CERN - DATA HANDLING DIVISION
DD/73/28
R.D. Russell,
P. Sparrman,
M. Krieger*
August, 1973

ORTION - THE OMEGA REMOTE INTERACTIVE ON-LINE SYSTEM

(to be presented at the International Computing
Symposium 1973, Davos, Switzerland, 4-7 September
1973)

(* MPS Division, CERN)

DD-jh

ORION =~ THE OMEGA REMOTE INTERACTIVE ON-LINE SYSTEM

R.D. Russell® P. Sparrman*, M. Krieger**

* Data Handling Division, CERN, Geneva
** Machine Proton Synchrotron Division, CERN, Geneva

ORION is a system which permits the manipulation of files, records and characters, remote
job submittal and retrieval of output files including the direct loading of remote on-line

computers.

The system uses the computer hardware of the OMEGA project at CERN, and is

designed to assist researchers in development and debugging of their programs.

INTRODUCTION

ORION is designed to give the users of mini-
computers that are on-line to physics experiments
in the CERN OMEGA project remote access to the
file storage, program development, and batch
processing capabilities of the medium-sized
central OMEGA computer, as well as program load-
ing into the remote machine. ORION consists of
a program in the remote computer that interacts
with one or more users at teletype or display
terminals, and a program in the central machine
that communicates with the remote machines via
data links in order to manage files on the large
central disk, to submit jobs, and to make status
inquiries on behalf of the on-line user. The
commands include a complete set of text-editing
and file manipulation facilities in a format that
is easily read and understood.

This paper describes the design philosophy and
implementation of the ORION programs. The OMEGA
project computing system, which consists of a
CII 10070, an BEMR 6130 and four 16k PDP-11/20's,
is described elscwhere (1), as is the data link
softwarce (2} and hardware(3).

USER DESIGN CONSIDERATIONS

The design of ORION will be discussed from two
points of view: that of the users and that of
the implementers. The primary emphasis at the

user level was on what we call 'human engineering’.

Much thought and effort went into designing a
system that could be used and understood easily
by inexperienced users, yet would be powerful
enough to satisfy more sophisticated users. The
design is based primarily on the authors' exper-
ience with WYLBUR (4,5), although other editors
were also considered (6,7).

The first step toward our goal was to choose
meaningful pnglish words for the commands typed
by the user. The basic commands are a small set
of action verbs (after all, they are commands)
that convey to an inexperienced user some idea of
their function. Computer jargon and cryptic
abbreviations were carefully avoided, and each

. IRENI .

comnand performs a single function - complicated’
option strings that cause a wide range of differ-
ent actions for the same command word is a classic
example of bad human engineering. We also felt
that there should be a 'good resolution' between
comnmands so that one command would not be confused
with another because the two words looked or
sounded alike.

The fact that every command is an English word
makes it very easy to explain the command set to
a novice and to give him confidence that he is
really using the conmand he means to use. For
experienced users who find it burdensome to type
long words for familiar operations, ORION will
accept any partial spelling of a command word that
is unambiguous. For most commands the minimum
spelling is simply the first letter, due to the
'resolution' between command words. Tor example,
'E', 'ED', 'EDI', 'EDIT' are all accepted as the
EDIT command, but the REPLACE command requires at
least 'REP' to distinguish it from RCENUMBER,
Neither 'R' nor 'RE' are acceptable ab-
breviations. It is important to note that all the
letters typed by the user must be correct or the
command is rejected. For example, 'REPR' is not
interpreted as 'REPLACE', since the 'R' does not
match the 'L' (even though 'REP' is unambiguous).
If the user were a novice who had intended 'REPR'
to mean 'REPRODUCE' (a non-existent command), he
would be most confused to find that ORION had
REPLACED what he had meant to copy.

