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Abstract.

We enalyzed the nonuniqueness of varistiomal formuletions
(Lagrangiens, Hamiltoniane, sctions) of & given systeh of clag-
slcal equatione of motion. We give a eritical review of idgaa
and results on this matter up +o this date. We show in a weni-
fest way that this nonuniquenees leads to the exietence of
infinitely many different quantum systems corresponding to one
end the seme clessicel system. We puggest m new method of .
quentization based on the claseical integrals of motion but
free from Lagrangians and Hamiltohians. In the known cemes our
method is equivalent to the conventional ones, Finally wé
discuss pogsible criterie in the choice of the action, LY &
the additivity principle. Several examples (free partiocle;

‘lineaf friction, particle in e magnetic field) are considered

in detail.



1. Introduction.

In thie paper we plan to discues certeain aspects of the
uniqueness praoblem in the quantization of s given classical
system, more precisely, to draw attention to the fact that due
to the existence of verious different variastionel formula-
tione of classical mechanice one can construct infinitely many
diffevent quentum systems corresponding to one end the same
classical system, This stetement may seen quite trivisl since
the reconstruction of a quantum quantity CQ (A )from its
clapsical 1limit QIQ) only is obviously nonunique. One reason
for bripging this problem to lighin%e quentizetion procedure
hes not been studied thoroughly from this angle, There are
but a few papers on thie matter and we have listed them et
the end. From the other hand we hope that a detailed analysis
ir this epirit will provide a better understanding of the
erecific features of the usual quentum systems end, besides,
will give us methods of quantization applicable to more comp-
l1éx syetemn,

First of all let ue specify whet we shall mean by "quan-
tization" Several different methods of quantizetion are avai-
1lable: the canonical guantization [5;7, Feynmen's path integ-
ralea method [b,JL](d good survey of Schrédinger's, Heisen-
berg's and Feynmen's formulations of quentum mechenics is
given in ref. [@ J). Vericus generslizations of these methods
have been the subject of & number of papers [5 12] Schwinger

[5 Igeueralized Hemilton's action prineciple of classical

mechanice to the operator case and introduced the "quantum
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meamical prioelipie%, General wethods of quantisgativi mppli~
itle poth to systems with cunstrainte and to systeme in an
‘bitrary Riemanian meuifold were elaborsted im refs. ['(.«Bj R
itereating new approsches to the problem of guautizaiium in
tleh formally ihere is not any difference between clvaaaical
W quantum systems were coppidered in refs, [9,10 j? . Sefll
iother method wae suggested in rot.[ﬂ] « Althougn il thess
»_thodn are different, their coumop feature 18 the “ulgetiale*
1848 they deal with wuch objeots es counutatore, Fulevon's

* Pixrac's dbrackets, canoculcelly conjugated coordinates end
mente, eto, Besjdes, ipn a1l these approuches the Hemilionien-
v Lagrangian) 1e beljeved to be given beforehand, ano iia
*igin 1s obscure. In addition there srs methods which do nt
qquire the knowledge of Hamilionian or Lagrenglem, e.y. Qi
sthod of ﬂlftsx‘mtlution with respect to the voupling o -
mi [12] oy i’ang-?aldwan'u wethod of nolving Melaenbery's
serator equationg [13].

We ghall investigate the uniquensus of quentizaticn un ihe
tample of Peynmun's approach but in a slightly generalizes
sredon, In classicul mechanics to describe completely the
ystem weuns to indicute all ite possitle tyajectories in ine
sordjnate space ¥ (i, f‘) + Bach trajectery deteruinas
recipely the point X' to which the system comes at the
went of time L 1t 1t was in the point Lo at the moment
to . In gquentum wechanics we can deal only with the probabi -
Ity of this transitiun. Therefore we gssume that te quantive
e clapsical syetem witp the femily of trajestories X (i‘/d;,, t‘r)
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weatip t6 indicaie the complex tuﬁction Gt = “) whiok
'u tﬁq probebility smplitude of the transition from any point

Xi to any point % , The funetion G {we shall call it
heresftpr the Greew funotion or $he fransition amplituds) con-
taine the complete information about the quantus system, -

To calculats the transition awplitule two different vut
oqutvslont methods are usuelly applied. The first ome is besed
on the fact that the function G (x2; %) 44 tne
Green function of the Schridinger equation:

1k e f )bt mt)=iF 3-n)sx-a)

Thie method corresponds to the mdst usual "canonical” quanti-
sation [ 1 1; it can be applied provided the Hamiltonian of the
slpesical system A/ (x, A2} 18 known (the quantities <
end O ere the A - dimensional veckars, v being the num-
ber of degrees of freedom of the sysiem), The replacement of
the C - functiom /(% /%) by the operstor /7/.’2 /;\ Z) 1s not
t£ivisl end unique problem itself, especimlly iu curvilinear
toordinates, because there are many ways to choose the opers-
tor ,5 {not necessarily in the forl /0= -ih a/a:n and
to order the operators z and /7 . Let us hawever disra-
gerd the nonuniqueness of this type here. We shall oonsidqr a
more fundamental nonuniqueness inherént alresdy in classicel mecﬁdniq
and &rising because of the existence of more than one classi-
oal Hamiltonians leading to onee end the same equations of mo~-

tion.
In thé second method the classical Legrangian /[ (=, a, f)
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is essumed known, sad the trapsition awplitude is cadculated

by nmesns of Feynoen's path integrel /2 ]:

x 7 )
l; ‘;; t’« ‘)“".in) = /-‘.&Z‘{xﬂ)} cap 3£‘/é KZ/ '1: ! ’; ‘flt / .2}
ity I

ihis csloulution does not leed to the unigue rekull even for
the given function 4 f« &) | because one can use various
definitions of the weasure 2 [m’t}j aid various limit pro-
oeduresy thie "quantum” pobuniqueness is equivalent to diffe-
rent orderings of the operstoré‘ »72 and /3 in the Hamilto-
nlan operator /‘7('&1‘ A) . on the contrery we shall investi-
gale tlie nonuniquensss of the choice of the classical Lagran-
glen.

Foruula (1.2) shows distinctly thet to quantize the clas-
sical eystem we need in fact not the lagrangiun nor the Hemil-

tonian but the clacsical action tunetion
xt

Sletyat)= [ Liid) st (1 2a)
@, e, . ’
related Yo the given aystém. 1t we know the funotion
Sio(xé a,2,) (the subscript "oZ  neans thet the integ-
ral (1.29 is celculated along the classleal trajectory) then
excluding from the known equations /7-‘ 95:‘/3&: s A= dﬁ;ﬁz
the perameters 1, end Z, we ean reconstruct the Hawil-
tonien /L/(J-',/v’, é) and use not only eq. {1:2) but also eq.
(1.1). Moreover, we (.:an construct the Green function in the
form of the msymptotic expension in Planck's constant using
Van Vieck's [14/ formula (see also ref. /'15])
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this rormala is vbviously velid ¢ &n acourecy of the factor

‘ (/)[t f A ) } not conteinirng Plenck's cotstant and wetis-
fying the relation ‘0{ £ o= f,g)-*‘ /; thisg feotor corrauponda t0
different possible orderings of the operators x and /0 in
the quantuw Hemiltoniaa , i.e. proceeding directly from the
classical action,

Thus the problem of guentizetion of classical systems is
clasely related to the variational principles of classical me-~
chanics, especimlly to the inverne problem of the veriational
celeulus, d.e. the problem how to £ind & functionel having as
i1tu extremsles the given family of trajectories or leading to the
glven cleesicel equations of wotion. This proﬁlem was considered
by meny authors beginning from Sonin ['16] N Helmhcitl [‘17 ].
Volterra /1‘8] , and Darboux [197 s during the whole century, but
it 18 8t51]1 fer trom its complete solution. The most significant
results relating to the inverse problem were obtained by Douglas
[20] s Huvas ['21 ] , and Santilli [22] , who considered only
functionals of the fora j[ ,,/Z‘ , and by Sknrzhinnky[ZB] N
who proposed a more general approach to this problem. One of
muny essential results obtained in thewe papers which is the
medt important for the problem of quantizetion is thav if a
c¢claseicul system possesses a certain Lagreugien or Hamiltonien,
it oan be deecribed also bty means of an infinite number of other
Legrangiens or Hamilitonians, The problem of equivalent Lagran-
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gilens end Hamiltoniane in clessicel mechenice waeg studied in
detnil in papers [é4—29n71n which the ahaelysis of clamsicsl
mechenice wag given in terms of global differentiasl geometry
(see almo refs.Z;,JO] ). However the gquantal aspects of this
prcblem were atﬁdied slmoatvnowhere, excepting few papers /31-
32] in which only some special ceses were consodersd (& deeper
physicel enalysie was given in ref. [53:], but we think that
the problem needs & more detailed investigation), In the present
peper we consider the relations between the existente of many -
clesgicaly equivaleﬁt veriational formulations snd the problem
of quantizetion from e more general point of view,

