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INTRODUCTION

In this paper we investigate the power function of the chi-square
goodness of fit test in the case of a simple hypothesis. We are particu-
larly interested in the question of the choice of the number of class
intervals of the Y?-test where the null hypothesis consists of a omne-
dimensional continuous distribution function. In this case the test
problem can always be reduced by the well-known probability transformation

to the specific case of testing the null hypothesis:

o
in
"
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-

Ho: F(x) = Fo(x) = X, (1.1

To apply the ¥?-test, the interval [O,l] ig divided into k different

class intervals by choosing the corresponding end points as
0 = X3 < x1 < ... <X <x =1, (1.2)

Suppose we have a sample of size n of the corresponding random vari-
able X, and let Ni’ i=1, 2, ..., k, be the number of sample elements in

. th . .. .
the 1 class interval, then the test statistic of the Xz-test for Hy is

given by
k 2
(N. - nm,)
%2 = ZE: "'3;7EF‘3;"' , (1.3)
i

1=1
where

k

Z N, =, (1.4)

i=1
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m, = X, = X, _, i=1, ..., k. (1.5)

[On the left side in (1.3) we used the common symbol for the statistic of

the x?-test introduced by Cochran.]

Assuming that Ho is true, X* has for large n a ¥2-distribution with
k - 1 degrees of freedom. Therefore, one defines the x®-test by the re-

jection region

nf. Xa,k~1
1

(ni ~ nrm.)?
R=Q(n1, «vvy 1) x? = ZE: —_— >y , (1.6)

*+ is the upper a-point of the yx?-distribution with k - 1 degrees

where xé k=1
’

of freedom.

From a practical point of view an important question is, When can n
be considered large enough for ome to use the ¥%-distribution for X2?
For this question we refer, for example, to Vessereau's [1] and Slakter's

[2] papers. We are more interested in the choice of k and the s

In 1942 Mann and Wald found that in the statistical literature there
only existed rules of thumb on the choice of k and T, . Therefore they
tried in their paper [3] to formulate exact principles for this choice.
They first proved that the ¥?-test is locally unbiased in the special case

of

T, = %, =1, 2, uiy k. (1.7)

To find an optimal choice of k under the condition (1.7), they con-

sidered an alternative hypothesis

Hy: F(x) = Fy (%) (1.8)
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and introduced the following distance

d(Fo,F1) = sup |F1(x) - Fox)| .
x € (0,1) (1.9)

Let C(A) for A > 0 be the class of alternative distributions with
d(Fy,F1) 2 A, Let f(n,k,F;) be the power of the ¥?-test for fixed n, k,
and F; under the condition (1.7). Then we can summarize their results in

the following theorem:
Theorem 1
Let

fo(n,k,A) = inf f(n,k,F)

F e c(A) (1.10)
and let kn be that k which maximizes fo(n,k,A). Then, for
I T
A= An =% oz (1.11)
n n
and
e (1.12)
o
we have

: 1 :

n>r« 2
where Co is the upper o-point of the standardized normal distributionm.

Theorem 1 says that for large n one can reach a power of about a half
or more against alternatives F; with a distance of at least An from Fo by
taking kn as the number of class intervals. The choice (1.12) for the

"optimal" k leads to a rather high number of class intervals. For example,
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for n = 200 and o = 0.05 the formula (1.12) leads to k = 31. Williams [4]
investigated formula (1.12), and he found that taking [0.5 kn] as the
"optimal' number of class intervals for n 2 200 would not significantly

deteriorate the power of the test, in practice.

Tn 1970 Beier-Kichler and Neumann [5] again tried to improve Mann and
Wald's results. The proof of theorem 1 is based on the assumption that,

for large n, X* has a normal distribution. In Ref. [5] a better approxi-

mation of the distribution of X? given by Patnaik [6] was used. Beier-Kuchler

and Neumann came to the following Rule of thumb.

If o = 0.05 and the T, are all equal, the choice of k = 16 leads to
as few as possible wrong decisions. The choice of k too large is disad-

vantageous.

Since in Ref. 5 it is not clearly defined how small n may be in order
to apply the rule of thumb, we refer for small n (< 50) to Slakter's paper
[7] in which the power of the Y’-test for small n and small ratios n/k is

investigated by Monte Carlo simulation.