This example illustrates another design principle
that the syntax should be such that an acceptable
input should have the same meaning for both the
user and the computer. The notation should not
have several interpretations as far as a novice

is concerned - it should really represent what it
seems to represent. The converse proposition is
also essential - that all strings acceptable to
the computer should look meaningful to the user.
We felt that the horrible hieroglyphics of many
text editors were another example of bad human
engineering. When being shown other text editors,
we were always impressed if the experienced demon-
strator was unable to decipher the meaning of a
legal input string that was either given in the
manual, typed by someone else, or typed by himself

earlier in the session. ORION avoids the hiero-
glyphics problem by the use of free-field input
with optional punctuation characters (blank,
comma, equal sign), and keywords such as 'IN',
'FROM', 'TO', 'BY', 'FOR', 'COLUMN', which
precede each option, as in the examples:

SEARCH 10/25 FOR 'SUBROUTINE'
CHANGE FROM 'INTEGER' TO 'REAL' IN.1/9 COLUMNS 7/9
RENUMBER ALL TO 10.2 BY 5.52

These keywords allow the options to appear in
any sequence, and are much easler to use and
remember than special characters or positional
dependencies. They also result in an easily read
typescript of the editing session.

One of the advantages of any terminal system such
as ORION is that the system can interact with
the user so that he learns while using it. The
ORION HELP command is essentially a self-tutorial
in the use of ORION. This command, which includes
instructions on how to use it, gives the user
on-line access to the entire ORION users manual
in a hierarchical manner from general command
descriptions to detailed examples with full use
of all options. For example, at any time a user
can type:

HELP ADD

and have printed at his terminal an explanation
of the general use of the ADD command plus
instructions on how to obtain more specific
details. The user should therefore never be at
a loss as to what to do next just because no one
is around or because he left his manual at home.
The system is designed to be self-instructing.

An interactive system by definition should always
react to the user, and ORION is designed so that
the terminal never 'goes dead' during the pro-
cessing of a user's command. The syntax analysis
of each input command, which is done in the
PDP-11 and hence is virtually instantaneous,
results in either an error message or a semi-
colon response indicating 'syntax acceptable,
processing begun'. A message is also typed at
the termination of all file-handling, remote job
submittal, and status commands. If the processing
of a particular command takes a long time with-
out teletype output (for example, an unsuccessful
SEARCH of a large file), an 'idle-sync' pulse

is issued to indicate that the system is still
‘alive'. .

The response produced by ORION to any user action
is designed so that the typescript of the session
will be a complete log showing clearly the sequence
of actions and responses that occurred. Input

and output lines that are cancelled by the user

are indicated by three trailing dots. Whenever

a command is aborted by the user before it has

finished, three up-arrows are typed.

Foolproof error detection consumed most of the
coding effort that went into ORION. All errors
result in a meaningful message to the user, not
just a cryptic error code that has to be lpoked
up in a manual. There is never a loss of files
or previous editing due to a detected error, since
in general ORION recovers to the state it was in
before it started the processing that led to the
error. As a further safety measure, all addi~
tions, deletions, and editing are done on a
workfile which-must be explicitly saved to make
it permanent. This reduces the possibility of
catastrophic errors, since permancnt files are
never nodified, and are only replaced or erased
by file commands that explicitly name the file.

All files used by ORION consist of a set of
numbered records, one record per printed line of
text. Commands specify a specific line or group
of consecutive lines on which they are to operate.
Any line in the file can be referred to at any
time - there is no need to process a file scquen-
tially from beginning to end, as in FOCUS for
example. There is also no need for the user to
remember 'where he is' in the file, as is true in
editors without line numbers. The line numbers
are in the form of 'WYLBUR numbers' (4,5) -
decimal numbers in the range .001 to 99999.999
with at most three digits to the right of the
decimal point. The fractional digits, which are

- printed only if they are non-zero, give a very

obvious indication of inserted lines, since files
are usually created with integral line numbers.
Any part of the file or the entire file can be
renumbered at any time, but only by explicit
command from the user. {There are editors that
automatically renumber as lines are inserted and
deleted, which implies that the numbers are
useless, since the user is never quite sure which
number goes with which line.)

