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INTRODUCTION

In a Cerenkov counter, high-energy particles pass through a radiator and

. . < .
emit photons at an angle 6 according to the usual Cerenkov relation

cos O = , @Y

where 6 is the angle of emission of the photons with respect to the particle
direction, B is the particle velocity relative to the velocity of light, and n
is the refractive index of the radiator medium which is a function of the wave-
length A of the light. There is light emission when the B value of the particle
is above a threshold BT such that

-1
Bp =7 - (2)

This relation is applied to threshold counters where the detection of this light
allows one to select particles having a velocity B > BT. When one wants to exploit
a window of velocities one can use two threshold counters in anticoincidence. One
can also make use (for well-collimated beams of particles) of differential or

DISC Cerenkov counters. Here the light is focused onto an annular diaphragm,

the opening width of which determines the desired window of velocities.

y
Several attempts have been made to devise a Cerenkov counter which can accept

)

. . . . 1
a diverging beam of particles. Such a detector has been designed at CERN ° for
the case of detecting particles coming from a small volume in space, such as from
. . . . 4
a target. This detector uses conical or toroidal optics to focus the Cerenkov

light of a particle with a given velocity By into a small spot image. The con-

centration of the light yield simplifies the detection problems. For a particle
with velocity B # Ry, a ring image is produced instead of a spot, the radius of
the ring being related to the particle velocity. The position of the spot (or
centre of the ring image) yields information on the angular coordinates of the

particle.

The principle of the spot-focusing detector is illustrated in Fig. 1 in which
v
the conical waves of the Cerenkov light are converted into plane waves, which can
then be focused to a spot. The basic design parameters as well as the performances

. 1 .
expected with such a detector have been presented elsewhere ). In this present
paper we are particularly concerned with the derivation of the basic formulae

which define the geometrical shape of the image produced by the detector.

The configuration of the detector is shown in Fig. 2. A spherical mirror
is placed at a certain distance from the target, and the axicon is placed at the
image of the target produced by this spherical mirror. A virtual image is formed

in the focal plane of the mirror. A final real image can then be produced in the



plane of the electronic detection system by means of a conventional transfer lens,
but for the purpose of this paper it is only necessary for us to consider the
virtual image produced in the focal plane. In the present design, the axicon,
which is used to produce the necessary bending of the rays and to reduce the
chromatic dispersion of the terenkov light is, in fact, made up of a doublet of
axicons. In the next section, formulae are derived which allow us to express the
direction of the light vector leaving an axicon in terms of the direction of the
incoming light vector. In Section 3.1 we derive some of the basic optical rela-
tions which are valid for our counter configuration, and in Section 3.2 we trace
a general skew ray through the optical system and determine the equation of the
image formed in the focal plane of the mirror. Throughout the analysis we have
applied first—order theory, which assumes that paraxial and small-angle approxi-
mations are valid. Section 4 consists of a discussion of the properties of this
image and finally in Section 5 we give some indication of the size of the optical

elements needed for such a detector.

REFRACTION THROUGH AXICONIC SURFACES

Figure 3 shows the refraction of a light ray at a plane surface. The vectorial

formulation of Snell's law is

> - >

noVo = niVy; + I'N s (3)

- >
where V; and V, are, respectively, unit vectors along the incident and refracted

rays at the boundary surface of two media with refractive indices n; and ny, and
>
N is the unit vector perpendicular to the surface. All vectors are oriented in

the direction of the light., The quantity I’ is given by the equation

- > L > ES
T = [ni . nf + ni (v, N)212 - n; V; * N . (4)

I'=mnp, - ny , (5)

and hence

> > >

n,Vs, = myVy + (np = np) N . (6)

We now consider a ray of light passing through an axicon (see Fig. 4). The
axicon has refractive index m; and is immersed in a medium of refractive index ng.
The angle of the axicon is . For an axicon of small angle the paraxial approxi-—
mation remains valid, and hence by applying Eq. (6) to the two surfaces in turm,

we find

>

» - - -
ngV" = ngV + (n; - ng) (N; ~ Np) , N
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> >
where V abd V' are unit vectors along the incoming and outgoing light rays, respec-

> >
tively, and N; and N, are the normals to the two surfaces.

For an axicon which is sufficiently thin we can apply the approximation
> > >
Ny - N, 2a U, (8)
N
where U is the unit vector along the direction joining the apex of the axicon to

the point of intersection of the light ray with the axicon surface. Equation (7)

then becomes
>% - >
ngV = ngV + (n; — ng)al . (9)
In the case of a doublet of axicons, we arrive at a similar relation, i.e.
>d - >
neV = noV + [(m -~ moda + (np - ma)BJU (10)

where o and B are the angles of the two axicons, which have refractive indices

n, and n,, respectively. The angles o and B are considered to be positive if the
axicon becomes narrower as one approaches the outer edges, and negative otherwise.
For example, in the axicon doublet shown in Fig. 4b, the angle o is positive,

whilst the angle B is negative.
*)
In practice, ny ~ 1 and it is convenient to write Eq. (10) in the following
form:
>k - -
vV =V +du, (11)
where

d=(n; - Do+ (n, - 1)R . (12)

The angle d is the bending angle of the axicon doublet.