In this paper we will study the choice of the number of class inter-

vals by using the distance

1
p(Fo,Fy) = [ |F1(x) - Fo(x)| dx (1.15)
0

instead of Mann and Wald's notion (1.9).

APPROXIMATION OF THE DISTRIBUTION OF X*

We assume that the N, have a multinomial distribution with the prob-

abilities p., i = 1, 2, ..., k. Especially if Hy is true we have p;, = m.

i
for i =1, 2, ..., k.
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A cumbersome but not difficult calculation leads to the following

expressions for the expectation and the variance of X2

k
Yy
E(X2) =k ~1+n + 8% - 8% + prallD (2.1)
i
i=1
2y - - cg2 22k - 1) Ry Ry
Var(xX®) = 2(k = 1) + 4n + § = + - + = (2.2)
with
Y; =Py T i=1,2, ..., k, (2.3)
k
. Yi
§¢ = gl (2.4)
L i
i=1

k 2

Y:
R1=6(n-1)ZT—T-§-—4[(4+k)(n—1)+1]-62+

[ i

1=1

k
+4(n - VD - 2) ZE:
i=1
k k
Yi Yy
Rp = [4(n - 1)(2 - §%) - 2k] 1—ZF ZF+
i i

K K
Y g 1 -k - m,
+ % 'ﬁ? + + — (2.6)

Under the condition that all ™= 1/k the expressions (2.1) and (2.2)

- 2(n - 1)(2n - 3) + &4, (2.5)

0

Y3
2

H

are simplified to:

E(x2) = k - 1 + n8% - 8% , (2.7)

Var (X%)

2(k ~ 1) + 4né? - 3ﬁ5;;~ll . %3 §2 + Bu (2.8)



with
Ry = 2[(k - 8)(n-1) - 2] - 2(n - 1)(2n - 3) &%, (2.9)
k
Ry = 4k%(n - 1)(n - 2) 2: i . (2.10)
i=1

Let us now consider the non-central ¥?-distribution with k - 1 degrees
of freedom and the non-central parameter A?. Its characteristic function
is given by

eAzit/(l—Zit)
(1 - 2ie) D72

o(t) = (2.11)

L

(see Ref. 6). If we denote by x'2 the random variable which corresponds

to ¢(t), it is easy to derive from (2.11) that

E(x'2) =k -1+ A%, (2.12)
Var(x'2) = 2(k = 1) + 4% . (2.13)

setting
A2 =n « &2 (2.14)

and comparing (2.1), (2.2), or (2.7), (2.8) with (2.12) and (2.13), respec—
tively, we see that the first two terms coincide. Generally it is possible

to show (see Eisenhart [8]) that for

and for n + ® the random variable X2 has a non-central Y*-distribution

with k - 1 degrees of freedom and the non-central parameter

k A
-f
i=1

A1

i



In the special case where all M, = 1/k, we can see by comparing (2.1),
(2.2) with (2.7), (2.8) that the approximation of the distribution of x?
by the nqn—central Xz—distribution will be better, in general, than for

arbitrary T

Indeed we know the characteristic function ¢(t) of X’z, but the cor-
responding distribution function can only be represented as a complicated
infinite series. Therefore it is more convenient for analytic investiga-
tions to approximate the distribution function of X'2? by a simple expres-
sion. There are several approximations in the literature. We use the one

given by Patnaik [6] which is also used in Ref. 5.

If

22 (k - 1+ A%)
v \//Xk . T+ oo L, (2.15)

then Y is asymptotically normally distributed with the mean value

20k - 1 + A2)2
m = \// e ST (2.16)

and variance 1. The examples calculated by Patnaik show that the approxi-

mation may be accurate up to two digits if
n+ A2 50, (2.17)

Taking into account that Slakter [7] has covered the case n < 50, we shall
confine our investigations to n 2 50. Therefore formula (2.17) will always

be satisfied.

Summarizing what we have found in this paragraph and using the nota-

tion from paragraph 1, we may say that the power function

B(HL) = Pr(X® > 7 1, |Hy) (2.18)



can be approximated by

Bo(H1) = Pr(x'® > ] -, [HD) (2.19)

for small A% and large n. 1In addition, Bo(H,) may be approximated under
the condition (2.17) by

Br(y) = 1 - &(z) , (2.20)

where

25%% . (k- 1+ A2)
z = \/ “’t L - m (2.21)

and & is the distribution function of the standardized normal distribution.

