
The Process Manager in the ATLAS DAQ System
Giuseppe Avolio, Marc Dobson, Giovanna Lehmann Miotto, Matthias Wiesmann

CERN

Abstract— This paper describes the Process Manager in the
ATLAS DAQ system. The purpose of the Process Manager
is to perform basic process control on behalf of the software
components of the DAQ system. It is able to create, destroy and
monitor the basic status (e.g., running, exited, killed) of software
components on the DAQ workstations and front-end processors.

Section I gives a brief overview of the Process Manager
functionalities. Section II focuses on the requirements the Process
Manager system has to fulfil to be fully integrated in the DAQ
system. Section III shows how the requirements are met by the
current implementation. The communication schema between the
different parts of the Process Manager system, the procedure to
launch a process and the possible states in which a process can
be are described in Sections IV, V and VI. Section VII deals with
some consideration of the Process Manager performance while
some conclusions are given in Section VIII.

I. INTRODUCTION

The Process Manager (PM) [1] system is part of the dis-
tributed architecture upon which the ATLAS DAQ [2] system
is built. It offers a service to manage processes in the DAQ
context. The tasks of the Process Manager can be coarsely
grouped in three categories:

• Process creation
It does not only imply the creation of the actual process,
but also the preparation of all the resources and data
needed to actually start the process. This includes path
and variable resolution, resource acquisition and general
checking.

• Process control
It includes mostly process termination. At a lower level
this includes the sending of POSIX signals to the process.
In case of process termination, resources need to be
released and cleanup operations initiated.

• Process monitoring
It implies both giving state information on request (pull
mode), but also dispatching call-backs to notify clients
that a process has changed its status (push mode).

II. REQUIREMENTS AND CONSTRAINTS

A. Independence

Since the Process Manager is responsible for launching and
controlling almost all the servers that build up the general
infrastructure of the system, it cannot rely on any service that it
has to launch and terminate. Moreover a failure of the Process
Manager system means the loss of control of the system (about
3000 machines and more than 15000 concurrent processes).

Because of this, the Process Manager should be autonomous
and handle the failure of other services gracefully, be robust,
offer some fault tolerance features and be easy to control using
simple command line tools.

B. Functional Requirements

• Process creation: the Process Manager shall be able to
start processes on behalf of the user, either on the user’s
local host or on a remote machine;

• Process ownership: a process created by the Process
Manager will run on the host operating system under the
identity of the user that imitates the launch request;

• Process differentiation: every process the Process Man-
ager is requested to start, shall be assigned a unique
identifier across all the previous and current process
requests (i.e., the process Handle);

• Process creation notification: after a process creation
attempt, success or failure shall be reported;

• Process creation verification: the user should have the
capability to verify that the created process is running;

• Process termination: the user should have the capability
to terminate a process launched by the Process Manager;

• Process signaling: the Process Manager shall be able to
send signals to a created process on user request;

• Process parameters: the Process Manager shall provide
the user application with the means to specify any rele-
vant process creation parameters;

• Process monitoring: the Process Manager shall detect
when a created process dies;

• Process termination notification: users shall be able to
subscribe to information regarding the state of any man-
aged process using the process identifier. The user shall
also be notified if this process terminates;

• HW and SW resources: the Process Manager shall take
into account any specified constraint on the use of hard-
ware resources by software modules and any specified
limit on the number of copies of a given application that
can be run simultaneously. The resources available or
used are specified in the DAQ configuration;

• Access control: requests to start a process, terminate it or
to send signals to it shall be subject to access control;

• Publishing information: the Process Manager shall make
publicly available information about the managed pro-
cesses and the Process Manager system itself. The pub-
lished information shall be updated whenever a change
occurs;

• Error recovery: if the Process Manager fails for any
reason then it shall be able to inherit, when it is restarted,
any alive process created by its previous instance. It
shall be able to recover information about the running
processes and manage them as if they were created by it;

• The Process Manager shall have no requirement for the

A
T

L
-D

A
Q

-C
O

N
F-

20
07

-0
08

16
 M

ay
 2

00
7



kind of processes it is required to start and each managed
process shall not be required to have any knowledge of
the Process Manager system.

