

ADIABATIC DAMPING OF LARGE PHASE OSCILLATIONS

REPORT

NUMBER MURA-5

ADIABATIC DAMPING OF LARGE PHASE OSCILLATIONS

S. C. Wright

University of Chicago The phase equation $\frac{d}{dt} \left(\frac{F_s \dot{\mathcal{G}}}{R} \right) + \frac{h w_o^2 e V}{3\pi} \left(\sin \mathcal{G} - \sin \mathcal{G} \right) = 0$ where $P = \frac{F_s \, \mathcal{G}}{-K}$: $K = \Delta - \left(\frac{M_c^2}{E_s}\right)^2 \cdot u(\mathcal{G}) = Cos \, \mathcal{G} + \mathcal{G} \sin \, \mathcal{G}$ Stable phase oscillations occur about the stable phase \mathcal{G} if the maximum phase 9m < 7-96The action of a stable oscillation is Jefply= \hat hwo ev Es cos 9 F(4m, %) where F (9m, 40) = 9 /4(9)-4 (9m) dg The phase oscillation angular frequency $\Omega = \frac{2\pi W}{J} = W_0 \int \frac{Re V_{os} g(-K)\pi}{E_c} \frac{G}{F}$ The maximum relative energy spread $\frac{\Delta E}{E_S} = \frac{\beta}{S} \sqrt{\frac{ev \, co. \, g_o}{\kappa \, \pi \, R \, E_o}} \cdot \sqrt{\beta}$ momentum spread $\frac{\Delta P}{Ps} = \frac{1}{P_s^2} = \frac{\Delta E}{E_s}$ The $\frac{\Delta Y}{Ts} = \frac{\lambda}{\beta_s^2} = \frac{\Delta E}{Es}$ are tabulated below, for $\frac{1}{3}$ = 30° The radial

J is invariant under adiabatic change of its parameters. given certain conditions, say $f_m + E_s$ at injection, we can use the table to compute the change in \mathcal{G}_m and hence $\frac{\Delta E}{E_s}$ as E_s rises.

As soon as 9m - 90 has damped down to less than 30° the formulae in Courant and Snyder's paper are valid.

F, E, VA

gives the maximum tolerable spread in injection NOTE. energy in terms of Einj, eV , %, 9m for sudden application of the r.f. It is a more stringent requirement in most cases than that requiring the particles to stay within the doughnut. Symbols have the same meaning as in Courant's and Snyder's paper.

9m - 4	<i>9m - 40</i> 0 rad	F (9m, 90)	G (Gm, P)	16 (gm, yo	<u>A</u> F .225
-10°	.1745	.065	•0148	.1217	.225
20°	.3490	.251	.0561	.2369	.224
30°	.5235	.539	.1203	.3468	.224
40°	.6980	•909	.2020	.4494	.224
45 ⁰		1.090	.2477	•4977	.223
50 ⁰	.8725	1.339	.2956	.5437	.221
60 ⁰	1.047	1.807	.3954	.6288	.219
75 ⁰	1.309	2.532	.5431	.7370	.214
90 ⁰	1.571	3.258	.6704	.8188	.206
105°	1.833	3.793	.7584	.8609	.200
120°	2.094	4.049	.7908	.8893	.176