Finally, we mention a lemma which is given in Ref. 5 and which we

shall use later.

Lemma

For fixed k,By(H;) is monotonically increased with A2,

MINIMIZATION OF B, (Hy)

Let K be the class of distribution functions F on (0,1) with contin-

uous probability density function £, and for 0 < p < 1/2 let
S(p) = {F: FeK, p(x,F) = p} , (3.1)
where p(x,F) is defined by (1.15).

We want to determine

inf Bo (Hy) (3.2)
F) € S(p)
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for arbitrary and fixed s (it =1, 2, «v.y k), n, k and p > 0. To solve
this problem it is sufficient, because of the lemma of paragraph 2, to

determine

k 2
(Pi - Wi)
I = inf §2 = inf > —_— (3.3)
F1e S(p) Fi€ S(p)

1=1

and to insert it in (2.19), taking into account (2.14). To determine

(3.3) it is not hard to see that, analogously to the case of the distance

(1.9) used by Mann and Wald, it is sufficient to confine FeS(p) —— we now
drop the index "1" -- to the case where, for example,
F(x) =z x, x e{0,1) . (3.4)

Since we are only interested in I > 0, we have another condition for

k
1 2
_— <
5 > 'lTi 0 (3.5)

1=1

which is eay to see from Fig. 1, where the shadowed area is the value of

the left side of (3.5) for k = 4,

v
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Under the hypothesis (3.4) we have for Fe S{(p):

1
J[F&) - x]dx2p . (3.6)
0
By partial integration and because of (1.5) we can write (3.6) as
k
X,
E F 1
f x ¢ f(x) dx < 5 0 (3.7)
x‘—
i=y 71

Since f is continuous and non-negative, (3.7) can be written as

k
1
g]‘. Pi5 'é' P (3-8)
i=3
where
X < Ei < X (3.9)
and
X.
1
P, = f f(x) dx
X,
1-1

for i =1, 2, ..., k.

For the determination of T in (3.3) it is sufficient to take the
equality sign in (3.8). Therefore we can now formulate the problem of

searching the infimum of &% as follows:
Problem A

Find P for i=1, 2, ..., k such that

k
(o, - 7)°
§2 = ZE: _~__E?T___— (3.10)

i=1
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takes its minimum under the conditions

p; > 0, i=1,2, .00, k, (3.11)
K
) =L (3.12)
i=1

r r

Z%ZZ%’ r=1, 2, ..., k-1 (3.13)

i=1 i=1

k 1 :
Eipi=§'—p ’ (3.14)

i=1

where the Ei satisfy (3.9).

The conditions (3.11) and (3.12) follow from the fact that the p, are
probabilities. Formula (3.13) follows from (3.4), and (3.14) from (3.6)

and (3.8), respectively.

Suppose that in (3.14) the Ei are known constants, then problem A
is a problem of mathematical programming with the quadratic objective
function 8% and the linear restrictions (3.11) through (3.14), and there-
fore especially a problem of convex programming for which the Kuhn-Tucker
theorem (see Kinzi et al. [9]) gives necessary and sufficient conditions

for the solution.

Therefore we first determine the Ei. Suppose we have a step function,

*
k

yields the minimum of 82 where in (3.6) the equality sign is valid. Such

% %
such as, for example, that shown in Fig. 2, which with pi1, p2, «v.5 P

*
P always exist for every p with 0 < p < 1/2., Then we can show that this
step function is the only distribution function for which 8% takes its

minimum under the given conditions. For, a distribution function F with



— 12 -
* .
pi = f dF ’ 1= 1’ 29 RS | k H (3.15)

which lies under the step function as in Fig. 2 has p(x,F) < p. The
function F cannot lie above the step function, because of the monotonicity

of a distribution function.