TECHNICAL DESIGN CONSIDERATIONS

We decided from the beginning to use existing
software whenever possible. On the CIT 10070

ORION runs as a user job under the normal SIRIS 7
operating system (8). It can therefore coexist
with all normal operations, an important consid-
eration for smooth, rapid development. ORION

also uses only the standard file formats and

access methods available in SIRIS 7. This means
complete compatibility with all other processors

in the system. This yields enormous advantages -
no extra effort to develop file formats, no costly
overhead to convert between formats, no confusion
for users, and full use of all system facilities
even during debugging. SIRIS 7 includes a standard
compressed format that can be read directly by

the language processors (FORTRAN, PL-70, asscmbler),
and this can also be read and written by ORICN if

desired in order to reduce the disk space
required by large files.

On the PDP-11 ORION utilizes a multi-tasking
monitor that had already been developed at CERN
to drive display terminals (9). This permits
the same PDP-11 to be used simultancously for
driving both graphics displays and ORION termin-
als. The syntox analysis of commands is done
using the table-driven parsing routines that
were written as part of the PL-11 compiler
development. Communication with the CII is done
with link packages that are standard on both
nachines.

ORION is written largely in high-level languages.
Most CII routines are written in FORTRAN, although
some Assembly language coding was necessitated
by the lack of good 1/0 and error handling
facilities in FORTRAN. All the PDP-11 coding is
written in PL-11, an intermediate-level language
designed and implemented at CERN (10). The
advantages of this decision are obvious - faster,
more accurate coding, easier debugging and
modification, and self-documentation of the
programs.

We assumed from the start that neither ORION nor
the operating systems would ever be completely
free of crashes, and hence recovery procedures
were designed in as a fundamental part of ORION.
The tables describing the status of all terminals
and files in use are kept on the CII disk, and

are rewritten to disk each time the status changes.

Reading these tables from disk during restart
painlessly restores the 'memory' of ORION -
nothing is lost. '

Of primary concern to the user is the survival
of his workfile through a system crash. This is
done using standard system facilities in a
straight~forward manner. All workfiles are kept

as permanent files on an account to which only ORION

has access. The operating system does not touch
permanent files during the restart of either

ORION or SIRIS 7, and the recovery procedure in
ORION simply reopens these files based on informa-
tion in the status tables that are also recovered
from disk. This technique required very little
cffort for the implementers, yet ensures with
high probability that all work in progress will

be recovered. The most that is ever lost is the
current command of one user. Use of standard
files also made debugging faster and casier. The
fact that the workfile account occupies a fixed-
head disk on a channel separate from that used by
the disk packs containing permanent files produced
high performance as an added fallout.

The division of labor between the PDP and CII was
decided largely on the basis of the recovery
considerations mentioned above and the facilities
available on the two machines. Good recovery

dictated that all control and status information
be kept in one central, recoverable place (the

CII disk) rather than distributed throughout the
system. llence the PDP remembers very little about
the history of the session, and must interrogate
the CII whenever such information is required.
Since the disks are on the CII, all file mandpula-
tion (USE, JOIN, SAVE, SCRATCH, RENUMBER)
necessarily had to be done on that computer. This
includes all error checking on the file level.

The terminals are all connected to the PDP, so
that all text handling, I/O formatting, and
editing are best done in that machine, especially
if rapid response at the level of single character
input is to be achieved. The logical unit of
transmission between the machines is a single line
of text, which is equivalent to a single record

in the file, although physical transmission usual-
1y involves a block of consecutive records for
purposes of efficiency.

It is interesting to note that the CII disk is
used for storing the text for the HELP command
and for all error messages. The PDP-11 sends a
'"GET-HELP' request containing the HELP keyword
whenever the user enters a HELP command, and a
'GET-ERROR' request containing the error code
whenever the user has made an error. The CII
retrieves the appropriate lines of text from the
disk file and sends it to the PDP for printing in
exactly the same manner as text from an ordinary
user file. This obviously allows messages of any
length to be handled easily, and allows the files
containing these messages to be edited by ORION
(in effect, ORION is recursive). They can be
updated at any time, with the updates becoming
effective immediately. This technique also
reduced the amount of work needed to implement
these commands, and made their debugging extremely
simple.