The plen of the peper is the following. In the next section
we discuss some possible variational formulations lesding to the
given claesical equations of motion. In Secs. 3-4 we give a
brief review of the known resulte concerning the existence of
eqﬁivalent Lkgrengiana and Hamiltonians for the given olassicael
gystem, We consider mlso some exsmples, including two exemples of
the systems which can not be derived from any Lagrangiens ot ‘
Bamiltonians. In SBec. 5 we discuss the extension of the concept
of .the symmetry of equations of motion and symmetry transforme-
tions taking into account the existence of equivalehf‘Lagrangi-
ans end Hemiltoniens, and indicate some possible appiieations of
this extension. On Bec. 6 we propcee & new mathod of qu!nfitntidu
based on the claseical integralp of motion.vihiq method i equi~
valent to others in the case of usual quantum systems, i:in some~=
times it occurs more simple from méithematical pbini of view, In
Sec..7 we consider in detail several examples of dif!crent quunu
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tum systems corresponding to fhe pame classicel opes. We show
that only in the quantum cebe the fhysical (1.e. not only fox;
mally mathematicel) diffnrenoen take place eince only in this -
case the action becomep the physical (i.e. independently measu-
reble in experimente) quantity. In Sec. 8 we discuss the pos;
#ible criteria of the correct choice of action functionsls (in-
cluding the additivity prineiple), draw the attention to the
problem of measurements in quantum mechanics end its role for
the correct guentization; also we outline some possible genera-
1igutions and new approaches which should be investigated,

We confine ourselvés to the cade of systems with finite
nﬁﬂbef of dagreep of freedom but the most of the results obta-
ined can bé obviounly réproduced in the field theory.

2, Agtion functionals end trajéctories.

The problem considered in this section is the following:
for the given tamily of the clasaical trajectories described by
the ﬂmetionz

F*)

0/ /fi}

'ng . ny .Iqi)

(2.1)
J—ze N

SR ; (0] '

¥here xn and 1;« = initial veiues of coordinetes and
ﬂlooﬂiesg to #ind & functional ,54 [ %j (2 ] whose extremals
wouid cbiﬁeiﬁi with all funetions SE} (ZJ + Such a putting
‘qt_the_ptoblen is very general, sb that ome should impose cer-
this aaaitisnu;irqaﬁif.-enﬁia ¥iret of all we suppose that tra-
gectorien (8.1) are solutichs bf tne system o2 /V second order
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differential equations (i.e, the classicel system obeys Newton's

laws)

IJ = é/é)x,:i)/- J’:{é’,.,‘ N (2.9)

It i# known (see, e.g., refs, [54—37;7that the veariational prin-
e¢iple for system (2.2) AHWays exisfs, if one introduces «/v/aub-
sidisry veriables é?& . = A2 . .5 for example, for the

functional

"f/xmy«rf// fzéz;["’ f”"}/d’—‘ .9

the Buler equations éi{;iﬁgy/g/ coirncide with eQuafionn
(2.2). However the introduction of sdditionel verisbles is usu-
ally undeairable, so that we restrict ourselves hereafter to the
functionals dependent only op the given varisbles ZZ d# = 1',,
2y ves N ' and their first derivetives. (The epacifie festuro;
of the probiem of quentization of the systems with Lugrlngianqv.
dependent on higher derivetives were ptudied, e.g., if rtf.lsﬁ]s.
Let ue note that i1f equations (2.2) are local (i.e, the forces
depend ouly on the values and et the piven moment of
time f ) then the equations following from the variatiohal
principle

55 | = 0.

sjft) [ - x/f, o Jete M ew

would equivalent to the initiel equatione (2.2) only provided the
functicnal ‘Sqlkz/¥[] (we shall esll it #lso the actioh fﬁndtiu
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onal or aimply the action) ie local:
,SJ-‘v,_S:,fo[If)]:/Z Z, x, 2)dt (2.5)

or quasilocal, i.e. it 38 8 function of loval Functionalei

§e Solaw] = T(spla®]) e

Yor example, extiemals of the quasilocal funciional

S[=#] = ‘“‘//a'f dta ) iie) wn

are the solutions of the equation of the free motjon X = 0 H

sgiy - & 8) [dt' 2 ) e

This exemple shows ala6 that the quasilocal functional
cannot be reduced to any local one, since for a local funetional
the functionel derivative JS/ é 39 {i‘/ is a function of veriab-
les X , .I' N t » while for the nonlocel functional thig deri-
vative 18 aleo e fuactional.

At first glance one is tempted to find the action
imposing the naturnl condition

x(t) f/fxx/—x () (2.9)

which explicitly guerantees the equivalence of egs, (2.2) and
(2.4), and teking functionel integrals from both sides of eq,
(2.9). Howevar eq. (2.9) holds only for & restricied class of
forces é [2; x x) satisfying the relation
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v t o e i r ¥ ‘
S Thn )
S x; (t) 3 x; (%)

following from the evident identity

5—25 _ 52'54
gxtftjigféy . S:Jslr,t'jzxz/t) (2.19)

Relation (2.10) doee not hold, e.g., in the following cases:
e) The unidimensional motion with friction

Rk L[t o 2)=-K 2 ()

BER) o s p) 4 EEE) o spo)_d 5ippt)
=5 5(4-2) # g2l 2 5(4-2) .4 5(z-2')

b) The twodimensiona) “enisotropic oscillator"
o 2 - 2 . . o £ . s
x;,=w EAJ' X ; fif/f,x;"z}"‘wgh( Zx ; ‘—;tﬂ[" {n; Ld°42

§ Ein Xalt] LY/ Y XIPEMCY) v |
WXL 28 B(t-t)p ST o S(2-t
514'“7 FLJ / /# 5“{,/75) é:/l [ /

¢) The motion of a charged particle in the field of &

magnetic monopole
' » IK ) B I
%, =& E%{x H ) ; /71/3‘}"'37;73 =-9V (75:7}

In this cese the compatibility condition (2.10) 1k mot fulfi-
lled only in the singular point X =, Note that if one ndds
the string-like singuler megnetic field ending in the point x=(
(then the field becomes solenoidalt: /f;( = 2ol ’4(:))_ then

eq. (2.10) will be eatisfied eéverywhere. .



» 1Y -

Thue we sss that the requirement (2.9) is too hard sinee it
makes impopeible to give the veriationsl formulation of many Phy«
gicslly interesting preblems. A more wide suffioient (but not
neceasary) sondition of the equivalence of eqs. (2,2) and (2.4) ‘
coneiets in the introduckiop of the syntem of "integrating
factors” ‘/l/'/ /é @, :‘f.) so that

A‘fﬁ/'/@/ xx///fl‘“«?’) -7{/] detHpujll 0 (2.12)

(to ensure the minimum of the motion for claseical trajectories
ohe should demand in sddition the positive definitenese of the
matrix ///VJ// « Then the conﬁp&tibility condition (2.10) leads
to the following equations for the functionsu/u‘ol {t x, x) t

() pprapie - (B LU Afgr | dpmi
M LG 4 Q X azzz EFT
- A
(#) D, # F (pn 2 / s a
’ : (2.13)
5 SU-1 _974( . 374{ ' a/,
( }9)‘ {/‘,'I,/t.,< 5_:%-‘-‘ - JK 3}‘[“/) 201“‘ a ) 0

g .4 d %) -9 -
D =577 I, éféa’x)aa‘:n

Theee equations are known in literature as Helmholtz's conditions
[17 ], We emphesize that egs. (2.12) ere only the simplest suf-
flcient conditions of the existence of the action functional,
For axmyble, one could eontider the integrating fectors not only
as functions biut also ae functionels ~ then the sction ,§ would
be nonlocal (strictly speaking, quasilocsl). The most geﬁéral
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necessary und suffiolent conditien 48 the exisjence of the Tune-
tionals '

55 e . ‘n" o
e m A () (), ded; [x02)
Faey = F (e A, do [=0])

#stiafying the compatibility équnfiena , :
5 F (x{t),...) _ JIC} (’.xlt)..,}
ij' /t’) - 5.’[; /t)

and turning into zerc for ell functions (2,1) (and only for
them), The simplest example of such a functional ig eq, (2,8).
Rowever to quantisze the systems wiih nonlocsl Ffunctionalsg
by weans of usual methods described in the previous section. is
iapossible beceuse of the nonadditivity of such funclicuuls (ses
ant example in Sec, 8 and refﬁ./5,31] }, Therefore we consider

hereafter only local functionals,

3. Lagrengians end equations of motion.

For the locel sction functional (2.5) the eguations of

axtremals have the well-known Euler—Lagrange form

aL c/ )__.

9 o
D st S e e e ey :/ :0
3x; gé I, J:x{_-/ am; 49X 9%

To the fauily of sclutions of eq. (3,1) include all solutions
of the given equation (2.2) 1% 18 nscéssary thai the subatitu-'.