Py,

P3

¥

Xy Xy X3 Xq =1
Fig. 2

Therefore we can see that the density functions f of the distribu-
tion functions F€ S(p) which lead to the infimum of 8% must be concentra-
ted in the limit into the left end points of the intervals (Xi—l’xi)'

Consequently in the limit we must have

£, = X, > i=1,2, ..., k. (3.16)

With (3.16) we now have in problem A the programming problem already
mentioned. We shall denote by problem A, the special case of problem A
where all the T, = 1/k. The solution of problem Ay will be given in
theorem 2. Theorem 3 gives the solution of problem A, but only for the
case where the T, are all in a certain neighbourhood of 1/k. We conjec-
ture that the given solution is even valid for arbitrary T = for k = 2

this can easily be shown —- but the exact proof is still lacking.
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Theorem 2

The solution of problem Ay is given by

p.=-]5-{1+-12;—§~1;——;——rl—;-[2(r+1)—3i]+

6k k2 - -1 .
i [ - R 12

for 1 =1, 2, «euy T 3 (3.17)

0 fori=r +1, ..., k, (3.18)

)
]

where r = r(p) is a positive integer, determined by

r =k f°r§1E< p < Lg(k) , (3.19)
2 £r<k-1 for Lo(r + 1) £ p < Lg(r) (3.20)

with
Lo(r) = L2220 (3.21)

The minimum of 8% is given by

(3.22)

with

D = e, r=2, 3, ..., k. (3.23)
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Proving theorem 2 we shall formally do the steps for arbitrary s
In this way we can immediately give the proof for theorem 3 which is to

be formulated later. The proof is given in three stages:

I) we solve problems A and Ay, respectively, without considering the

conditions (3.11) and (3.13);
II) formula (3.13) is taken into account;
ITI) formula (3.11) is taken into account.

The proof of stage (I) leads to a problem which can be solved by the
method of Lagrange multipliers. Let A;, Ay be the multipliers. Then we

consider the Lagrange function

k
‘P(Pl,---,Pk; A1,A) = §% + 2>\1 Z pi - 1]+

1=1
2 & 1
+ 2\ Z X, "B tP -5, (3.24)
i=1

The application of the well-known Lagrange method leads, after some

calculation, to the equations

=T (Lt A+ xR ), i=1, 2, oo, k, (3.25)
k
>\1 + Z Xi_l 'lTi >\2 =0, (3-26)
i=1 -
k k ) 1 k
YooE Ty M) F, Ty R T )k, Ty B02D)
i=1 i=1 i=1

The determinant of the system of equations (3.26), (3.27) is given by

2

k k
== 2 —
D, z: x| 2: x,_ Tl (3.28)
i=1 i=1
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Dk is always positive, for it can be written as

k k 2

Dk = 2: TP P . E: xj_1 ﬂj . (3.29)
i=1 j=1

Simple geometric arguments lead to
1 K 1 K
2
= m == - X. T, . 3.30
2 2: 302 Z: -1 3 ( )
i=1 j=1

Using (3.30) in (3.29) it is easily seen that Dk > 0. Especially for

problem Ay, D, is given by

k

k%2 -1
Dy = Dpx T iz e k

I\
N

(3.31)

Solving the system (3.26), (3.27) and inserting the solution into

(3.25) yields the solution of stage (I) of problem A as

k k
1
p; =T [1+ o z: I P N T z: Xy (3.32)
i=1

for i =1, 2, ..., k.

Since 8% is a positive definite quadratic form in the P> (3.32)

furnishes the absolute minimum of &2 for stage (I) of problem A.

To treat stage (II) of problem A we must find out whether (3.32)
satisfies condition (3.13). We insert (3.32) into (3.13) and, taking into
account that Dk > 0 and because of (3.5), it can easily be seen that

(3.13) in this case is equivalent to

N

r 1 k

= - 2 _
z: ™. 5 z: Wj X 20 (3.33)
i=1 j=1

forr=1, 2, ..., k = 1. Let us first take ™= 1/k, i.e., x, = i/k.
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Then a rather simple calculation shows that (3.33) is equivalent to k 2 r
forr =1, 2, ..., k = 1, which is always true. Since the left side of
(3.33) is continuous in the Wi, (3.33) must also be true for all ™. which
are in a certain neighbourhood of 1/k. Thus stage (II) of problem Ag is

treated.

We now come to stage (III) of problem A. We have to check whether
the P in (3.32) are non-negative for all p which are less than 1/2 and

which satisfy the condition (3.5).