In order to ensure that parallel development of
the different parts of ORION would be done in

an orderly manner, two clearly-defined interfaces
were designed in addition to the interfaces to

the two operating systems. The most obvious is
the one between the CII and the PDP - all trans-
actions across this interface require an exchange
of link messages. The PDP initiates the trans-
action by writing a buffer to the CII. For easy
processing on both sides this buffer is in a

fixed format. The CII processes the request by
filling in empty slots in the buffer, usually with
information retrieved from disk, and then sends
the augmented buffer back to the PDP. Not until
this has been received will the PDP reply to the
user that the command has been processed. The
buffer returned by the CII may contain several
lines of text for printing and/or editing, or the
text of an error message if an error was detected
by either machine. Lines added or modified at the
terminal require additional link exchanges in order
to update the workfile on the CII disk. For

debugging purposes, a switch in the CII can be
turned on by command from the PDP in order to
dump onto the CII line printer the input and
output buffers and the internal tables for each
transaction.

The second interface exists in the PDP between
the control program and the syntax analyser.
This interface is crossed only once for each
command, when the control program passes an input
string directly to the analyser for decoding by
a bottom-up simple-precedence parser. The
information gathered during this parse is placed
into slots in a fixed-field buffer that is used
to drive the actions of the control program in
carrying out the command provided the analyser
has found the input to be syntactically correct
and consistent.

These two interfaces made the project very easy
to manage, since the labor was clearly divided
into three parts with one person on each, and
easy to debug, since just dumping the buffer each
time an interface was crossed quickly showed
exactly who was responsible for the bug. During
normal operation the PDP gives a response on the
terminal each time an interface is crossed - after
syntax processing a semi-colon or error message
is typed, and while waiting for the CII an 'idle-
sync' is sent at regular intervals. Although
originally intended solely for response to the
user, these outputs became one of our best
debugging tools, since they clearly show which
side of the interface a hangup or crash occurred,
even after the debugging buffer dumps have been
turned off.

A second beneficial 'fallout' arose from the
design of the clean PDP-CII interface and the
resulting design of the CII program as a general
file manipulator. Since the CII program simply
receives commands from a data link and sends the
answer back, it is obvious that any program in
any remote computer could easily send commands

to the CII program - the interface design insured
that the format of the link buffers was not depen-
dent on the format of the teletype syntax.

We therefore specified a set of subroutines called
MOPEN, MCLOSE, MGET, MPUT, MADD, MDELETE, and
MFIND that could be inplemented identically on
all three OMEGA computers and would give any

user program anywhere identical access to all the
ASAM and APAM file handling capabilities of the
CII. These subroutines, which were written and
tested for the PDP-11 and EMR 6130 in a matter

of days, can be run by users having no knowledge
whatever of the ORION terminal procedures (which
do not even exist on the EMR).

A final interesting point is that ORION is designed
to monitor its own activity on the CII by writing

a redord onto a special statistics file for each
link transaction. This produces a complete log

of all link traffic, and gives us a powerful tool
for performance evaluation and fine-tuning of the
system during normal operation.

USER LEVEL IMPLEMENTATION

b
A user of the ORION system has at his disposal
a set of conmands of which the major part is the
'file-editor'. In addition there are commands
for remote job submittal and related functions,
different utility and 'display' commands, and
finally a set of 'subroutines' to handle files
at the CII 10070 from the remote computer (the
file-manager sub-system). This is somewhat
different and will be treated separately.

A description of the detailed syntax of the
commands and their function cannot be given with-
in the scope¢ of this paper. However, a brief
summary will be given. In addition the formal
syntax definition is given as an appendix for
those interested.

Note: In the following paragraphs ORION command
words are printed in upper case.

The user presents himself to the system by the
LOGIN command in which he gives his name and an
account. He may store (SAVE) files only under the
account given but he can read (USE, JOIN) files
on any account.

He leaves the system by the command LOGOUT which
is accepted only if the workfile is cleared.
This feature has been implemented as a remainder

- that he should save his workfile in order not to

lose any work done.