$ion x# wé’ (¢, #Jwould iransforn eqy (3:1) to the identity
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9L _ a°L oy

: L
ax, B ¢ = A Aaz)=32)
ax, Jtad; eagla:{. % a%‘;% fﬁéxsr} 0

this identity cah be &onsidered es the partial differential
equation for the unknows furetion L /g x, —‘) 1t is
completélyequivalent to the s shm of equations ta 13) for the
tunotions ‘/v N X IET NS Jx‘ggs The reduirement obfay A 0
{ot & more hard sondition of the positive defintteness of the
natrix é//”{,,f// ) ensureb the ébkense of other solutions of éq.
{342) b (2.13) than the trajectories of eq. (2.2).

‘Bquations (3:2) br (2:43) wers btudied during last century
b;z fiainy Buthors; The majority of them, however, investigated
only the moliutiofis of thesé equations (#nd of their generaliza~
fior# to the cesés of higher order equafiana ad the field the-
oty) matisfying ihe eohditirm,‘/” = 0if . We wall such Lagran-
glang "identity lLegrengians”. The neceuary and sufficient condi-
tions of the eximtense of the identity Lagrangians were found in
the pepera of ret, [39 ]. The methods of conmtructing identity
iﬁgmng;t‘ana for the piven equations of motion were oonsidered
in refn.[40-43 ] . However examples of the previous sectioh show -
that identity Lagrevgien exist not for aill systems of physieal
interest.

The possibility of & more general Legranglen formulstien of
equ. (2.2) in the tese when the ftmctiona/ll 5 are allo~
wod (let us caell the corresponding iagrengiane "the equivalent
Legrangians") was fioticed for the Piret time by Bonin [ 16 ] . He
‘sonsidered the case of the mingiilar equation snd proved that an
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arbitrery equation (2.2) in the cpse /V'-’I' plways posggeses en
infinite set of equivalent Lagrengiens, end bad abipined the
explicit formuls for all theaé Lasrmiaiana- iam the spme result
wes obtuined also in ref. [19 ]‘.»'rl;n exigtence of equivalent l.ag;
rengiens for syetems of v equations was studied in pet, [ 44 ],
but the complete investigetion of eqe. (2,13) in the ge#prgl case
was not psrfori\ed. The systems 0f two equations were studied in
detail bj Dauglas [20] who gave the complete classification ot
a1l posaible golutions of equations (2,13) in the cese =2, one
of the nuserous exampleb of non-lagrapgien eyetemg is the system
of two coupled damped oqcil}atéra with different rrsm.u‘no;u and
friction coeffioients described by the equatione
21*‘33;'1:1 Fogx, - f‘tz =0;
xd *2‘61.4 +%212' _ 7 z, = 0)» (3.3)
J"»_‘ W £, ? = cont N . '
provided ﬂ“;-“)(“f“ d;‘~ ,%‘*J; ) # Q. Bystem (3.3) ve-
lates to the type IV in Douglas clessification. An even more
simple example is the system (type III by Doﬁglag)
Erg=0
/ + y =0
Indeed, in this case equation(&’}trom the sypiem of Helm-
holtz's conditions (2,13) yielda for ‘.-}/=_f§' @‘/4‘” =0 ’ 'hilé
equaticn (5) with ( =/ ,d!.—“é’ yields ?/c{“:a%g. Conee-
quently, L/uu =0 . From another haﬁd. equﬁti’ﬁn (d’/ with (=(,
J' =2 yields 2%; = Meg 1 therefore we obtain alhov‘/’/,',»:ﬂ.
Consequently, no Lagrengian for system (3.4) cen exist. The deta~
iled 1nveaiigation of equations (2.13) in the N dimensional

(3.4)
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sape wan sarried sub hy ﬁavna [bl_]; but he considered only the
cabe when the matrix //'/ULr}LA/ wes diagonel. I.astv:yes,re the
problem of equiveient iagrangians end Hemiltoniens in classicat
mechenice attracted the attention of many suthore, The womt desp
investigations of this prodblem were performed 1n»refﬂnf22~30].
Soue espects of this problem were stidied aleo in refe./45-48 ] .
The inverse problem of the varietionel calculue for gystems of
partiel differentia) equations was considered in ref. [52_],

After this brief historical survey let ue consider poesible
enlutions of eq. (3.2) provided the forces é? fz‘d)ﬂi)are given
Evidently, 1I.a function lifaé @, 1E) satisfiee eq. (3.2), theun
the function

! . .
[ =el+ 5% Pt ) (3.5)

elso ratiefies the same equation for sn erbitrary constaut numbey
¢  and an arbitrary‘function ‘f’ ~ the trivial solution of
@qy (3,2). This erbitreriness is well known. However the nonuni-
duenepe of polutions to eq. (3.2) 18 by no meéns exhausted with
{ranaformation (3.5). Ae a rule, the soluticns to eq. (3.2) pos~
gess nlso 2 certsin functional arbitrariness, i.e. they depend
on arbitirary fuhcfions of some definite ecombinations of the vari-
dbles f P A X - the integrals of motion,

One can say that nontriviel éolutions to eq. (3.2) form s
aéftaﬁn pet of functiona Z: (Eé C’;fi/) ~ @ clase of equivelent
Lagrangiana Z,/}gf correspohding to the given equations of mo-
tion (2.2). The set L [/]is in the one-to-~one correspondence

with the et FY[f{/ of locael mction functionels (2.5). In clessi-
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ch mechanice all elements of the set ,5/[ ,(’/are physically
iqui’valent, Since they lead to the same equationw of motion,
Purther we shall show (this 1s just the ain of this peper) that
19 qunatum mechanica difrferent motion functionale aorreéponding
to the same funotioms fj (4 x, 2) gre ngk equivalent aince
they lead to Jiffsrent qtjentum systems.

Let us consider sowe examples of equivelent Lagraﬁgiana.

I ) One-dimensional problemcs.
In this ceee the general solution the equiveleut Lagrangi-
ang can bs ovbteined for en erbitrary function -/(f, X, @ ),8ince

system (2.13) is reduced to the only equation for the integration

fnctor/tl =

2, af’z o X ) 020 G

The general solution of eq. (3.9) hes the form [16.19]’ .
\)(f‘, 2 ¢,)= Ovnere V ie en arbitrary function, end Q are
the first integrels of the system of differentisl equations '

= 492 . dEi_ ar :

HJ/’J {é X, ,Zj is found, then the lagrengien cen be congiructed
as follows [4,16,19,21,23 [
L :rx—)~ 70’7//?5 2 %) pll p %)+
(3.8)
c/f(x L6 f) L4

I10) Mot1%n with lineer friction: a; =2 ¥x,

‘The first integralp of system (3.7) are (we uge here dimeu~
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gionless variebles

: ‘ v » - jce..’d"t
R

{3.9)

Then/‘»’ é—" )((xn)d’a Jlé? )where )( is an arbitrery

function, and

| =-2¥d,e m/t/ﬂ/f 24y, 4, %)+

i (3.10)
e’ j(/f(x f)‘((frdd’x fe )
Paxrticulay caaém )
X m ame ft; Z;t - _2_/__7 ize.ed‘:’: \.
(3.11)

i Lk
S = 01455%'“~ *;?JE;](3.12
;Xz z / 9/‘5 22?’ Zé !
x*~cwut
The Lagrangien Lg wes found for the firet time by Batemanpé ja

the Legrangian Z, was obtained in refs‘[45 46] . It cen be
proved that if tha force 7!(.2: & )does not depend on time (in
the one~dimensionel omse) then the equivalent Lagrangian can be
ulso chosen in the form not depending explicitly on time [31 46]
'l‘ho Lagtranpian Z, Lllnatratea this ltatement. It dnés not turn
into the ubual Lagranxiem of a free notion ‘2- cé when {»

nut vwe cen construct angther timu—independent I.urangiam

Z& ‘”71[*~'+4?J%r3r557j§3 20%

=m (12024 )
whioh oolnoidu with % 2 * when ¥+,

(3,13)
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Some other examples of equivalent Legrengiens in the one-dimen-
sional cese were given in refs. [4,19.21-33,45—48] »
. 2
11a) Two-dimensional "anisotropic oscillator": X, =/ E‘:J- Df}' .
Ej=-&;=1- |
One can easily check that the following different Lagrangi-
ane lead to the given equaticns of motion:

I ,:2 . R 2
ZQ=‘—2-—(x{ - )t etz x,
2 (3.14)
. . &J 2 2
1’2:‘7:1 X3 (14'11)

11b) The charged particle in a uniform magnetic field (two-
dimeneional mction‘_ across the field): X ~wj = 0;,”4- wdk=0,

Besides the usual Legrengian

7,2 . m el e .
Zjl =5 (X y )+ > (xg - "Jj (3.15)
there exis’?s, e.g., the following equivalent lLagrangian [ 49] t

. ; . o R . .
[,2 : g’— coa'wf(x{g‘)mm:mwl‘ Zy,

| il = ::: -::://

. L4 . N
III ) Let us find the class of forces ,-5/4 x, -’Z/to'r which the
identity Lagrengiens exist. The condition //V = O, immedi-

4

(3.16)

ately leads to the expression

Z' = ‘2'{" j::.* x; Ai (7-: x)- U/t,x)

Then from eq. (3.2) one has



: 5-7!— Z) e -~ 24 iﬁé % Ak A

- P ) /[/ ‘ 1

[:‘+tlJK'I4‘ K, (3.17)
e

YY"y

L ¢ 2

Thue the only force for which an identily Lagrengien exists i&

Lorentz's force [é3,42] .