It is immediately seen that the P in (3.32) are monotonically de-
creasing in i. Especially we have the fact that if Py z 0, then Py >0
for i =1, 2, .%., k = 1, Taking in (3.32) Py 2 (0 leads, after some cal-

culation, to the condition

Dk 1 k
p < = * 5= Z X T (3.34)
Xy T E: i) wJ i=1
i=1
Setting in (3.34) m,o= 1/k for all i = 1, 2, ., k yields
k + 4 _
p B 6k - LO (k) . (3.35)

Summarizing what we have proved until now, we can say that for

1 k Dk 1 k
5" Z X TTj<p< » t 5" Z Xy LI (3.36)
j=1 X 2: Xj—l Wj j=1
j=1
and for
1
S <0< Lo (k) (3.37)

in the special case, (3.32) yields the solution of problem A for ﬁi in the
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neighbourhood of 1/k, and especially the solution of problem Ag. In
addition, we can say that if (3.36) is valid, all p; in (3.32) are posi-
tive. Therefore taking m, o= 1/k in (3.32) we obtain (3.17) in theorem 2

for r = k.

To prove the remainder of theorem 2 we first make a guess at how the
gsolution of problem A could behave if p is larger than in condition (3.36).
We observe that P, = 0 if p is equal to the right side of (3.36). 1In ad-
dition, geometric arguments give us a hint that step by step, with p in-
creasing, all the Ps should vanish for i =k -1, k = 2, ..., 3. Therefore,

we now make the assumption that the solution is of the form:

p. > 0 for i 1y, vees T (3.38)

p. =0 for i

; r, r + 1, «voy k, (3.39)

where r is dependent on p. We will solve problem A under this assumptiom,

and later we shall justify the assumption.

Again we have to go through all the three stages taking into account
that the solution is of the form (3.38) and (3.39). Stage (I) leads to

the problem:

Find r = r(p) and Pis «ees P such that
[} r 2
(p; = 73)
—— (3.40)
7 i
i=1

takes its minimum under the conditions

r
Z p; =1, (3.41)

1=1
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L 1
1»{:‘.___1 p:.L = -2' -0 . (3.42)

.

1=1

The solution of this problem is again obtained by the method of

Lagrange multipliers. After cumbersome calculations we have:

r 1 r
. m, - . - =+ . .
Z ST RS T ) Z ¥ Ty | 7

T /
j=1 j=1
(3.43)
T T
+ (1 - X } z: %2 ™, = ( E: X m ] X }
T j-1 ] j=1 ] i-1
j=1 j=1
for i =1, 2, ..., r with
x T 2
D= x z: x> om. - 2: ' T, . (3.44)
r r 1-1 1 1-1 1
i=1 i=1
For problem Ay we have
2,2
- (e - 1) _
Dr = Dr,k TTRE , r=2,3, ..., k. (3.45)
Again because of (3.45) and since Dr is continuous in the Wi, we have
D> 0 at least for all m, in a certain neighbourhood of 1/k.
Thus stage (1) is treated.
Stage (II) is expressed by the condition
S S
ZpiZZTTi for s = 1, 2, vee, T = 1. (3.46)
i:l i:l

Here we first take only the special case ﬂi = 1/k for i =1, 2, ..., k.
Inserting (3.43) in this case into (3.46) leads, after some calculation,

to the following condition for p for given r:
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. k2 - r(r - 1) (k - r)(2r - 1)
oz 53 - TiZ . (3.47)

Stage (IIL) says that in (3.43) all the p; must be positive. Again
we first fake m.o= 1/k and insert them into (3.43), which leads to (3.17)
in theorem 2. For this formula we first look for a condition for p such
that the p; are monotonically decreasing with i. Formal differentiation
with respect to i and setting the derivative less than zero leads to the

condition

k-r+ 1 '
p > R (3.48)

Assume that p satisfies (3.48) for given r. Then, of P, > 0, all the

p; are greater than zero. But P, > 0 yields the condition

k+ 4 =2
p < JILZIE g (3.49)

after some calculation.

We now have to show the compatibility of the three conditions (3.47),
(3.48), and (3.49). We first see that for r = k (3.47) and (3.49) yield
(3.19), our previous result. In addition, for continuity we have to

require that

Lo(r + 1) € p < Lo(x) , (3.50) .

i.e. for given r the distance p must satisfy (3.50); or, we can interpret
it in the opposite direction, i.e. if p is given then r must be such that

(3.50) is satisfied.