DERIVATION OF THE OPTICAL IMAGE

3.1 Basic optical relations

The layout of the counter is shown again in Fig. 5. The coordinate system
is taken to be centred at the apex M of the spherical mirror. The Z-axis lies
along the optic axis with Z positive in the direction of the target, and the
Y-axis is vertically upwards as drawn in Fig. 5. The target, which we assume
to be infinitely thin, is situated at position T and the axicon is placed at

position T/, the image of T in the mirror.

Tt is useful to derive some formulae in the simple case of a particle travel-

ling along the optic axis since, to first order, some of the results can be applied

in a more general case.

v
*) In the present application ngy corresponds to the radiator of the Cerenkov light
which is a gas, and hence ng = 1.
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Let the radius of the mirror be R. The distance of the target from the

mirror is defined to be

Zp = QR (13)

where Q is a multiplicative factor. The image point T’ is then given by

ZTI = mQR 9 (14)
where

1

m=—5(_2:-i. (15)

The magnification of the image is -m.

We now consider a light ray emitted from a point L on the particle path at
an angle O to the axis. We suppose the light ray intersects the mirror at point B,

and after reflection it intersects the axicon at point C.

Let =
e MB pI 1

and T'C

i

Ppe
We suppose that the point L is defined by

- (16)
Z, = WR,

where W is a multiplicative factor always smaller than Q.

I1f L' is the image of L, we have

Z4 = UWR (17)
where
VR T (18)
2W-1

Now using Eqs. (16)-(18) we can show that

o, = WRO (19)

and

p, = m(Q -~ WRO . (20)

3.2 Equation of the image

Let us now consider a trajectory (D) emitted from a point S off axis on the
target, such that
Xg=0, Y =6, Z5=QR. (21)
Let T be the angle between (D) and the Z-axis, and Y the angle which its projection
in the X-Y plane makes with the X-axis. We suppose that (D) intersects the mirror

at point E. To first order we have

XE = QRT cos Y , YE = § + QRT sin Y , ZE =0 . (22)



A light ray emitted from a point XK on (D), where

ZK = WR , (23)

at an angle 6 to the trajectory, intersects the mirror at point G and after re-
flection appears to come from the point K', the image of K. The point K’ is
situated on the line (D'), the image of (D). From Egs. (22) and (23) we deduce

that the coordinates of the point K are given by

XK = (Q - WRT cos ¢ , YK =8 + (Q = WRT sin ¥ , ZK = WR , (24)
and hence from Egqs. (16) and (17) we have for the point k!
XK’ = -u(Q - W)RT cos ¥
Yer = ~ud - u(Q - WRT sin ¥ (25)
ZK' = UWR .

The line (D') intersects the axicon at point S', the image of $ in the mirror.

Hence

X =0, Y

g = -mé , Z = mQR . (26)

s! s’
We suppose that the light ray from K intersects the axicon at point P. To first

order we may assume that

EG = pM
and

s'p = N
where Py and pA are given by Eqs. (19) and (20). 1If we let w be the angle which
the line EG makes with the X-axis, then we can deduce the coordinates of the

points G and P, i.e.

tal
1]

G QRT cos ¥ + WRO cos w, Y, = § + QRT sin Y + WRO sin w, Z

G 0 27)

G
and

1

X p, cos W, Y

P A P

-m§ + pA sin w, Z mQR . (28)

P

N
From Eqs. (27) and (28) we can compute the components of the vector GP, the
direction of the light ray falling on the axicon. To first order, the length of

the vector GP is given by

GP v MT' = mQR . (29)



> N >
Let V be the unit vector in the direction GP; then the components of V, to

first order, are found to be

_ O cosw _Tcos Y

v =

X u m
v o= _28 _ 8 sinw _ T sin Y (30)
v R u m

v =1

The deviation of the ray falling on the axicon doublet is given by Eq. (12)
and the direction of the light ray after passing through the axicon is given by
-5
Eq. (11). The vector U in Eq. (1l1) is the unit vector in the direction /P,

From the coordinates of the points T' and P we deduce that

T/p? = 02_ + m?282 - 2mépA sin w . (31)
Let us assume that
o, >> jms| (32)
then
5
T'P = p [1 - 28 in w} . (33)
A P
A
Hence we find
mé .
U = cos W+ — cos W sin W
x
A
. m@ 2
U, = sin W - — CcO0s” W (34)
J 0
A
Uu =20
2
> >
Now by substituting the vector components for V and U, given by Egqs. (30) and