IIc) "Ehe examples of the systems which have no Legrangians
were given above {eqs, (3.3)-(3.4)).
Fote that for the gystem

Greyrex =Y

which only elightly differs from system {(3.4) the squivalent

(3.18)

Lagrangians exist. ¥For example, ir one inultiplies the first equ-

ation by ~ £ , then system (3.18) can be derived from the
Legrengian

113:21’[(};2”‘5575{#2“51"@/}‘/”"-)7 (3.19)

However in the limit case & ¢  the varisbles X and *
dissppeer from this Legrapgian, so thet 1t leade in this cese
only to the second equation from system (3.4); 1.e. Legrengian
{3.19) becomes siﬁgular.
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4. Hemiltoulens end equajiong of motion.

In the Hamiltonian formulation of elassical mechanics the
action functional bas the following forms

S[xte) pte)] = [[ o, % -Hit 2. pldt

The Euler equetions for this functional ere just Hemilton's

equations:

0/14‘_ aH ) 'C/P" R a_// :
;7?-—5;)‘/ T[-bm (4.2)

In the Hamiltonien formulstion the notion of the "identity Hemilw
tonian may be used only in the sense that such Hamiltoniang are
quadretic in momenta J; . However eny Hemiltonian /‘/(,O). tor
etample, leads to the equation :Z‘ =0 without & integration
factor while the corresponding lLegrangien Z' / % ) has the fac~
tor A/ = L"12). Therefore we shall sey sbout the equivelent
Bmiltonians, The equation for the Hamiltonian can be obtained,
if one differentiates the first equation from system (4.2) with

respect to L and substitutes 75 (¢ x, o) ineteed of 9& 3

SH W aH _ FH aH ﬂ‘ Hhasy
ALtap; AL 6,0‘ a/g, /% ap; aac- 'a,a
This equation unlike eq. (3.2), is nonlinear. That is why 1t 14
very difficalt to solve it in the general case and, as far ag we
know, this problem was not considered enywhere, Of éourn. if @n
equivalent Lagrangian in known then the Hamiltonien can be reoon-
structed by means of the standsrd procedure: N = P, x‘: "‘é /'; X, x};
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= 91’ 7 however in the ecti -
.= vy present section the direct cuns
A 4:15' _

truction of the Hamiltonien is what we have in mind. But in cer-
tein gimple cases the rather genersl solutions to eq. (4.3) cen
be easily found., We coneider the only example the unidimensional

motion with a linear friction: //zf x, x_) ==dFax .,

1) Let H = //,’t /.')) . Then eq. (4.3) is reduced tanéi/J' d'_.p-.:{,
Therefore /= V’/p)gx/,{,gd'f) @ being an arbitrary function.

2) Let H-= Hxlf’) H, (x )+ Then /L/ {lp)fl//.c) = )J'///n)
whence f/ /x)-‘ ,23/0 =consth yom /‘/ //J) M //J)

’L'/;Z_; E’;/o/%_ & P :1-/. /_'; scomil (4.4)
3 H=HlE xp)= ,L//zj/g)

3 /-/ ‘a/ * o H Y,

géaf ‘/g 23, 3(/&

Hie xp) /; exp[.?d’{ 2+ P(plf ]‘f

where %‘3) ig an arbitrary function.
Lagrange's and Hamilton's formulations of the least action
principle are equivalent provoded the equations /J,, / X i

L4
)

:Z‘; = a'L// can be resolved with respect ta 1' and /U‘ .
At the pame tima it 4s well-known that Hamilton's approach in
certein cases is more flexible than Legrange's ome. Unfortuna-
$ély, » Wore flexibility of the ususl Hamilion's spproach cammot
help ua in the cases when equivalent Lagrangiens do not exist.

Indéed, in such cases Hamiltonians can be only singular (other=-
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wiee we could find aonsingular Legrangians), i.e, the system of
equaticns ,{; = afé;}y cannot be reeolved with vrespect to the
momenta f; L= 73 .. A, Tbis means that 1f we excluded the
unknown veriablee /% from thiz syetem we would errive after sll
st the equation which would not contein the vnrlahlen/ﬁk at all:
y?ba’“,:xv; db,.” ig}:ﬂ,Consequnnt]y, singular Hamiltonlens cen
describe only a pert of solntiong of eq, (2,2) eetisfying certain
censtraints.

In thie conveztiorn 1t would be very fintererting ta nbtaln an
anawer to the following question: whether there exirts such e ge~
neralizatuin of the ueual Hemilten's action functional (4.1) that
would lead tn equations of the type (3.4) heving no equivelent
Legrengians. Mey he nontrivial vresulta can he abtsined if one oon

aiderg the functionals of the type
v AN R Y PN fd e s /
S l(”*—'), pit) ] ” / Lipy g~ HlE e o )) o't

(in the speciel rage /?éd-zﬂfé@'ﬁ such functionals leeding to

quanihemilttonian equetinne were coneldered in ref.ZSOJ )e

%. ¥Varietional principles and symmeiries of equations

of motion.

The nonunigneness of the varietional formulatione of equati-
onp of motion of a claseical mystem cav be erploited in investi-
gating the symmetry transformations of the myatem, We defina the
pymmetry trenefermation of the given claspicml syetem sg A trans-
formation transforming eny trajectory of the system to enme anot~

her irejectory of the eamm syntem (i.e. mny eolutlon of eq.(2.2)
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to another solution of the same equation; see xat.[ﬁi] y. fueh
definition doer not neceasarily mean that e symmetry franetormp.
tion must leave the action unchenged, amp it §is usunlly apsumed,
but sconer that Lt iy & sort of automorphism within the clmee of
equivalent action functionals corvesponding to the gl#cn equati~
ons of botion [23] « Bo, if one uges the lagrangisn mpproach,
‘then the symmetry traneformation should be understcod in our gen-
se ap sny trensformetion under which e given Legrengian L(?,ag:i}
goen Yo some enother legrangian from the cass of equivalent Img-
regiang /'{/; {of course, the identity transformetion Z_, "Z, is
alpo edmotted). In the Hamiltonien approech the transformations
of the cenonicel variebles are, enelogously, the symmetry trens-
formatione 3if they keep the Hamiltonians within the cless of equ-
ivelent Hamiltoniane H[,lf . Note that this definition of the
symmetry trensformation in terms of L'Z}F}Qnd //ffpf ie a di-
rect application of the general concept of the symmetry of equa~
tione [51] to the concrete equations for the Lagrangisn (3,2) or
Hemiltonian (4,3),

The extengion of the varinfional formulstions given above
can be uged for studying the symmetry properties of classical
syetems at least in two Adirections.

Pirstly, considering the changes of the values ,SJ v 4o H
under the syimetry trensformetione one cen generalize Noether's
theorem concerning conservetion lave, Moreover, coneidering veri-
etions which do not keep the Legrangien invariant one cen extend
the variatiovsl principles to obtain the equations for nonconger-
ved velues (such an approach was used for solving certain prob-

leme of the gquantum (mnd clmsaicel) field theory in ref, [52] ).
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Secondly. one cen atudy the problem of determining the inva-
rient funetione : L, A from the classes of equivalentnese
jﬂ wnder the given symmetry trsmsfometion. To do this one
nhnuld golve equatiops for the functions ,_S Z, , OT /*/ togete
her with the conditions of the invarience,

Verious aspects of the formulated problems end some other
probleme relating to the symmetry transformatione of equivalent
iagrangiens and Hemiltoniens were studied in deteil in refs,

[é3»29,53]. Here we consider only seversl examples

1) The scaling inveriance (i.e. the invariamnce with respect
to the infinitesiwal transformation L~~~ Z+dXL = Z=EX ) of
the three~dimensional equation xb =0 .

We confine ourselves to the Lagrangiasns of the form ZJ (’? .‘i‘

.

