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ABSTRACT

A proof of the reciprocity theorem for the neutron scattering
by spherical shells is given. The theorem itself is stated in the Intro-
duction and at the end of Section 1. The theorem does not state that
the'transmission of the sphere is independent of the distance between
source and detector, and the correction for finite distance is calculated.
In Section L4, it is verified from the elementary scattering laws that the
total transmission is unity for a sphere which scatters only elastically,

and a certain paradox arising from the reciprocity theorem is resolved.



The Reciprocity Theorem in Neutron Scattering

H. A. Bethe

Introduction

A very useful method for determining neutfon cross sections,
especially for inelastic scattering and capture, is the spherical shell
method. The substance whose cross seétion is to be measured, is arranged
as a spherical shell around an isotropic detector at its center. A source
is placed at some distance Rd from the center of the sphere; ideally, Rd
is infinite. The neutrons are counted in the detector both with and with-
out the shell around it; from the ratio (transmission), the desired cross
section is calculated. If the capture cross section is to be measured, a
neutron counter with a flat energy response is desired; for inelastic
scattering measurements, threshold detectors such as a U-238 fission cdunter

are used. The evaluation of such experiments will be discussed in a sepa-

rate report (LA-1429).

A great aid for discussion end evaluation of spherical shell
experiments is the Reciprocity Theorem which states that the transmission
is unchanged if source and detector are interchanged. A more precise state-
nent of the theorem will be given below. The reciprocity theorem is well
known but there seems to be no proof readily available which is directly

applicable to neutron problems. This report is to supply such a proof.

e



Let R, and R, be the inner and outer radius of the scattering

1 2
shell, r the radius of an arbitrary point in the shell, g  the total !
cross section for all processes, elastic, inelastic an& capture, measured
in cm'l, and o-(©) 4 w the elasticl scattering cross section into solid
angle d W, Consider first a unit sdﬁrce, emittihg one neutrone, at the
center of the shell, and consider in particular those neutrons which es-
cape from the sphere after two scatterings, of which the first occurs in
volume element 4 Vl, and the second in 4 V2. (See Fig. 1). Generaliza-

tion to more or fewer scatterings will be obvious. After escaping from

the sphere, the neutrons hit an isotropic detector of area Ad’ thickness

t

a’ and mean free path J\d, at distance Rd from the center of the sphere.

Assuming that the first scattering volume has an area d Al, and

a thickness d t, = 4 Vl/d Al, the number of source neutrons hitting it is

1
I. = d Al e-G'XJ_ (l)
1l LT r 2

1
where ry is the distance of 4 Vl from the center of the sphere and

X, =1 - Rl is the distance the neutrons have to go through material.

1
The fraction of Il which is elastically scattered in 4 Vl is

Sel dt

and the fraction which is scattered through an angle © into solid angle

3
d @, is”
1 (O at, dw

1. This report will be written as if a threshold detector were used so

that inelastic scattering acts as absorption, and only elastically scat-
tered neutrons can be counted by the detector. The modifications applicable
for a flat-response detector are obvious.

2. The time required for emission is irrelevant.
3. Note that for isotropic scattering, O°(€) is defined to be U;l/hTT
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Thus the number of neutrons scattered into this solid angle is

8 = ﬁr_:l.é e TN (0) aw, (2)
1

where we have used 4 Al d tl = d Vl.

The second scattering volume, of area d A2 and thickness d t2,

subtends at 4 Vl the solid angle

dw =4 A2/r122 (3)

where r12 is the distance from 4 Vl to d V2. The number of neutrons

hitting d A, is given by (2) with (3), multiplied by an attenuation factor

e T2 ()

where x

10 is the distance traveled through material from d Vl to d V2.