>k
(34), in Eq. (12) we obtain the unit vector V in the direction of the outgoing

ray; i.e.
*
V =cos w |d - QJ + éﬂ§ cos W sin w — Teos
X M DA m
X ,
v =sinw[d—~e—]——————dm6 cos? y - Lin ¥ 20 (35)
y n)oop, m R
ES
v =1,
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The axicon doublet in our system bends the light ray and reduces the chromatic
dispersion of the Cerenkov light without changing (to first order) the axial posi-
tion of the focal plane, which thus remains the focal plane of the mirror. Our
image point (XF’YF) is therefore the point of intersection of the vector ;* with

the focal plane, i.e. with the plane Z = R/2. We find

____1_{_(8_ d os W - dé sin w cos w . RT cos Y
Xp =3 5g-1) © 36(20 - 1) (Q = W) 2 (36)
_R B d . dé cos?w RT sin ¥
¥ =3 [e 2q - 1) SIn W+ o5 mg - 1) (Q = W) 2
PROPERTIES OF THE IMAGE
If we let
r==5[e ___JL_] (37)
2 20 -1
ds
L= 2@ - D @-W (38)
and
A=1cos w, (39)
then Eq. (36) becomes
XF =r cos W - A sin w + BI_%QE_E
(40)
YF =y gin w + A cos w + BE—EEE—E .

As the angle w varies from 0 to 2m, Eq. (40) defines a closed curve. This
curve 1is drawn in Fig. 6 as the curve p*. The circle denoted by p is the degen-
erate curve obtained when 1 = 0, i.e. when the target size § = 0. This looped
curve is, in fact, one of the geometrical curves discovered by Pascal and is

known as the "Limacon de Pascal'. The loop degenerates into a cusp when 1 < r.

The condition which we introduced into the analysis in Eq. (32) can also be

written as
§
6 <L Q-W. (41)

This relation means that we should not allow Q - W to become small. In
practice this means that to avoid large aberrations in the image we should only
accept light rays that are emitted after a certain distance from the target, and

this requirement is, in fact, included in the design of the counter.

From Eq. (40) we see that spot focusing occurs when r = 0, i.e. when

d=(2Q-1) 6 . (462)
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Thus for one particular Cerenkov angle 8y [which from Eq. (1) implies one particular
particle speed Bojythe axicon can be designed to produce a spot image. For other

particle speeds the image is basically a circle of radius

oty -2 o)

with some aberration depending on the value of the ratio 1/r.

The radius r of the circle allows one to make an estimate of the value of §

and hence the particle speed B, whilst the centre of the circle which has coor=-

dinates

(RT cos P RT sin w]
2 ? 2

allows one to estimate the divergence angle T of the particle. More details of

the expected accuracy of these determinations are contained in the paper already

D)

cited

SIZE OF THE OPTICAL ELEMENTS

5.1 The mirror

The mirror should be designed to collect all the light from any particle
which the counter is supposed to detect. The size of the mirror then depends

on the following quantities:

i) the distance between target and mirror = QR;

i{i) the maximum divergence angle of a particle Toax’
1ii) the éerenkov angle B3

iv) the length of the counter L.

In effect, L is the length of the particle trajectory over which the emitted

light is to be used, i.e.

L = wmaxR . (44)
If Rmir is the physical radius of the mirror, then, ignoring the size of the
target,
R. >2QRT + W RBp . (45)
mir max max

In practice, when designing a counter of this type, the quantity which one
is most likely to want to fix is the average number N of photoelectrons which
reach the detector system. This number N is usually expressed by the following
relation:

N = ALSZ , (46)
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where A is a parameter depending on the light transmission through the counter
optics and the performance of the photocathode of the detector system. Combining

Eqs. (44) and (46) we can express R as

N
R = Aegwmax ’ (47)

and substituting this expression for R in Eq. (45) gives

N (Q
Rnir 2 AB? {W Tnax 60] ’ (48)
max

5.2 The axicon

In Eq. (20) we worked out the distance Pa between the point where the light
ray crosses the axicon and the optic axis, for a particle travelling along the

axis.

If we ignore the size of the target, then the physical radius of the axicon
should be at least equal to the maximum value of Py i.e.
QRO
> e,
Raxi - 20 -1 (49)
It is interesting to note that the size of the axicon is independent of the

divergence angle T. As we did for the mirror we can also express the radius in

terms of N; i.e. using Eq. (4) we have

QN
Rupi 2 . (50)
aX1 = K67 (2Q - 1) Wy
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Figure captions

Fig, 1 : Ray diagram illustrating the basic principles of a spot—focusing
detector.

Fig. 2 : A possible layout for a spot—-focusing detector.

Fig. 3 : Refraction of light at a surface.

Fig. 4a : Refraction of light through an axicon of small angle o.

Fig. 4b An axicon doublet.

Fig. 5 : Detailed tracing of a skew light-ray through the optical system of

the spot~focusing detector.

Fig. 6 : Image shapes in the focal plane of the mirror. The point S is the
spot image for particles having a velocity By for which the counter
is "set", For particles with B # By , the curve p7|< is formed for
particles leaving the target at a finite distance from its centre.
This curve degenerates into the circle p for particles originating

from the centre of the target.
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