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I. 1In the analysis of the interaction between a bunched beam and a long
resonant cavity,1 the responsé of the cavity was obtained in terms of its
resonant modes. This procedure is clearly not valid if the separation of
ad jacent mbdes is comparable with or smaller than the width of the modes.
In the other extreme (mode width smaller than spacing), however, the procedure

is wvalid.

It may also be instructive to calculate the response of the cavity to
the periodic beam pulses as a driven oscillator. Rather than go through
the complex algebra to show that the results are the same we will treat a

simple model by both procedures to show the validity of either.

The model we shall consider is a damped vibrating string which is struck
repeatedly (and periodically) at its center. This problem is similar to the
cavity problem in that there are a spectrum of modes. The equation of motion

for the string is

2
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Here 2y 1is the damping constant, L is the length of the string, A is
the interval between pulses and a is proportional to the strength of the

pulses.

A, Normal Mode Solution

The boundary conditions

y(0) =y(@) =0
determine directly the normal modes of the string, i.e.

ym(x) = sin EE§ m=1, 2,

. . . iwt
and the natural resonant frequencies are given by (assuming <

)

-w2+21wy+v2mL”=o
f 2 mzﬂ 2
w =iy + v - YY" =ivytw
J LZ m

In terms of the normal modes, one can write the general solution as

o]

= Y gy DOX -yt in

y(x,t) ), sin = e [Am sinw t + B cos wmt] .
m=1

The present picture of normal modes properly speaking applies only between pulses.
What we shall calculate is the way Am and Bm change from pulse to pulse. 1In

order to do this we use the relation

. ITX . mm
sin —— sin 5 .

L, _2
$(x-3) =1 L 2

T8

From the original equation one finds the following discontinuities

5(n)y =0, 5(n) %% =a f§(x - % ) = sin EEE sin %E
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which lead to the equations

(n) . (n) -
(8 Am) sin w tn + (8 Bm) cos ® tn =0
sin 20
(n) _ oa (@) . _ 2a 2 vt
(8 Am) cos W tn (8 Bm) sin w_ tn =1 o e s

from which one finds

(n) . _2a . omm (y-iwg)t,
8 (Am+1Bm)—1me1nze

For periodic pulses, one then obtains the solution

A(n) . ,(n) _ 2a . mm e(y-lwm)nA -1
N T My T,
m r) Y m -1

As n - o, one finds therefore

(o] .
_ VU . mmX _=ynA { < (n) . (@) diwpnA }
y(x, nA)n__,oo =/, sinT- e Im A ‘+ iB 0 e o o
m=1 '
o] nA .
= T sin TX 22 sin & Im (1-s' 61wmnA }
mil L I.wm 2 ‘ e(y-lwm)A -1 e

Our final result for the normal mode treatment is therefore

. y(X, nA)n-—»,oo=

g {18

Sinm<—2a )sinm{——————l }
L Iwm 2 e(Y'lwm)A-l
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B. Driven Oscillator Treatment

AADD-81

In this case one expands the periodic pulses (in steady state) into a

Fourier series, i.e.

) se-my =1 ) b
n==co A ==co

Writing
y(x,t) =Z Cp(t) sin S

one obtains the differential equation for Cm'

222 > Zmid
- . v mm _2a . mm
Cm+2yCm+ 5 Cm-ALS]‘nZZ €
L
z:—OO
with the steady state solution
2mid t
> 2a sin Z¥ 4
Cm(t)=z e 222
Yoo = (_2_7_;@_ + 2y (2mid) | v m o
A \"a / 2
For t = nA
> 22 sin 2T
_ AL 2
Cm(nA) -'Ej 2 2mid 2
pome Ot (v + G
oo}
- . 2 juliy 1
ZZLZ in =5 (t_&i>2_<&nﬂ\2
4 == 2m 21
<]
AN a ulu 1 -
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Changing 4 to =4 in the first term

1 1 a
C (nd) = Z —2 _ gin BT [ + _]
m 2w L 2 A _ s
f=co m 2 + Gb + iy) £ +-§; Gnm iy)
a mT r ZZ 1 l
= sin — Re
nme 2 i P 4+ ? @_ + iy) J

It can be shown that

@
S" 1 _ nelﬂB _ 2mi
‘w448 sin 1B 1 -2iTB ’
-2
-0
and so
(e 0]
N 1 { 1 }
Re /, Z:E 217 Im 7m1iB )
Therefore

C (np) = —;i sin —— Im { (Y T )A - }

which leads to y(x,mA) in exact agreement with the normal mode solution.

One can also show that the differential equation for Cm(t) can be solved
using Laplace transform techniques in order to obtain the solution for a

finite number of pulses as well as an infinite number.

II.. A further item of interest is the relation between the standing wave
solution for the normal modes and the solution obtained by reflections of

traveling waves. For a propagation constant
' =o + 18

one has, for the forward waves, to evaluate the sum

o~ (@t+if)2Ln _ 1
1 - ‘e-ZL(Q""iB)‘

(~-18

0

n
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For small values of «, the resonant behavior of this expression is

exhibited by its large value near 8L = mm. In this vicinity one can write

2oL
2

€2aL _6-21(8L-mn )

For oL << 1, the modes are separated. Near the resonance one then has

. 1
T 2oL + 2i(BL - mm )

S

The frequency dependence of S depends on that of the propagation constant 8.

Specifically the resonance wm occurs when Bn} = mm, Near this value one has

w - w
- g ~98 . . - m
B Bm dw (w wm) vg

where vg is the group velocity. Hence

v

~ 1 1 __z 1
§@) 2iL  _w-w - 2ilw ) iov
m oo aJ m [__m _ g ]
v L w w
g m m

The "width'" of the resonance is therefore

av
LU -
w

1
w Q

which turns out to be exactly the standing wave definition of Q-l.

It is clear that the meaning of mode width breaks down when the mode spacing

is smaller than the width. This corresponds to 2uL being comparable with or

greater than 1. 1In this case, the reflection treatment may be more useful.
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