. < g)
9, x°] . Then the sceling invariance condition is Xy St

:x"_. al:g:i =/ . This condition together with eq. (3.2) lead to
(4
thr expression * 2

[/f‘x x % 2) ‘£[°°f (:xi)m’o(f [ﬂcf /’t’”)] +

; f NG ft))-Z/ dz fifa{xé” ff/ Plef (g 5t)+

2 290 fﬁ"e“%[ffe f,[
fo L f) /”’f FIER 0]

2 ’4 )
(g [gg -1 % i 0, - £2)
where ¢ ( Z) is an arbitrary analit‘:leal function, Hoetther'e the~
orem yields the following cotisérvation 1law:




2
oy
il ﬁn}2-;xﬂi ) centt
& -2 P

v
o

e
Iet ua note thut the eeeling inverien! lagranginne Z,‘lr, N e

indeprpndent mm 7 have the fallowing ferm:

22 :
. e .2 R .
/' -Ls ,I “'p'_,r - (.,’(.’l',) ] . o~ :(0""*{ ‘5-')
- o ’

T
' oAb
itowevey tha corresponding conserved nuentity g .fgzzz ie
1dzasienlly agual to zero due to the gingular nature of this
Yograngtan ‘). .
@Y The two-dimeneinnal "suisotrepie oneilletor®:
o 2 ..
- Y S SN S o= E =S
"/ = ! fr'__’, 4 ﬁ.a.a “‘:JL 4
Cne van esplly verify thet the gliven equations are inverjent

wit respect lo the vokstion/ 7
! Y 4 IV = g ,‘f'I/ ﬁ’ e gy b )i;g ;_:—y, «EX (5 .7)
o <7 - < .

Hown.er Jrgrarginone (3.14) are not inveriente of this trene-

forentione they are trsneformed ns the rompovents of the

kong o ! J
yr ‘y 7 ot ;
e, .. =
N
- 22
; € . M / e N - "
Lo ol n -l s A, X Ery Ly
G T Y S (G E g )
Ry e o s

our sttention wes paid to Legrangiap (5,1) by Yu.D.Veachev.
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Iet ua note that the eesling invarien! lagranginne Z

have the followling forme

[£4
, 2.2 . 42 .
/-5 /'/ SAE ey ] Y R P 54 (5.1)
o i ;
oweveay

fdensienlly esqual to zero

tha corvreaponding vongerved nuentity ¥,
Yograngien *)

Ak
oAy ie -
due to the pirgular neture of thie
YY) The two-dipeneional "sniretrepie oneillebor:
o 2 -
= £ X 5. o
=& r‘f?. T £ &

respect

Cre ven essily verify thet the given equntions are inveriant
w1tk re Lo the voketion
P w4 w4k (7

g»g;l-r‘(é ’(7. £ (5,2)
Howe ;o

Irgrangiong (3,14) are not invariente of this treng-
faormplione t}

they are trensformed ng the nomponents of the
bonpa

IS /

. oy I
- 2 e
; - . . / rs ~ b "
P TITRSa) FU e P N SN AN T 33 FE-2
M"‘»yl g5 - X, Y ¢ 3 (X '}J"ZK o o K)
P s e o s

Our anMj'm was paid te Lagrengian (5

1) by Yu.D,Usachev.
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Since both linear invariants of this tensor namely, A;[
and E%/ Lﬁ/ , are equal to sero, there exists mo quadratio
in respect. of Jb Lagrangien which would be invarient undey
the trensformation (5.2).

At the seme time the quasilocel functional
o e =42
SVstss, e

ie explicity invariant under this transformation and leads
to the given equations of the wotion.

6. Quatization with the aid of integrals of motion.

The existence of different equivalent Lagrnhgians or Ha=
wiltoniens deecribing the ssme claesical system i@@ediately
leads to the conclusjon formulated in the beginning of the
paper that one can construct meny different quantum sﬁntema
corresponding to the given clessical one. The detailed examples
and analyeis of thie statement are given in the following seo-
tion, Before this we would like to considere the problem whet~-
hey 1t 18 possible to inveni such a method of quantigation in
which neither lagrengian nor Hamiltonian do not appaar oxﬁli-
citly, It appears that such a method indeed exists, It is -
based on the equations relating the Green funotion é;ﬂig,a, Qg,f)
to the quentum integrals of the motion A, and f’ having thgf
sense of the operators of the iniiial points in the phase ppabi

of average values of coordinates and momenta:



a2l -

)?o (/2,'%" )G/xz, 2,4, )=%, [7( 2 “-f:tfc)j
9

-

/3/9( Y% G(z z’ x‘z!) ‘};ax 5/-’& 6 1)

G(xz , L) 5(”*} = (6.2)
X ({ ~é) . A EE g

These equatioua were discussed in detajl in ref [54J . Similar
equations were also uwsed in ref, [55} (note that enalogous equ-
ations were appliad. by Direc [56] end Kennerd [57] &lready in
the first papere on quantum mechanice). 1If the Heamil tonian

operator /-/ is known, then the iutegrals of wotion [/é}can be
found with the aid of the equation

5 [H I } = (6.3)

and the initiel couditions {6.2)., Then equatious (6.1) determine
the Green function to an accuracy of an arbitrary time-dependent
factor K{Zfz' fi).: exp [: vre, ﬁ‘)]. To calculate this factor one
Bhould take into account ihe importent nonlinesr condition for
the evolut;m} operator (/ /tfz' f‘) [3] (the Green function

(;(7:2.‘63,' x;, 4,) 18 the kernel of this operator in the coor-
dinate representation):

U2 Z,) = /(2 ¢ )l.-/(/f.\, éx)}- 444 e
L/ (ﬁ ¢, ) =

E is the unit operator). This condition leads to the fol-
lowing restriction for the function V/é, éz) : ‘/J/Zf& Z“)_—:

(P(“-s, Ag) * I)p{é, i:,) i ;ﬂ[t‘ f) ={7 + Therefore
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' 2, » .
Kt 2) ‘"‘?’/0[‘.{7(/”" O/U‘/ (6.5)
vhere )(('ﬁ)iﬂ an arbitrary function, If the Hamiltoxl;_lanv is
known, then thip function cen be determined uniquely from
eq. (1.1).

Now let us suppose that we have Found semehow classicel
integrals of motion X, (2 P, Z)ana /D,, (x P z) (tn.ey can ba
obtained directly from the equations of motig‘n) Then conatruc~
Ving from them quantum operetors X‘, and /2 and substitu-
ting these operators into eqe. (6.1) we cen find the Green fupc-
tion (i.e. quantize the classical system) without introducing
the Hemiltonien cperator or calculating Feynmen's path integral.
In certain cases this method of quentization can occur more
simple and effective then other onea.

" However from the point of view of principle the new method
seems completely equivalent to the ususl methods of quantiga-
tion, Indeed, if we suppose that the evolution operator /‘?a, ﬁa)
is differentiable with respect to iz , then to an acouracy of
the terms of ithe order Ofataj one can write

[(2ratd)= B L22 D),

Then assuning in eq. (6.4) ZfJ
eq, (6.,6) one can easily obtain the following differential equ-~

A
ation for the operator U(fa‘ f‘):‘

(6.6}

=t4—‘-‘-t

= fa +At o.mf taking 1n'§o a_cco\int
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<.

b 24 < [ee)die, t,) (6.7
A :
which 1s mothing but the Schridinger equation.

fherefore the new methbd could give the poseibility to extend
the fremes of the usuel formalism only if the quentum Hamilto-
nian (6.6) /[77 (£) (generally spesking, it is en integral opere~
tor with a certain cowpliceted kerpel) would not have the clap-
gicel 1limit in the form of e function H/DC. /o "‘) » However
we have no example of such & clessical system and do not kn‘ow
whether such 8 exemple exista‘ et all.

The method of quantization w;th the aid of integrals of the
wmotion poseesses the same embiguities as other ones. Firetly,
the procedure of transforming the classica} 1ntegra£a of the
motjon X, end 4 to the operators Xa and F,? is nonuni-
que in the general case because of the problem of ordering the
operators X end /3 . Seoohdly, the Green function cen be
determined to an accuracy of the factor (6.5), Thia nonunique-~
ness ip explained By the fact that the geuge transformation
bk H”-» H+ X[t } does not change equations of motion. However
thu;a ambiguities can be called trivial. The pontriviel nonuni-
Queness (completely equivalent to the nonuniqueness of qﬁmtiu-
tion with the Aid, of uppal methodas due to the existense of dif~
ferent squivelent Ligranglans and Hamjltoniens) arises from thé
fact that sniv‘in[ﬂu tquationi of motion (2.8) 6:;0 finds the -
integrals of motion X, [ x, d’) 2‘) "and 5&; (z, & Z) corres~
ponding to the initial velues of coordinates and velocities,
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while in guantum mechenice we need the operators of the ccordins-
ter “l\I and the generalized momenta /3 » Consequently, cho-
caing verioum roaaible dependences o (ac mf} one can obtain
dAffferent sperators ¥ Vr ,0 Z‘} and p( .’l: /T) #) , end there-
fare Alfterent Green functione. Note that the nonuniqueness dis-
cuersed 1g annlogous to a certain extent to the nonuniqueness of
the Yang-Feldman method /13} of solving Heirenberg's operator
equations when different solutione of the seme egquations cen be
obtein«d depending on the chofire of the commutation relstions
hetween the operstors st the initial moment.

