E.A.Akhundova, V.V.Dodonav, V.I.¥sn ko

Abgtract,

We conelder three types of nonlinesr partial differential
equations of the polynomial form and obtein the explicit subehi-
tutions of dependent varisbles which tranaform the equations
vnder sgtudy tc iinear equatione. We mlso obtain some nonlinesx
second order periial differential equations which can be solved

by the viscosity methcd.

Last years e great smount of papers concerming various
mathods of obtaining exmet soluticne of nonlineer partial dif-
ferential equations mppsared. Reading these pepers (see, e.g.,
the recent papers 1-5 and references therein) one can see¢ thet
although there are meny different methods of finding exactly
snlvable eéuations, 811 of thein conmipt in oﬁtaining certain
tranzformations whioh would réduce a noniineur zquetion to a
lineur one or o enother nonlinear aquation with the kﬁown'aolué
$ions. Therefore in ref, 5 the following problem was Formuis-
ted: to describe the nonlinear uéuatichs which cen bs Teduced
to linear ones with the aid of certsin iubatitutions'of depen-
dent and independent verisblens. Ot'donrué, this claes of equati-

ons g very small in comparison with the cless of a1l skactly
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solvebie equeations. Mone the less we know shat thie smell class
éent;tas some physiowlly interesting equationg, for example, the
Burgers-Hop? equation 7 . We hope that the methodical study of
all posaible substitutions of variebles end the initial 1ineer
equations way lild to some new gractly solveble nonlinear &qu-
etions being of'phyéical interasst,

In this peper which is continuation of peper €& wa inves-
¥igete some nonlinear equations obieined from linemr partial
Gifferential equations of the gscond order by substitutions of
dependent variablee,

Heualy, considering the heat eqﬁatian

; (\k: = (\k{ X ' | (1)
ot epresne T vy O[WIE s ], wure W )

is an arbitrary differentiable function, we obtain the folilowing

woniinesr squetion

\/\/-& (‘ﬁ “fx,...)= \/\/;'.5_ \/\/” (2)

Bome expliocit speciel ceses of this equation are given by eqs.
{3)-(5), Por every equation we show the replacement of variables
reducing it to the heat equation or show the equation relating
solutions of the nonlinear equation with the solutions of the

heat equation.
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Now let us consider a general linear partiel differential anus

on of the sgecond order

a W+ 6(¢xt+c"/it+a/”~/”«0 (6)

Neking {he substitution

= e/.nfa (a((zo“v"jﬁpx *B’(Pt) m

We confine ourselves to the equations of the polynomiel type,
we obtain the following equationx
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Eq. (B) is linear with respect to the derivatives of ths ithird

order end nonlinesr wiih respect to the derivativeg of the se-

cond end the firet order. One can check that equaiions of this

kind can be reduced to three different types of equations of

this kind cen be reduced to three different types of equations

by means of linear replacements of independent varisbless

e+ Lttt B0 )

.(ﬂ(xt + M (‘ka, Yot e, 1, "f’q) = 0 (10)
Poxxt Puse */V(‘Pxx, Fet, th, #, ‘f.;) =0 iy
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(and symmetricelly X&T—'—-t t .
It 13 net di¥ficult to show that the equation of type (9
is obteined from aq, (8) provided

b=C=y=0 (12)

Y“hat in, we have the following cquntlon

a(ﬁ% +P'?x'3§)+a[¢ & )es" (3 +
*ap 3 e *J’#_] =0

which is reduced to the sguation

Y +dWi =0 (14)

by the replacement

”l[/:: w,P (o ‘-P+j5‘-Px) (1)

The equation of itype (10) is obteined from eq. (8) provided
sither

(13)

a) d:Y:C:O (16)
ay
b) 5=c:P =0 an

In tha tirlt case ‘vu obtain tho equation

* }2;3'@)4@'” rdpl 2 rapBl ZX o
| +9‘§,—,{; Fh+a e +y,§3-$,—) 0

which is reduosd to the equation
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CL(% *‘6"‘1“”"’: 0 (19)
by the quﬁetitutian
Y= gep (4P +p ) (20)
In the second oase we have the squaiion
Py X ; ) 20 >
a (a@-;w:,?%)m/[x(%p V()
(21)

+ 2L a2y 2% ]-0
&ot?f%"aﬁ 2% 'a ) Be2r*

which ip reduced ic the aquation

at +d”\{’” =0 (22)

by the replacement
Y = mp(aw x%) (23

The aquation cf type (11) is obteined from eq., (8) provided
either

o) c=dd, y=6=0 ' (24)

or

woo cga, b=d, yrp=0 (25)
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In the first case we obtain ihe equation

"1( '~ 'Bi *fgxae) '”C[d } +p (aa;:; Zw‘

&

N ‘p (3‘1& + '2’ .'0 (f .
F’?;dﬁ uxn ! “‘"ﬁ(ax* ;’W“‘” (28)

+cﬁd\ﬁ ’%ti% ‘%F +p (;j * faxw‘” =0
which i reduced %o the equation
O:.% + C(%g * ﬂ‘ffbt) = O i27)
by the replacement ,
V= exch (A4 p ) o)

In the second ocmse we obisin the equation

LB p(5 )]
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+hidch s reduced tc the equation