After LOGIN the user has an empty workfile into
which he might start entering lines of text

using the ADD command. He might also USE (bring
into the workfile) a file or part of file, for
example in order to update it. That file could
have been created by ORION or any of the compilers
(in the case of a program).

Any time the user wants he can JOIN (bring into

a non-empty workfile) the content of another file,
fully or in part. This 'joining' can mean an
extension at the beginning, at the end, or some-
where in between, the only requirement being that
existing line-numbers and joined ones do not
interleave or collide., In the USE and JOIN
commands renumbering can be done to any line num-
ber by any step.

At any time the content of the workfile can be
SAVEd (written onto) a user file (named permanent
file) or a temporary file (named file that is
SCRATCHed (deleted) by ORION at logout).

Also, at any time, any part of the workfile can

be PRINTed on the CII 10070 line printer or
PUNCHed on the CII 10070 card punch.

The user can, at any time, RENUMBER the workfile
fully or in part to any line-number by any step.
This process cannot however move line(s) to
another position. This must be done using the
MOVE command.

To delete user or temporary files there is the
SCRATCH command, which also can be specified

as an option on a SAVE, and to empty the workfile
there is the CLEAR command. which can be speci-
fied as an option on USE or FETCH.

On the record level the user has several commands.
These commands all operate on a single line or on
a range of consecutive lines. They have the
function indicated in the table below.

TABLE 1 - EDITING COMMANDS IN ORION

COMMAND MEANING

ADD adds line(s) to the workfile.

cory copies line(s) to another position.
DELETE deletes line{s) from workfile.

LIST lists line(s) on the terminal,

MOVE moves line(s) to another position.
REPLACE replaces the text of existing line(s).
CHANGE changes character strings in line(s).
SEARCH searches line(s) for specified string.
EDIT editing within line(s).

Especially during program updating 'content
addressing' is extremely useful. With the command
SEARCH a user can ask for the occurance of a
specified string of characters in a range of

lines or in the whole workfile. He can specify
whether this string should be looked for anywhere
in the record, starting in a specified column or
starting within a colunn range. All lines are
listed (displayed) on the terminal. Using the
similar command CHANGE a user can replace one
string by another (which may be shorter, longer

or equal in length). The lines are listed as they
are changed.

The command EDIT is used to edit, character by
character, one line at a time. During editing
the user has several control keys at his disposal
for keeping, inserting, deleting, and replacing
characters.

For remote job entry there are two commands:
PJOB, which activates any of the utility process-
ors at the CII 10070; and SUBMIT which is a
'genuine' remote batch submittal of the workfile.
The 1OLD option on the submit command allows the
user to retrieve his line printer output at the
terminal. This is done using the command FETCH
which brings the output into a cleared workfile.

Related commands are LOCATE, which gives the user
status information on his submitted job, and
PURGE, which deletes held output files.

Use of the SHOW command gives the user reports

on: i) files used in this session and their
status, i1i) the status, filenames, and free disk
space on his account, iii) the status of his or
all jobs submitted with the HOLD option on SUBMIT.
The remaining commands cannot be mentioned in this
limited space.

In case a user is the only user in a PDP-11 which
is the case for the ‘on-line' PDP-11's, he can
use the LOAD command to get his remote computer
loaded with an absolute load module that has

been compiled and link-edited onto the CII 10070
disk.

There exists as a sub-system a 'file-manager'
which allows a user program running in the remote
computer to create, retrieve and in general handle
files on the disk of the CII 10070.

SYSTEM LEVEL IMPLEMENTATION

The hardware configuration at the OMEGA project
naturally led to the concept of using the remote
computers, the PDP-1l's, as front end processors.
There are several advantages with such an arrange-
ment: i) the big computer does not have to deal
with typed characters or lines but can react on
well structured requests, thus using less time.
ii) the user is shielded from direct contact
with the big computer making the system more
reliable and safe. 1ii) the remote computer can
give faster terminal response. 1iv) much useful
work, for example character string scanning, can
be done as efficiently in the remote computer as
anywhere else, resulting in a smaller CPU load on
the large machine.