It now remains to show that the validity of the left inequality of
(3.50) implies both inequalities (3.47) and (3.48). But this can easily

be done by simple calculation.
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Summarizing we can say that (3.17) through (3.20) in theorem 2 are
proved under the condition that our assumption that the solution is of the

form (3.38), (3.39) is true.

To show that this assumption holds, we use the earlier mentioned
Kuhn-Tucker theorem (see Ref. 9) for convex programming. A rather formal
but cumbersome calculation shows that the expressions given in theorem 2
satisfy the necessary and sufficient conditions of the Kuhn-Tucker theorem

for the solution.

Finally, when we insert (3.17) and (3.18) into 82 we obtain (3.22)
and the proof of theorem 2 is completed. But we have shown more; namely,
that for all ﬂi'in a certain neighbourhood of 1/k, (3.43) together with
P; = 0O fori=r+1, ..., k solve problem A. However, for problem A we
still have to formulate the condition equivalent to (3.50) which determines
the relations between r and p. Analogous arguments to those which gave us

(3.50) lead to the condition

Lir + 1) € p < L(xr) for r =2, 3, +ves k-1 (3.51)
with
L(x) = 1 D+ (1 - x.)
r r T
Xooy X, T 2: xJ_1 WJ
i=1
(3.52)
T T 1 r
2 . - R S | G . M. .
Z X1 "3 T e Z *3=1 } 2 Z *i=1 T
j=1 j=1 j=1

Inserting (3.43) and p; = 0O fori=r+ 1, ..., k into 82 and de-

noting the result by di, we finally can formulate the following theorem.
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Theorem 3

Under the condition that all the T, are in a certain neighbourhood of

1/k, (3.43) together with p; = 0 fori=r+1, ..., k yields the solution
of problem A, where r = k if (3.36) is valid and 2 = r <k - 1 if (3.51)

is satisfied. The minimum of &2 is given by

1 r r 1 r

2 - -

I T DI B T Y L L %m0 |
i=1 i=1

3%

i T
+ (1 - x) Z x;—l M- Z N I (3.53)
J=1 j=1
k
+ z: T, .
1
i=r+1

From theorem 2 we can derive the following corollary for the approxi-

mation of the distribution of X* by a non-central x%~distribution.

Corollary

For all T, = 1/k and for

Lokt s (3.54)

we have Ry= 0 in (2.8) if the p. are given by (3.17).
i

The proof of this corollary is easy and may be omitted. Our corollary
indicates that the approximation of the distribution of X% by a non-central
y2-distribution in this particular case may be even better than for arbi-

ra L
trary pl
Since, according to Eisenhart [8], X% follows a non-central x2-

distribution only for small 82 and for large n, we shall confine the rest
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of the paper to the case where p satisfies the inequality (3.36) and its
special case (3.37), respectively, for ﬂi = 1/k. This means that we are
dealing in theorems 2 and 3 only with the case r = k. This implies a

fairly simple form of 6§ = di. It is easily seen that we then obtain

1 &,
°3 )T
8 = D3=1 (3.55)
k
for arbitrary T and
) 2
2 _ o2 _ 12k _1
S (p Zk} (3.56)

in the special case of ™= 1/%.

For comparison with the results of Mann and Wald we cite the corres-—
ponding expression for 6i K if 8% is minimized with respect to the class
’
C(A) of distribution functions, which is defined in Section 1 immediately

after formula (1.9). It turns out that in this case we have

2
82 =84 4(A - i—) . (3.57)

Formulae (3.56) and (3.57) are of the same type (at least for large k)
with respect to the dependence of the different distances p and A, respec-—

tively.

THE CHOICE OF k IN PRACTICE

It is our goal to find out how to choose in practice the number of
class intervals for given o and n in order to reach a certain power and
smallest distance p. A numerical investigation of approximate power func-

tion 81 (H:) defined by (2.20) will bring us to our goal.
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The power function f;(H;) is dependent on the four parameters (a, n,

k, P). We assume 0, and n to be given. In addition, let B be the probabil=-

ity of the error of the second kind. Since
B =1- B1(H) (4.1)

under the condition that H; is true, we obtain a functional relationship

p = p(k), when we fix the three parameters (o, B, n).