It te jmportent that the dependence ,D(.&f', &f, ?f,)csmmt be
chneen quite erbitrarily, since the compatib;}\ity cond}"cions for

equatione (6,1) require that the operatore Xo end /2, aatisfy

the reletinn

o A )
( Xg po ‘/"Z Xo) [J" =ik 6: (6.8)
ir the mspace of solutione of eq. (6.1). The sufficient condition

ia the operstor ildentity
AN

X/)‘/X f?[ | (6.9)

o ALy
1T the svolution operator 7 end ite inverse one i exist,

than the golutiene of the. operator equations (6.2), (6.3) mre

S At At
X,=l/& L/ ; ,(Z - L//) i/ (6.10)

a0 that relation (6,9) is fulfilled. However 1t is not evident
that proceeding from arbitrsi'y claseical integrels of motivn

% (ar., .’i‘ {‘) and 32; (fx, :i, f) : and meking the substitytion
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2 =2 x,p #) one cean mlways construct the new integrals of
‘motion X, (x,p0?¢) end p(xpt) #) which would satiefy reution
(6.9) after the replacement r and [ by the crevntors x and

jﬁ . If the substitution a;p.qhnﬁ.g; fe mede ir A usual
menner then the functions X, and 4 wust satiefy the 1den-
tity

(¢l n)
(i am”’ 95" gl 3?2’@_)_: 5
(A" = f‘“‘f(“/’; dw " aw s )T Smte

&

1t sesme the most prebeble (although we heve not a strict proo:)
that for syetems like (3.4) which bave no equivalent Legranglans
it 18 impossible to £ind the funckions il (x, p, #)which woula
trensform integrals of motion X2, and :fo to the functions
‘batisfying eq. {6.11) {eee mlgo in this connection Hec,B8), There-
fore the method discussed would hardly ensble to quantize eystems
like >(3.4). However thie problem requires further detailed inves~-
Hgatidné. :

In the coﬁcl_usion of this section to 1llustrate the effec-
tiveness of the integrale of motion method let ue conmrider thm
quaritum system with /‘/ degréns of treedom described by an er—
bitrery quadratic Hemiltonimh of the type [54]

Hie)= £ QB 4 + elz) @

a- () s[5 &l e-(2)

0, and C are 2/\/- dimensionnl ﬂetoru. 5/ /- a synune'erioal
mtrix of the dimcnuon 2/‘/ XZ/\/ Hamiltondan (6.12) lends to
the following équations of motioni '

(5.12)
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X vl '3 e Doar F=0 (6.13)

whave the /\/‘/\/ - matrires /Mand ). and the /\,/. dimened -~
oral veetor /~ have the form
(4461674,
~£ (6014)
- 44, f(f n;)z; £

. £

/ = "(1 * '(;Ca "(4 4 .1)4 C,
(The inverse problem of constructing quadratic Lagrangiauns or
Hemiltoniens for & given lineer syafem (6.13) was coneidered in
refs. [47,49] 3 from the previous sections we know that this prob-
lem heg Folutions only for & restricted cless of matrices /—ahd B
0.

The integrels of moﬂqn 2, end q; (they Have the same

form both in cleseical and quantum capes due 'ao the iinearity of

the equatione of motion) can be expreesed as follows,

00{’@,‘#?;ii):/\/‘{i.;tx)a*‘yﬂa»ft/); Qo = (//30)

.3_;'\_ = AN ZB(f) = A ZC/:{,} S lé; 0‘!(5 15)

3 )[, / 2
E./ ie the A/x/\/ unit ﬁatfix.
Then solving eqe. (6.1) together with eq. (1.1.) (to determine

the time-dependent factor (6.5)) one ¢en obtain the following
formula [5¢ | (providea aet A, #0):
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G/x,,é, 2, {) m/,,'ef( 27‘32,)] exp {—5‘; z, 2,42,,35 -

ot - -f
2 £ ' '
4"::,2.! x, o ¥ ;’.t A’ x, I-.t?a:z /L (S‘,; 4

é&
22,(5-2,2'8)+ 52,54 - 2 [ £ 5]
5

This formula will be used in the next section. Hote that it co-~

(6,16)

incides exactly with Van-Vleck's formule (1.3) because of the

quadraticity of Hemiltonian (6.12). Let us meke slso the follo-
winhg simple but important note: in all the cases when integrale
of motion X, end /2 have the form (6.15) with a symplectic
matrix /\(f)(:l.e. A Z/T=Z, ;\- being the transposed mat-
riz) the Green function has inevitably form (6,16) to an acon-

racy of the factor (6.5), snd the Hamiltouilan hae the form (6.12)
with the following matrix B and vector c

B=-AzA . C=-Az8& (6.17)

The symplecticity of the matrix /\(%)ie equivelent for linear
integrals of motion to the competibility condition (6.9).

T. Bxemples of different quantum systems corresponding
to the samé clessical equations of motionm.

A) Let ue consider as the first example the problemvof‘quanti~
pation of the motion with the linesr friction: X + 24'd =0,
If we ¢hoose Lagrangian (3.11), then we have the following ex-

pressions for the generalised momentum, Hamiltonian and integ-
tul¥ of motion:
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Psmmze (1.1)

e <L
Hy= 5 poe (1.2

JdE . ;
P A .--- — “ = F e _..'t‘.E. y ‘ﬂ . ”
X, = & . [f-e )=« sple ~1) 3
I I e ade
Ry A )

The Green function in the coovdinute representaiion cen be eeeily

celculoted with the aid of fuormala (6.16):
oo v Al “ TN I
{.7 ('Jf‘,d f_lz" s(_‘,l-é“/~/l.nfﬂ;{r [j,e )/ <

) & ‘ N
wf PLLanf | feng

A mure genersl expzebsion, namely, for the Green funetion of the

(7.4)

demped forced hermonic oscillator was celculsted tor the fivat
time by mweans of Feynmen's peth integrals method in ref. [58)'.
Claesicsl solutions rfor Hawiltonian {(7.2) were studled, e.x., in
refe, [35,48] « The Schrodiager gquation with this Hamiltonian
wag studied in papers [39—60] iu which réfarences to other pa-
pers can be found. A detailed review of papers concerning fric-
tion in quentum mechenics is given in ref, [61]'.

In the momentum representetion the Green function has the

tollowing form (it is the Fourier trensform of eq. {(7.4}):

(’ /A 24 /'J é‘) 5‘//33 /01/6190 {y gy ‘2"?.1"}"} (1.5
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¥ow let us consider legrengian (3,12) leeding o the same equati-
on of motion, Then the Hamiltonian is given by eq. (4.4). The in~
tegrals of motioun éare

ﬂ:pr—é’d’fp*. .’Io o - é/&* r'_i,ft“!)e"yf;* (7.6)

xZ = iz exo (24.,) (1.7

Cne cen eupily calculate the Green function in the momentum
representation with the aid of equations similer to eqs. (6.1)
(%o obtain these equations one should maeke the following substi-
tutions in eqs. (6.1)1 X @=pP; £ = -~/ (beceuse in the
momen tum repreaentafion X = +ik &/élo ). The xesult is es
follows,

6}; (/azéa/ P, éz)’: 5(;0& Pe =288, é)

~ A’«“ "20’t
it ! srp € (1-e )f;

In the coordinate representatiuvn one obtains

G, (e, 4; =) =(ert) [ dpew [ (x-c)-

(7.9)

(7.8)

ARy 7>

We see thet the Oreen functions (7.4) end (7.9) are quite diffe~

:?l’cf (£, é?%fe”fj)}

rent, Strictly speeking, Hamiltonians (7.2) end (4.4) describe
d4ifferent systems even im the classical case, because the second

Bumiltonian sllows no$ arbitrary trajectories, but only motions
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with % >0 (pee eq, (7.7); we suppose £ >0, P, 20D
However this fact iz not significent, since 1f we imposed the
edditional condition p>J , 2% >0 iu the case of Hamilta-
nien (7.2), nonetheless the quantum systemas described by the
Green functions (7.4) and (7.9) would be different all the eame,
We cennot celculate integral (7.9) exactly, but we can obtain
the approximate quasivclassical expression for thie jintegral with
the u1d of the saddle point method sssuming 7 —=(. 1f X,-%, 50
then the saddle point ie L =0, 5’1[2#}0*{34 xj)é{ewt ]
and the direction of the steepesi descent 1is gzj[/o.ﬂx)
Therelore

\ %
G[e e/xé) (thjAzc X

'tf) ot 20Ps ac (7.10)
exp{ ;~ - En eE?”ﬂ:)/[ axX = Z,-Ly >0

If A<« 04 then the seddle points end the directiong of the

ateepest descent are given by the following expressiona:

Ps = P*[&/”'a‘"’“ / tir]/

avy (p-f%) = 7/’»:

We choome the point with the negative ;mginary part and obtein
: 2
[ o /z .__‘ *
Gl b)) ~(74n) ~

"‘*f’; (P A‘l’g Z[[C’%!Ax/ AN/ X7 (1.11)
5" Y) b L ewx<d

The choice of the saddle point 18 determined by the ph}'aiaal raq-

quirement that in the classicaly forbidden region AX < g tbl

Green function must quiokly decresse, Note that formula (7.11)
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18 nothing but the snslyticel continuation of formula (7.10).
Moreover, ohe cen caloulate the classical action hy means of éqs.
(2.5) or (4.1) and verify that formule (7.10) coincides with
Van-Vleck's formula (1.3).