In addition to the PDP-1il's being a good choice
for front end processors, the CII 10070, and
specifically the SIRIS 7 operating system is very
well suited for implementing ORICN. In particular,
SIRIS 7 has excellent built-in facilities for
remote interaction, including submission of jobs
to the input stream, and several file-access
methods well suited to the ORION file processing.
Also, SIRIS 7 manages core efficiently, using a
rollin-rollout scheme. If ORION, or any other
link connected job is not active within any ten
second time frame, it is rolled out until the
next link request arrives. Only two changes to
SIRIS 7 were necessary; the first allowing ORION
to access files on any account, and the second
allowing output retreival after a SUBMIT with the
HOLD option. Both changes were minor. Using two
processors the interface must be clean and well
defined. It was felt that everything that could

be done in the remote computer should be done

there (it is idling most of the time anyhow).

The interfaces chosen are vizualized in Figure
1.

PDOP - LINK C1I-10070
SYSTEM
Syntax | pDP | General
‘@T& t‘%’ File
Scanner | Master % Manager
AK Bytes) | Control I (120 K Bytes)
l(6 K Bytes) | o
i
Interface]| YseR(s)| Interface?2 DISKS
|
Figurel Interfaces Within ORION

A command from the user is accepted by the PDP
master control and the syntax analyzer is called.
If the syntax is accepted a semicolon (3) is

typed and a buffer containing the decoded
information is given back to the PDP master
control. Using this buffer and a table of default
values a link buffer is built and sent to the

CII 10070 as a request. The PDP then waits to
receive a buffer back from the CII. Consequently
the CII 10070 is always the 'slave' computer in
the communication, reacting on requests from the
remote partner. The requests received at the CII
10070 are completely processed before a message

is sent back and another request can be accepted.
This arrangement is usually satisfactory since
most commands have a real-time duration of less
than a second. For some commands however (reading
and writing big files) the processing time can be
of the order of 30 seconds, which presently blocks
'short' requests from other terminals. This will
however be the object of future improvements.

Special attention has been devoted to error
detection, the aim being that a user error should
result in a 'no-operation' and an explanatory
error message. (Due to the limited core memory
in the PDP-11's the error messages are retrieved
by a special request from the CII 10070 disk.)
There are really two types of user errors which
can occur, those causing syntax errors and those
causing conflicts at the file or record level.
The first type is easy to handle as it is dealt
with entirely in the remote computer. Recovery
from the second type is more difficult. On file
operations, for example, a JOIN command causing
conflicting line numbers, the workfile is not
changed. On record level manipulation, for
example, an ADD command, a special 'check'
operation is issued to ensure the proper completion
of the command.

Another area of great attention has been reliability.
A crash in the CII 10070 operating system or in
ORION itself does not result in loss of any file.
To accomplish this easily all files are named
permanent files, and they are closed at all times
except when actually read or written. The work-
files are always updated on disk, not only in the
memory buffer, and this is done in parallel with
the transmission of the buffer to the remote
computer. For reliability the temporary files
are named permanent files which are scratched

by ORION at logout, but they can be safely
recovered after a crash.

For reliability all tables in ORION are kept only
in the CII 10070 and are dumped to disk every time
they have been changed. Consequently, after a
crash the tables are read in, the workfiles
opened and a complete recovery is done.

SYSTEM PERFORMANCE AND RESULTS

Since ORION has only recently been introduced to
the user commnity at the OMEGA project many
results from system performance measurements are
not yet available. A continuous supply of infor-
mation on the performance is ensured as gathering
of statistics is part of the ORION system in the
CII 10070. For every request sent over the link
a statistics record is stored containing all
relevant parameters for the command, its real

and CPU time consumption and its time of arrival.
The last quantity is useful for calculating the
typical user's 'think-time'. From the preliminary
results it can be concluded that ORION can support
many more than the 10 simultaneous users that can be
considered the absolute maximum with the present
OMEGA equipment. The information from the
statistics gathered also indicates those parts of
the system in which fine-tuning efforts will be
worthwhile. The implementation of the currently
running version of ORION has required less than
two man years of work.