(%
atﬁ
-*1.

by tue replaceient
Yo oeop <ﬂ"’&p*\f’% “}5%:) (31)
let us consider in detail equation i13$
It is convenlent to introduce a new nolatvion
ad = b JP’L= K.
@f:N d}ﬁ:c (32)

From eg. (32) we find

K Y
5,‘,::_.5’,) J:%) ¢ ERAN ch d s L/V (33)
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Then equation {13) assumes the following form

VLG ""(a;%)w(””)-f

LK 9'¢ 9v ,wau et
2/\/ 2%% ax t C

Apparently, using the substitution X U(X on® ¢an alwqys

equate the coefficients L and /V « Then the squation (34
assumes the form

C (Bousrt Yo 42K o K i K w%« «@e) 0 )

Accordingly, equations (15) end (14) rewritten as toliows

/nyé +C¥y=0 (14a)
V= ecp[E (44 9y)] e

Now let us note that equation (35) ean be used to find the
solutione of the equation

SZKS"W%+K~(’f}<+l<~?;+/\/(%+%;)=0 o6

Indeed ir ('Pc is & solution of equation (35) then the
function ’

Q= &‘m%

Cs0 » . | (N

can be considered as & formal solutiott of eq. (36) {compsre th
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formule with Hopf's method of solving the Burgers-Hopf equation
T ). Buck & method of selving equations is often called "the
viscoeity mathod™. Let us write the explicit forms of some other
equations which can be solved by this method.
Making the subsiitutions

ad = Zg 5]}":

" (38)
G‘ﬁ :’/\/1 6P - @i .
e can rewrits sq. (18) as follow-,A
K 3?_1 2499,
%&M@ ¥ "71*% Y] Lﬁv“(fam TR
(39)

L2 Cd
4) kmt?x +'i7‘ C Wb
Eduating Aii and /Vi one obtaine the equation

Ca (‘fmé + e )* KaWee $ux + Ky (Vn: S+ q?“)-(-
+ Kﬁ&% + My (Vt + ‘th) = 0 (40)

which ean be used to find the solutions of the equation

K (et B Fa Bor Pt )+ (M4 e Oy
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Rﬂ.— merking the coefficlents in ag. (21)

Ad=Ly .. 0/)’:: Ky
Ay= Ny dy=_C,

(42)

we obtain the equation

B NS A (B (B +
+3%% gi’g _A_;f—g: *C,Ei? =

Equating ‘L& and /\/& » We have

(13)

Ca (‘F¥xx ) * 2k Yoy Bi + K YA

_ (44)
K;'?:*—M(%*‘ ‘&f): 0

Suppoain; c‘_ to be = 1ittle quhntify we see that the equatic

K (2400, + ‘P;“f’:)f Ny (% tf)= O )

éan be solved by the viscosity method as well.
If we re-mark the soefficlents in equation (26)
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ad=Ls Cﬁa? Ks (46)
aﬁ = N3 C\P = c_:’

the following equation will b obtained

Lﬁ%*‘/\{z 579t T (

X' LaKs ’04’ el c.-}l.; 9? +
K)(?X’Z'/ T et 9 T e B

+

Lk q?)’“ lake B¢ ¢, “n
TN (vx) I‘(g“‘ax‘ﬁ?w* X
C’éé}_@§ +e Y- ??)m

N% X 3 BﬁM ij
Equating .the coefficients end eGe. (47) we heves

C, (&?oxxx +Pree + Pt ‘Pte) O (3"’“‘&4‘
Ot B APt B )t @
+/\/5 (%*"Pxe) =0

Consequently; the equation

Ks (Igv Pyx Py ‘fjx“fxﬁ:? Lt "f’:;*
4‘%:}* /\/3 (%f ‘th)" o

(49)
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cen be also soived by the viscomity method Re-moriing the soel
ficiente in eq. (29)

Ao = ‘Zl/ gﬁ&z K:;,
p= M | bp= C,

we have

(50)

Kl 2¢ 3¢
*/Vv (mt _agf) it o o t

N Kydy [22Y 9«’_2;_?;,991 .
+ (?5%)* "W, (faxat"ﬁ 2t '§x,}
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+ o'y 2% 8 Q (
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Equating Lq and A/; we arrive at the equation
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Cy (_t&u = e T Pt “th)-‘-kq (F W+
X £
V'%(ﬁ W+, Yox ~ P Pt +3 Yox -
)
vl - fus T et l‘fﬂ e+ - 52

= Pux %i()*f /‘1, (‘ft +P,, - Lﬁw) =0

/7§upposing th( t¢ be & little qguaniity we obtain just one morse

equation which can be solved by the viscosity method:

K‘I (i'& ¥ +£ ‘f:"“fﬁﬂ + B Pyy Yo P

(63)

t Pux i = Yer ¥y - Cot Pox * Yot x - Yret
'fo”"ﬁx '“Ptx) ’*"/\/y (‘ﬁﬂ&‘,_ Lf“)= O

In eonclusion we note that we have considered only the one-
dimensional cese, There exists elso a possibility to obtain
new solutions of nonlinear equations on the basis of the Schri-
dinger -~ type equations with multidimensional Haﬁiltonilnl. It
will be discussed in enother paper. Another (very important)
problem which wes not considered in this paper is the problea
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