This is equal to T if the path is entirely through material but less
than o if the path crosses the cavity inside the shell. The scattering

probability in 4 V2 is cré d t,, and the absolute number of neutrons

1 2’
scattered through 692 into d w, s

5, = s e” T¥1(0)) 2 " TM124( 0y) a w, (5)
Wy 12

Now the detector subtends at d V5 the solid angle
dw, = A, /r. .2 (6)
2 da’'~e3

where r23 is the distance from d V2 to the detector. The detector will
count the fraction td/Ad of the neutrons incident upon it. Therefore the

number of neutrons detected is

-T=



D, = ﬂl§ e T (6,) V2 e TX24( 8,) —34 ™ TXp3 (1)

where x23 is the part of the path r23 which goes through material. If

the shell were absent, the number of counts in the detector would be

__4av3
% ¥R 2 A ©
a \a

The contribution of twice-scattered neutrons to the transmission of the

shell is therefore

2

Tp = Lg‘la = gu%c(el) T2 0(0,) By e T ety )
o ry T : r23

the integrals over 4 Vl and d V2 going over the entire volume of the shell.

This expression may easily be generalized to any other number of scatter-

ings. The total transmission is the sum of the contributions from neutrons

which have suffered 0, 1, 2, ... collisions.

Now consider the inverse problem. The source, of unit strength,

is now outside the shell, the detector, of the same volume and "d as be-
fore, in the center of the shell. The neutrons follow the same path as
before but in the reverse direction; that is, they go from the source to
d V2, are there scattered to d Vl, and then go to the center detector.
The number of source neutrons hitting 4 V2 is now

d Ao e G’x23

2
hTTr23
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The number of those scattered at d V2 which hit 4 Vl is

d V2 e- ¢x23 Cr( 62) d A2I e" lez

2
hﬁfr23 o

and the number detected by the center detector is

b = SV e TX35(8,) W & THi20(6)) A S | (10).
ll'Trr23 r12 rl 4

This is obviously equal to (7). Similarly, the identity can be proved
for any other number of scatterings. Thus the reciprocity theorem is
proved:

The number of neutrons detected by an isotropic detector coming
from a unit source at the center of a spherical shell of material and de-
tected by an isotropic detector outside the shell i1s equal to the number

detected if the positions of source and detector are interchanged.

The theorem holds for any number of scatterings in the shell,
for any angular distribution o (O) of the scattering, and for any re-
lation of elastic to inelastic scattering, capture, etc. It holds for
any thickness of the shell and any ratio of outer to inner rsdius, in-

cluding the case of a solid sphere.



2. Generalizations

From the derivation, and also from intuition, it is clear that
the theorem still holds if the material, or its density, changes in any
way as a function of the radius. The main change is that the attenuation
exponentials no longer depend simply on the distance traveled through

-0
material, such as e x12, but are replaced by such expressions as

exp - gc(x) dx

where the integral is extended along the straight line between the two
scattering volumes d V; and 4 V,, and o(x) is the local value of the
total cross section at the point x along that path. But still the same
exponential occurs for both directions of the path. In addition, o(O)
is repleced by &(B,r), i.e. it depends now on the radius r at which

the scattering occurs.

The theorem also still holds if both detector and source are

surrounded by spherical shells.

In fact, the reciprocity theorem as such holds for any arrange-
ment of source and detector. However, its main usefulness is for spherical
arrangements. With e spherical distribution of material surrounding the
source, the number of neutrons emitted in any direction is directly given
by the total emission which usually can be calculated more easily. 1In
particular, for spherical arrangements of materials which scatter purely
elastically, the number of neutrons emitted into any solid angle is the
same as from the bare source itself (Sec. 4); it is this fact which makes
spherical shells so suitable for the measurement of inelastic scattering

or capture.

«10-



3. Finite and Infinite Distance of Detector

The transmission (9) contains the factor Rdz/r232 which is, in
general, different from unity. However, if the detector is infinitely
distant from the sphere, this factor reduces to unity. Therefore the case
of infinite detector distance gives a simpler result than that of finite
distance. Thus the reciprocity theorem does not mean that the "transmission"
of the sphere, as defined in (9), is independent of the distance between

source and detector.