REFERENCES

1. R.D. Russell; The OMEGA Project: A Case
History in the Design and Implementation of
an On-line Data Aquisition System, CERN 72-21,
(1972).

2. D. Wiegandt, P. Villemoes, R. Cooper,
A.P. Jeavons; The OMEGA Data Link Software,
Private Communication and OMEGA Software
Development Note SW-12 (1970).

3. J. Joosten, C.F. Parkman; The OMEGA Data-link
Hardware, Private Communication and Omega
Hardware Development Notes HW-13, HW-16 (1973).

4. R. Fajman, J. Borgelt; WYLBUR: An Interactive
Text Editing and Remote Job Entry System,

Communications of the ACM, Vol. 16, No. 5,
pp. 314-322 (1973).

5. WYLBUR Reference Manual, Columbia University
Computer Center, Columbia University, New
York, N.Y. (1970).

6. INTERCOM Reference Manual, Control Data Co.,
Publication No. 60307100 (1972).

7. Instant FOCUS, Data Handling Division, CERN,
(1971).

8. Procedures Systemes Sous SIRIS 7/SIRIS 8,
Manuel d'Utilisation, Compagnie Internat-
ionale pour 1'Informatique Document 3642E4/FR
(1973).

9. A.P. Jeavons, Private Communication.

10. R.D. Russell; PL-11, A Programming Language
for the DEC PDP-11 Computer, OMEGA Software
Development Note SW-29 (1971).

THE SYNTAX OF THE ORION COMMANDS

General Remarks and Notation

Comma (,), blank and equal sign (=) are equivalent
as keyword and option delimiters.

After the command keyword, options may appear in
any order, with two exceptions: i) Trange
specification may appear directly after the
command keyword without the keyword (IN).

ii) wherever present, the <ACCT> specification
must follow <FILENAME> or <USERNAME>.

Parentheses () enclose optional items.

All keywords are variable length, with the
minimum length being that number of characters
which make the keyword unique. For example, the
command word (COPY) could be typed (CO) since
(C) could also mean (CHANGE).

Care must be ecxercised in naming files. The
parameter <FILENAME> may not be any of reserved
keywords which are allowable in the SAVE or USE
commands. These keywords are those in <OPTIONS>
and <SAVOPTIONS>. Also not allowed are the
keywords: ALL, FIRST, CURRENT, LAST, BY, TO, IN.
This has been implemented this way to avoid
syntactic ambiguity, and to encourage meaningful
naming conventions of <FILENAME>.

The ORION Options

<STRING>: := Any symbol between two quotation
marks. A quotation mark within
the string is represented as two

consecutive quotation marks.

<IDENTIFIER>::= A group of up to seventeen
adjacent symbols, where a symbol
may be any alphanumeric or the
symbols (:) or (-). An identifier
may not start with a numeric.

<DIGIT>::= 0l112(3l4!516]7(8]9 .
<NUMBERS>: 1= From one to five consecutive
digits.
<SMALL-NUMBERS>::= From one to three consecutive
digits.
<L.INE-NUMBERS>: := <NUMBERS>
I <NUMBERS> .
| <NUMBERS> . <SMALL-NUMBERS>
| . <SMALL-NUMBERS>
<LINE-NAME>::= FIRST | LAST | ALL | CURRENT | *
<LINE>::= <LINE-NUMBERS> | <LINE-NAME>
<LINEL>::= <LINE>
<LINEZ2>::= <LINE>
<RANGE>: ;= <LINE1s | <LINEl> /| <LINEl> / <LINE2>
**LINEZ must have a greater value '
than LINE1**
<OPTIONS>::= (DISPLAY | NODISPLAY)

1 (NUMBERS | NONUMBERS)
(TEXT | NOTEXT) (VERIFY | NOVERIFY)