In a numerical calculation the following different combinations have

been selected:

o = 0.0, 0.05, 0.10, (4.2)
g = 0.50, 0.40, 0.30, 0.20, 0.10, 0.05, (4.3)
n = 50 (50) 1000; 1100 (100) 1500; 2000. (4.4)

For each combination (o, B, n) of values from (4.2) through (4.4) the
curves p = p(k) for k = 10, 11, ..., 90 have been calculated, and for

each of the 468 different curves the k-value which yields the minimum

p . =p ., (&, By, n) have been determined. Table 1 shows the different
min min

optimal k-values. In Table 2 one can find the corresponding values of
Prin® Table 3 shows the optimal k-values which follow from Mann and Wald's
formula given in (1.12). A comparison of these values with the corres-

ponding values of Table 1 for B = 0.5 shows that Mann and Wald's values

are higher than our values but not drastically so,

Now the 468 curves all show a rather flat behaviour in the neighbour-
hood of the k-values given in Table 1. This indicates that one may reduce
the k-values without changing the corresponding p-values too much. Keeping
this in mind and in addition being willing to have simple rules for the
choice of k, the class of 468 curves was subdivided into five different

groups, dependent only on n. A fixed k-value was assigned to each group,
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to be considered as the optimal k in practice. The criterion used to
select the groups and the corresponding k was that the relative error e.
satisfied the inequality

_ o(k; o, B’ n) - pmin

er - p ) S OtOS . (4-5)
min

This procedure led to the following Rule:

In order to satisfy (4.5) one may choose

k for n between
15 50-150

20 200~-350

. 25 400-600

30 550-800

33 850-1000
36 1100-1300
40 1400~-2000

In Table 4 one can find the relative errors e corresponding to this
rule. We see that only for o = 0.0l and § = 0.50, 0.40, e. is higher than
0.05. It can also be seen that e is inecreasing with increasing a. In
other words, for a = 0.01 or 0.05 we may even slightly reduce k in the

different groups without violating (4.5) very much.

For n up to 200 our rule is almost the same as the rule of thumb
given by Beier-Kuchler and Neumann in [5]. In addition our rule is also

in good agreement with Williams [4] results which we mentioned in Section 1.

To have an impression of the order of magnitude of the distances p,

an example may be useful. Let

Fo(x) = @[%) : g>o0, (4.6)
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Fi(x) = @(X ; m] , m> 0, (4.7)

be two distribution functions of the normal type. Then
[e2]
p = p(Fo,F1) = J [FI(X) - Fo(X)] dFg (%) (4.8)
—00

can be evaluated by first differentiating p = p(u) with respect to u = m/o

and then integrating from 0 to u, using that p(0) = 0. The result is

0 }ierf (lz{] (4.9)

with

erf (x)

i}

X

—t2
J e dt . (4.10)
0

Table 5 shows some values of p for different u.

FINAL REMARK

Analogously to Beier-Kuchler and Neumann [5] one can try to maximize
B (Hy) with respect to Ty for fixed k and given p. However, this can only
be done numerically since the corresponding optimization problem is too

complicated to be solved analytically.
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Table 3

Optimal k for a = 0.0l, 0.05, 0.1;
B =20.5and n = 50, ..., 2000 (Mann-Wald formula)

ALPHA 201 .05 ,10
" {BETA D0 L,50  ,50

© 50 15 17 19
100 20 23 26
150 | 24 2T 30
200 e 31 34
2590 29 34 37
500 32 36 40
© 350 | 3% 39 43
400 35 41 4s
4590 37 43 47
500 39 45 49
550 49 46 51
600 42 48 53
650 43 50 55
700 45 51 57
750 s 53 58
800 47 54 60
850 | 48 55 61
900 49 57 63
T 9890 590 58 64
1000 51 59 65
11009 53 61 68
1200 55 64 70
1500 57 66 73
1400 59 68 75
1500 61 ., 70 . 77
2000 68 78 86
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Distances between two normal distributions
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Table 5

1.0

.023

.056

.084

<112

.138

.164

.189

214

.238

.251