This result can also be understood in a different way whiéh will
lead to a quantitative evaluation. Let T be the total transmission of the
shell with the source in the center and the detector at infinite distance.
Then, for unit source strength, T neutrons will cross any sphere around
the source, of arbitrary radius R as long as R > R,. Now let n(p) a4 w be
the flux at R of neutrons moving at an angle ¥ with the radius, and within
the solid angle d &@. The flux is defined as the number crossing a unit area
perpendicular to the direction of motion. Then the net flux through a unit

area of the sphere is
p/4TCR® = jn(ly) cos Yd w (11)

On the other hand, an isotropic detector placed at R will detect
D= Jn(\f’) aw Vd/7\d (12)

with the same notations as in Section 1. In other words, the efficiency

of the detector is proportional toh

<1/cos v//> (13)

the average being taken with the weight factor n(¥) cos W.

4. That this is so, can be seen most directly for a thin foil detector
placed parallel to the surface of the sphere. In this case, the thick-
ness of the detector traversed is td/cos Y.
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(13) shows that a detector at finite distance will always record
a larger apparent transmission than.one et infinite distance. The enhance-
ment factor (13) can be evaluated, using Fig. 2. The trigonometric sine
theorem shows that
sin ¢ = sin @ r/Rd (1%)
where r is the radius at which the last scattering in the shell takes place,
and O the angle between the radius and the neutron direction after this

scattering. Therefore

<coi )u> =<( - —5-2- sin® @> -1/2> (15)
Ry

For large enough detector distance, this may be written

1+ -é— Rd"2<r2 sin° 8> (16)

so that the correction goes as the inverse square of the detector distance.
In calculating the average in (16), all neutrons coming directly from the

source should be taken into account with r = 0.

In the case of thin shells, the average of r2 for the neutrons
which have been scattered can be estimated very easily; it is about R; R2.
Further, if all angles & were equally probable, <sin2 8> = -§- .
Actually, the neutrons having suffered only one collision are distributed
s the differential cross section (&), i.e. a large fraction of them is
at small &8, giving a small contribution to (16). Those scattered more
than once are probably nearly isotropic just after scattering; but those
moving in nearly tangentisl directions, © near 900, cannot escape easily
because they have to traverse a large thickness of material. This reduces
the average of sin2 © bvelow 2/3. Explicit calculations of the corrections

for finite distance are given in LA-1429.
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It remains to obtaiﬁ the result (15) directly from the trans-
mission formula (9). For this calculation, we shall set R; = b and the
distance from the last écattering to the detector (previously r23) equal
to R. We shall further introduce the number of neutronms n(r,&)d V dw
which (a) have their last scattering (before escaping from the spherical
shell) in the volume element d V at r, and (b) whose direction of motion
immediately after this last scattering is in the solid angle d w at an
angle & with the radius. (n(r,#) is meant to include neutrons having
suffered any number of scatterings. Neutrons escaping without scattering
are counted at r = &= 0). Then the total number escaping from the sphere
is

T=[av {2xsin 46 n(r,O) (17)
and the number which will hit a detector of area Ad at a very large dist;nce

b is
DeT Ad/h')l'ba (18).

On the other hand, the number hitting a detector of the same area at a
finite distance b is, by definition of n(r,O):

p'= [aVa(r,o) Ad/R2 (19)

From this we can calculate an effective transmission, using the
infinite-distance formule (18):
= 42 (a v a(r, 0)/8° (20).

This formula is obviously similar to (9) in that it contains the

characteristic factor bE/R2 (there called Rda/r232).
Referring to Fig. 2, the volume element may be written

-1h4-



ave 2’)‘t’sinxd)gr2dr (21)

We have, also from Fig. 2,

R2=r2+b2-2'brcosx

and therefore, at fixed r (of course, b is always fixed):
RAR=Dbrsinyd X

Hence ,
T'= 4wb-2T(r dr | n(r, O) ar/R (22)

where © is given from Fig. 2 by

»° -
cos O = SR T (23)