<PRINTOPTION>: := NOEJECT | CONTROL
<FILEOPTION»>::= EBCDIC | COMPRESSED | TEMPORARY

<USERNAME>: 1= <IDENTIFIER>
<FILENAME>: := <IDENTIFIER>
**see note above for restrictions
on filenames**
<ACCT>::= <IDENTIFIER>
<JOBNAME>: := <IDENTIFIER>
<SAVOPTIONS»>::= FORTRAN | METASYM | PL-70 | PL-11
<SETOPTIONS>::= TERSE | NOTERSE | VERBOSE

| NOVERBOSE | LENGTH | NOLENGTH
| NUMBERS | NONUMBERS | TEXT

| NOTEXT | TABS | NOTABS

| TABSTEP | NOTABSTEP | CURRENT
{ NOCURRENT

<SHOWOPTIONS>::= SPACE | FILES | HOLDQUEUE
| ACCOUNT | ALLHOLDJOBS | LENGTH
| TABS | TABSTEP | CURRENT

<SYSID>::= <IDENTIFIER>
<COL-NUMBERS>: ;= <NUMBERS> | <NUMBERS>

The ORION Commands

The following is a formal description of the ORION
command language syntax. Reference is made to
the options listed above.

ADD

CHANGE

CLEAR
CcoprY

DELETE
FETCH
FILE

HELP
JOIN

LIST
LOAD
LOCATE
LOGIN

LOGOFF

MOVE

PJOB
PRINT

PUNCH
PURGE
RENUMBER

REPLACE
SAVE

SCRATCH
SEARCH

SET
SHOW
SUBMIT
TALK
TIME
USE ¢

(IN <RANGE>) (BY <LINE-NUMBERS>)
(<OPTIONS>)

(IN <RANGE>) (FROM) <STRING>
(TO <STRING>) (COLUMN <COL-NUMBERS>
(/ <COL-NUMBERS>)) (<OPTIONS>)

(IN <RANGE>) TO <LINE>
(BY <LINE-NUMBERS>) (<OPTIONS>)

(IN <RANGE>) (<OPTIONS>)
<SYSID> (CLEAR)

FILENAME (<ACCT>) (<FILEOPTION>)
(KEY <COL-NUMBERS>)

(<IDENTIFIER>)

<FILENAME> (<ACCT>) (IN <RANGE>)
(RENUMBER) (TO <LINEs>) (BY <LINE-NUMBERS>)
(CLEAR)

(IN <RANGE>) (<OPTIONS>)
<FILENAME> (<ACCT>) (CLEAR)
<SYSID>

<USERNAME> <ACCT>
LOGON is equivalent to LOGIN

(CLEAR)
LOGOUT is equivalent to LOGOFF

(IN <RANGE>) TO <LINE>
{BY <LINE-NUMBERS>) (<OPTIONS>)

<JOBNAME> (<ACCT>)

(IN <RANGE>) (<PRINTOPTION>)
(NUMBERS | NONNUMBERS) (SPACES <NUMBERS>)
(COPIES <NUMBERS>)

(IN <RANGE>) (NUMBERS | NONNUMBERS)
<SYSID>

(IN <RANGE>) (TO <LINE>)
(BY <LINE-NUMBERS>)

(IN <RANGE>) (<OPTIONS>)

<FILENAME> (<ACCT>) (IN <RANGE>)
(SCRATCH) (<SAVOPTIONS>)
(NUMBERS | NONUMBERS)

<FILENAME> (<ACCT>)

(IN <RANGE>) FOR <STRING>
(COLUMN <COL~-NUMBERS> (/ <COL-NUMBERS>))
(<OPTIONS>)

<SETOPTIONS> (TO <NUMBERS)
<SHOWOPTIONS> (<ACCT5) (<STRING>)
(NUMBERS | NONNUMBERS) (HOLD | NOHOLD)
<USERNAME> (<STRING>) (REPLY)

<FILENAME> (<ACCT>) (IN <RANGE>)
(RENUMBER) (TO <LINE>) (BY <LINE-NUMBERS>)
(CLEAR)