In the case of Lagrangian (3.13) we have no other mean to
calculate the Green function than Ven-Vleck's formula. The re-

silt of calculatione is es follows,

G (o )= g [1eotH ) r_c.a]]
e);o{ ‘7‘me L+ —-——I(x --‘9) cot/;/d’z')v“ (7.12)

24(2,-%s) g2
ind (-5 W)U/ t=t-2,

It 18 interesting that in the 1imit d’-’o this approximate
formula transforms to the exact Green function of the free mo-
tion.

Lagrangians (3.12) and (3.;13)7 in the classicel cese are
completely equivelent (hoth of them describe the motion with
x50 ir &é* >0 ). However the quentum systems described by
the Green functions (7.10) and (7.12) are undoubtedly quite di-
frerent.

~ Neverthelese one can suppose thet the difference between
the Green functions (1.4)», (7.10), and (7.12) ie only apparent,
nipco may 55 there exist qome'éa.nonical trenaformatione reducing
any 6! these functione to the others. In a cértein sense this
supposition is cortrect. Indeed, any classical Hemiltonian ean be
trhnsformcd by means of a time-dependent canonical trgn-tomti-

on to an arbitrary other Hamiltonian (provided both Hemiltonians
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have no sipgularities or have eingularities of tha ;ama»naturc).
This statement is an evident canseyuence of the fact thet the
tanonical (consequently nbﬁdegenerate) tranaformation &, P -
(g pt), Pl p z) transforns the given Hamiltonipn

H(x pt) to the Bawiltonten /=0 ( 2 end /3, sre integ-
rale of motjon having the sense of the initial points in the
pbese space); the genereting function of this canonical transfors
mation 18 the classical actioﬁ function setisfying the Hawmjilton~
Jacobi equation. The analogous result is valid in quentum mgohae
nics: 1f the (unitary) evolution qRarator 432(2/correspon2P to
thé system with the Hemjiltonien /4 , end the oggygtor 44/29
¢orresponds to the system with the ﬁfmi}fgniap Aﬁ » then the
tine-dependent unitery operator 44 44 Yransforms the molu-
tions of tye\Schrddluger equation with the Humlltopiag\ f%;‘ to
the solutions of the equation with the Hamiltonisn A .

For example, let ue consider classical Hamiltoniena (7.2)

and (4.4). Po find the canonical transrormation relating these
Hamiltoniene one should solve the equations

Z, (%, p, t) = :r,/:z',_/),, £)
6 (2, p t) =plz, B, ?)

The left-and right-hand sides of thase eQuntiung are given bi
eqs. (7.3), and (7.4) respectively. Bolving these squatious one
obtaine

/41;,=/t)4-2<)’t)0..)'; | (1,13)
7, =55 (1= ) (n M 8)
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The generating funétion of thip treusformation 1s

¢/ﬂa%£)‘ "‘Epf% _/0.1)7“ |
}f’ {2’-(56”7([‘; EP%"" —&i )/ (7.14)

2m

' @
L8 2, .32

We see that transformstions (7.13) mix coordinaiece with genere-
1ized momenta. However if we believe that the veriables X, and
:Qz " are not simply some generaliged coordinates, but they

yre rewl spaceg coordinetes which can be measured experimeniplly
(this assumption is the basis of.qur dafiuiﬁion of the concept
of quentization given in Introduction), then the transforwations

£y ~v~£ié mixing coordirates with (unebserveble?) generalized

wowenta must be rorbidden, go that the effly sllowed transforma-
tione &xre as follows,

&=Ll ) p=Pla p,t) (1.15)

Since no caneniocel trenstormation satiefying eq. (7.15)
and relsting Hemiltonians Aﬁ (7.2) and .6é (4.4) exists, we
are to conclude that Hemiltopians /4 and ,Aé descrive diffe-
vent physical systems, although tlhey lead to the sume equation
of motion. However this difference becomes experimentally obser-
vable, in our opinion, only in quantuw mechanice, because oaly
in quantum wechenics the sction becumes an observable guantity
fand can be meanureﬁ independently (pince the action ia the main
part of the phese of the Green functicn, it can bs messured in

principle (with evident limitatjons) in eome interference eipe~
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riments), Indeed,; in clessicel mechanics the action, Hemiltonian,
Legrengien and so on are only the suxiliery notions, because ohe
can solve Newton'r equations of motion without introducing Eheeﬁ
concepte. Roughly epesking, we have no "sctionu-meter” in clesgi~
csl mechanica, Another situaetion tekes place in quantum mechanies,
where the "action-meter" can bte in principle constructed, and
therefore different (although clessically equivalent) Lagrenglane
and Hemiltonisns lead to physically different end distinguisheble
in experiments quentum systema.

One could think the different quantum syéteme were obtained
beceuse we considered en "exotic" system - e system with fricti-
on.

B) Therefore let us coneider another - quite usual - eystem,
nemely, a charged perticle moving in s uniform magnetic Tield
(the two-dimeneione) motion). In thie cese both equivalent Lagra-
nglans le (3.15) and Zz (3.16) are nonsingular. In the cese
of the Lagrengisn ZQ[ the Green function ie well-khown./éf.B_]n

g g me
G; (% 4, 4 2 o)= 7k sin (Zwt)

XX

9‘7’7"{ e wi-'f("f-wf) “:ﬂ})z»‘gg ‘Mf/* (7.16)
,kﬁzgi (QQJG sz)J(

However the seme equations of motion can be obtained also

from the Hamiltonian

//L =2.; cos wz‘(,ox ,oé,) __;,,,wl‘,ox@, (7.17)
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Applying %o this specipl example of general quadratic Hemiltoni-
pne the scheme of $he previous sestion, ohe can obtain the follo-~
wing Greep function:

. o
Q (% 4,% & 0/ YFA sin ({wﬂ
.w.ﬂ cod /fwt)[x,-x;)e(w&) ] - (7.18)
_m...h (%~ %)% J&)j

which diftern trom the Green funcyion (7.16). The phyeical dif-
Tyrence between the Lagrangiens A and L‘ consists in aiffe-

rtuf télations between the volocities and generalized momenta:

in tha tirst case

d= ,-f'r/%c :?ﬁ/
=hm-Fa

and in the gecond. cake

Z 4 cosawt  -sinwl | [P
j T | sinw? o w? P (7.20)

(7.19)

¢4
Bate that the Hemiltonien

v T .
32‘56&4*%'@#} “2”;':;@“572“?33)2 (7.21)

can bée transformed to the Hemiltonien (7,17) by meens of the
canonical transformation

Bt f ot

-ﬁi,‘g sin wt 2L I%—A! ca.{wl‘)!(d
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é -ljmwll& - ——(_{+cogwl‘}/3 +
r%g/l cos wt) ™ mety

i
20 Ik ot B e S (corot -y

7-22)
(wswf#-;f ¢in wz) (‘) 3( S‘Inwt(g-mwf))ﬁ);

(2] ot — sin 2t @ sinwi. corat)n®.
Y "'H,?f)"(c“wt - Sin }p,, _ﬂ—_—md [{H )&.ﬁ

, . i), ()
2( sin wl w.fwz‘xq A }f(z 4—@:‘:«)2‘)}1

Since thie trensformetion does not belong to the clase of dllqu
wed transforinations (7:15), we conclude that the Gresh Punséions
(7.16) and (7.18) describe physicdlly different quantum systens,
N¥ote in adaition that Hemiltonien 7% ountot be obtained from
#, by means of any guuge transfornation of uutrummuue pd-
tentiale. : :
1 =0 | we obtiin two ditterent Grews iuhe’oiisna a’én-i
oribing the freé motions '

6, (%48 %.9,9)= 225 oo [42 (-2’
(!a B/ )2] :“2;! (124 )j/ -
- L (,Q: + ;) : S _(h;eg

The Hemiltonlens Az are related by meesns of the tiie-dependent

(1.89)



i ﬁ?u

cunonicel trensformesien mixing coordinates and genersliged fomen«
te:

L) (%) {} fe) ~r )
px o p‘ ). H’ =%, .‘. xXo= a2 ;
2 ®

ey Vo) U]

8¢ Criveria of the choice of metion functionals.