In order to obtain a formula similar to (17), we wish to introduce

sin © 4 @ in (22) instead of @ R. Differentiating (23) at constant r

gives
b2 _ r2
2 r sin®d4dd = l+-—-—2—— d R
R
from which
d R 2rR . r sinod o
R b2 - r2 + R2 sin®db = r cos &+ R (24)

where (23) has been used again. Using it once more, we may write

fl

o
]

2]

R2+2chose

(R + r cos (9)‘2 b° - r° §in° O

Inserting in (22) and setting néar = d vV, we get

b
\Jbe - 2 sin6

This is the same as (17), with each scattered neutron multiplied by the

T'=f AV (2Wsin 0 a6 n(r,6) (25)

characteristic factor
2 2,2\ Y
(l - r° sin“ O/b
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Thus we have re-derived formula (15).

Because of the reciprocity theorem, the formulae of this
section are also applicable to the case where the source is outside and
the detector inside the sphere. The calculations are clearly much simpler

if they are done with the assumption of the source inside.

4, Total Transmission

Consider a substance which has only elastic scattering. Then
all neutrons produced by the source will escape from the sphere, the
transmission calculated for infinite detector distance is unity. We
shall now prove this from the formula for transmission.

If t is the shell thickness, then e °° £ is the number of

neutrons escaping without any collision into solid angle 4 @W. Those es-
caping after one collision are

f 2t ae) aw (26)
r
1

where X, is the distance from the first scattering to the surface of the

sphere. Now let us, for the moment, neglect the absorption after the

aox

first scattering, e 2. Let us introduce a polar coordinate system with

sphere center as origin and the final direction of the neutron as axis.

2
Then d Vl = rl drl

radius vector n and the polar axis. Then (26) becones

sin 691 d @, a4 because 691 is the angle between the

%—.Sr) fdrl e % fcr(@l) sin 6, d 81 ay (27)

=16~



But the last integral is exactly the total elastic cross section which by
assumption is equal to the total cross section O . Furthermore, drl = dxl
and @ fdrl e" ¥ =1-e 0t Thus , if the attenuation after the col-
lision 1s neglected, the neutrons having suffered one collision, plus those

escaping without collision, equal exactly the total number from the source,
a L/uT.
Now consider the neutrons lost by attenuation after a first col-

lision at d Vl, viz.

ﬁrﬂﬁ e (1- e"”‘?.) o(6) dw (28)
r

1
and compare with it the number of neutrons suffering two collisions, given
by (5). In Eq. (5) the attenuation of the outgoing neutronms, e~ X23 (cf.
Eq. 6) has already been neglected. Then, just as before, and using the
spherical symmetry of the whole problem, we may put
d V2 = r122 dr12 sin 82 d62 d ¢2. Integrating over angles, the differential
cross section 0’(62) turns into the integral cross section g, and integrating
-Tx gx

over dr,, = dx,,, Ve get 0"( ar), e "12=1-e  “2. Thus the second

collisions just compensate the loss of first-collided neutrons by attenuation.
In a similar way, the proof can be extended to collisions of any

order. Thus it is shown that the total number of neutrons emerging from

the sphere is equal to the number emitted from the source, as it must be if

there are only elastic collisions.

There is, of course, no simple way of calculating total trans-

mission in the case when there is inelastic scattering.



A Parsdox

We have just proved that all the neutrons emitted by a source
will get out through a spherical shell of any material which has only
elastic scattering, no matter how thick the shell. From the reciprocity
theorem it follows then that a detector inside a large sphere of elasti-
cally scattering material will detect exactly as many neutrons of an

incident plane-parallel beam as if the sphere were absent.

This sounds at first sight paradoxical: Surely, very many of
the neutrons of the beam will be reflected by the outside of the sphere,
and very few only will get to the center especially if the thickness of
the sphere is many mean free paths. The solution of this paradox is that
those neutrons which do get to the cemter will cross the internal cavity
of the sphere many times which enhances the probability of being detected.
The reciprocity theorem states then that the increase due to multiple
traversals exactly compensates the decrease due to reflection of neutrons

from the outside of the sphere.
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