8ince different varistional formulations of the seme clage
Bicel equations of motion lead, ue we have just seen, to diife~
rent guevtwsn systems, we are to discuss how to chocee the woust
sorrect action functionals. In the cese of forcea satisfying eq.
(2;10) the moet correct Legrangiasn has, of course, the known form
Lpfz’r‘df?f)a —_"-?32_’,‘2,3~+ E@A{g;t)i - Pla, 2‘) , because 1t has wa-
ny sdvantegess it belongs to the claes of identity Legrengians, h
it demcribes in a unique menner the intersction with varicus ex-
ternal fieldas (wheroas-éther ¢quivalent Legrangisus, e.g. lagrsns
gilan (3,16), deseribe the motiouns Shly in the special configure~
tione of fields), it possespea definite inveriance properties with
raspect to Galilei'a @n& gavge transformations, eto,

But what shall we do if we wigh o quaniize a general cleasi-
cal system (2.2), whep the forces do not setisfy eq. (2 10), for
example, & system with friction 11kg (3.3)% One of Pﬂaﬂiblﬂ ans~
wers ia ap ‘followses ons cap say that such forces are not fundamen-
tal, e thnt -quationa like (3.3) are epproximate even in the
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elespical case, and the eystems demoribed by these equations are
in fact open; cansequensly, to try to descride such systeme in.
texyms of pure quantum-meclianical states, i.e, in terms of wave
functiong, is the meeningless pastime, hecaume such syeteus cen
be described correctly only ih terms of density metrix, It is
@ifficult to object to such a viewpoint, since in this approach
all difficulties disappeer indeed. Let us note only that in such
en approach the nonuniqueness of queniization of the glven clasmi-
cal syetem (2.2) becomeg selfevident from the ont-~get, pinve in
this cnee one glould introduce auxiliary variebles or parameters.
(thermostat) describing the 1nf1ueﬁce of the externﬁlAworld on
the syetem under study, end thie cen be doné in en infinite num<
ber of different ways,

However we wish to invéstigate none the less another possi=
pility - to try to quantize general system (2.2) in the framiwoif
of pure quantum states, due to the following reesons. Firatly.

&8 general cage we have no evident method of introducing auxiliamy
variables or perameters to obtain the evolution equation for the
deﬁsity matrix. Sécondly, our study may help us to understand dées
per why in usual cases the Lagrangisn Zﬂp to the best extent
corresponds to reality. Finally, maybe we will eﬁnceed in futurs
in findingAsuch a method of quantization which cen be spplied éo
& more wide cless of systeme than now available.

Firet of mll 1t is interesting to note that not &ll posbibis
action functionais disocussed in Sec.2 can be used to gquantize &
claesical system, If we suppose that in the limit i*“ﬂ the
asymptotic Van-Vleck's formula (1.3) should be valid (since this
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Aformula naturally arises from Feynmen's path 1n¢egfa1.[§']. it is
aifficult to imegine such & method of quentization thet would not
lead to it) and take into acootnt the 1nportan§ relation (6.4},
then quanilocul functionals 1like {2.7) should be excluded from

congideration. For example. in the case of quasiloca] functional

(2.7} the clueicsl action i ,5;!(3; f,,@'r;,i') {*Tz 1)/({ t)

Then, calculating the integral

T [Bla, b 2 ) Gl 5, 4) I

Jeuof sy oty ) 5 o, ]|

by means of the saddle point method, one obtains 1nsteqd of the

correct expression following from (6.4):

T= 6, £2,x1,£)~eaﬁ{2; ,%fj’/

the rollowing wrong result:

ol ]
Lrem 2% Ji4, ﬁ’)"’ IZE é)“’]

The reason of thie failure ie the nonadditivity of the nonlocal

functional (2,7). Consequently, we have to restrict ourgelves )
with local additive functionels (2.5). (It should be noted nevér-
thelees that there exist approaches to the problem of quentiza-

tion in which nonlinear modofochtions of the Schridinger equation
are conaidered, In such apprbaches nonadditive actions arise qu-

ite neturally [31 ). Then in the quasiclassicsl approximation
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(1.3} equation (6.4) iz slwaye fulfilled (the mast simple way to
prave this statement ia ta uee Feynman's path iptegrals method
[2—3] ). However which of the infinite nwiber of equivalent
Legrangians L{{} should be chosen? It seems to us that 1t de
impoesible to give & convincing anpwer to this question without
snalyzing the problem of messuremente in quantum mechanics (see
in this connection slso nt.[ 33] ). Indeed, different equivalent
lagrangiane lead to different reletions between the velocity and
the generalized womentuw, Therefore the following problem arises:
what can we messure in veality:s the kinematic momentum maE o
the generalirved momentum, O ? For example, if a charged particle
woves in 8 uniform magnetic field, then the standard Hemilionian
(7.21) leads to the conclusion that in the quantum case the kine-
matic momenta /77 and ”7!' cannot be measured simulteneoualy,
while the equivalent Hemiltonian (7.17) does not leade to such

& restriction. Thus the problem of the choice of the oérrect Ha-
wiltonien cen be malved experimentally. However we did nat eee
anywhere the pbyeical explengtion of the impoesibility of measu-
ring x and j eimultaneouely in the presepce of & mppnetic fi-
eld. A similar situation tekes place in the csme of the motion
with friction. If one beliaves ﬂut the Mnrtamti relation
aX> <af) » % relates o the operator of the generali-
%4 wowentum, then n.o.ixe of the quantum syeteus obiained from
Legrengiane (3.11), (3,12), (3.13) end from athar equivelent
Lagrangiens ie better or woree than others, from the point of
view of mathematice (phyeicelly e@ll theae eyetema are different);
in euch & cese the question whieh of thepe Lagrengiens ip the
most correct jg meaningless. But if the uncertainty relation holds
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for the operator of the kinematic momentum (note that uevally,
11lustrating the uncertainty relation in the examples like the '
propagation of purtioles through slits etc., we implicitly have
n mind just the kinetio momentum). then all these Legrangians
are incorrect, and guantization in terms of wave functions is
imposeible. This exemple shows once more that the probiem_ of the
ohoics of the eorrect action is in fect not mathematical but phy-
glcal problem.

Bowever it may be poeaible that the ambiguities. discussed
are due to the model and, consequently, degenerate nature of the
Anystms concerned: they aorresyon& to very special forcea/[t x x)
and they are one-or two-dimensionsl, while the reel syetems con-
Ma‘c of meny particles moving in the three-dimeneionel space.

Maybe for Lagrengiens describing systems coneisting of meny
interacting pa’rticles thére exists & principle which permits to
Inléci the only physical Lagrengien from an infinite number of
vlquivhient Lagra.ngiané. Our conjecture is that from ail equiva-
,llmf Lagrengiane L{{] (with the game forces / ) one cen al-
Ways melect uniquely the physical Legrengien /™ ueing the addi-
t:wity principle - i.e. réquiring that if the interaction betwe-
o thb particles is firned off then the physical legrangian

-'Tim'ast he equal to the aum%e-particle La.grangiane [n dependent
}bnii on variables of n-th particie (cf. [33])

5},_,_ L%t 2, 4, ... ﬂfnci”/{j}):g.{,,/éx,',z’,)(e.n

!ho ﬁym‘bdl [‘9} neans the set of coupling constents describing
ihe iﬂtcﬂotieul betweeh particles {principle (8.1) cen be appli-
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ed only if Lagrangigns are continuous tumctinqg of {;f ? ¢ but
the most of physical systems satisfy this requirement), This prin-
ciple 1s the consequence of the fact thet the world in which we
live 1s governed by quantum laws after all, Therefore if the mc~
tion of the syetem of noninteracting particles were not equal to
the sur of individual actions of each particle, then the wave
function of the system would not be factorized, and this phenome-
non would be very strange.

Let us coneider aeg an examplg the following system:
E+¥(z-y)=0
§+alg-2)=0

Let us consider for the sake of simpliﬂity only equiva]ent Lag~

(8.2)

rangiane dependent only on é Sf. and . Ther one cen aasily

verify that the general eolution of eq. (3, 2) is

L(txty) L /a’*j)+€ 1-(( )eaﬂ) » (_B}-B)

l:( and lL being arbitrary functions. Let us t.quird that in
the case r =0 tha I.agrangien would have the form L" l / “) +
IC#C) , where IL is an unknown function. Thet the furcti-

L, /i*j} +L, /ij):l'/i’)»‘l}'/j) (8.4)

ottons Ly, Ly A
uniquely determines all th::e functions £, , ty end B
so that the Legrengian Z: must have the Iollowing form:

L7 &g)= Plarg)s Het -9t .,
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A more deteiled study of the additivity principle will be glven
elasewhere,

Another unsolved problem is whether it is pomeible to quen-
tize {without introducing auxiliary variables) claessicsl systems
1ike (3.4) which have no équivalent legrangien, We can prove
thet the clsesical integrals of motion L, {x, -"i: "L) " and

.Cf,, (%, 31.:, t‘) for system (2.4) cannot be traneformed to the
integrals :to(z;p, i)and po (ﬂ:; P é) retisfying eq. (€.9) by me-
ane of any linesr transformation of the mllowed type (7.15), so
thet the integrnle of motion methnd herdly cen be mpplied to this
eyetem. Maybe one should inm such cases replace the aystem of the
gecond~arder differential equatione hy the equivelent system of
the first-order eguations, for which equivalent Lagrangisne al-
waye exist [33].'However such an approech is eleo smbiguous,
since in the carec when the initial second-order system im deri-
vable from s Lagrangian the sctione calculated with the aid of
thip Legrangien end of the Lagrangien of the equivalent first-
oider system are, generelly spemking, different. In more deta-

iler thie problem will be discussed eleewhere,
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