C. Operating System Constraints

The Process Manager system needs to interact with the
underlying operating system to launch and control processes.
As the Process Manager system is designed to run on Linux
systems it has to adapt to constraints imposed by the system
call semantics of the platform. In order to be able to start
any process belonging to the DAQ infrastructure, the Process
Manager needs to be started automatically and be available
before any other DAQ service. In order to be able to run
processes with any user identity, part of the Process Manager
needs to have supervisor permissions (super user).

III. IMPLEMENTATION

The Process Manager architecture divides the system
into three main components (Fig. 1): the Process Manager
Client, the Process Manager Server and the Process Manager
Launcher. Together the Server and the Launcher represent the
server part of the Process Manager.

A. The Client Interface

The Client resides on the host where Process Manager
requests are initiated and offers the user level interface to
the Process Manager system. This interface gives tools to
create and manipulate processes in the whole system and its
functionalities can be grouped in two main categories: Process
Control and Process Information.

1) Process Control: This category contains all methods
that force the process to change its status (i.e., methods
to request the termination of the process, or to send it a
POSIX signal). These actions have strong authentication needs
because the system should not allow any user to shutdown
arbitrary processes. This requirement is fulfilled by the Server
which checks the user authorizations before sending any signal
to the process (see Section III-B).

Server Side

Process Manager

Server

Process Manager

Launcher

Operating System

Process Manager

Client
CORBA

Fig. 1. The Process Manager general architecture. The Client and the Server
communicates using CORBA [3].

TABLE I

ALLOWED PROCESS OPERATIONS

Unlinked Linked Terminated

Control Allowed Allowed Disallowed

Process Info Allowed
(local data)

Allowed
(local data)

Allowed
(local data)

Link Allowed Ignore Disallowed

Unlink Ignore Allowed Ignore

2) Process Information: This category contains all methods
requesting process information. It includes:

• General process information such as the lifetime of a
process, the full path of the executable, parameters,
environment variables, process id;

• Information reflecting the state of the process (typically
if the process is running or has exited). This information
is updated constantly and can be retrieved either by
accessing local cached data or by registering a call-back;

• Information about usage statistics from the process (typ-
ically consumed resources on the host machine).

The Client interface defines two kinds of Processes1: linked
and unlinked. A linked Process is tightly coupled with the
actual process and its status will be updated by call-back meth-
ods. An unlinked Process has not such a direct coupling but
access to the actual process information is granted using local
cached data. One or the other mode can be used depending on
the needs of the client application and the kind of a Process
can be changed (i.e., a linked Process can be unlinked and
vice versa).

Table I summarizes the allowed Process operations for dif-
ferent states (linked, unlinked and terminated) and actions. For
the Process Info category the table specifies if the information
should be retrieved using local data or invoking remotely the
server. As it can be noticed the Client makes an intensive use
of caching to increase performances and minimize the number
of queries to the Process Manager Server (see section III-B).

B. The Server

Each host where processes need to be managed by the
Process Manager runs one instance of the Process Manager
Server. The Server acts as an information hub and dispatches
request and stores important data structures. It is responsible
of the following tasks:

• Manage process hierarchy (partition, application name,
etc.);

• Manage call-back lists;
• Handle resource allocation using the Resource Manager

(RM)2 [4] service provided by the DAQ infrastructure;

1Process refers to the Client classification, while process always identifiies
the actual launched application.

2The Resource Manager service task is to marshal multiple access to DAQ
limited resources to avoid conflicts.



• Handle user authorizations using the Access Manager
(AM)3 [5] service provided by the DAQ infrastructure;

• Interact with Launchers (see section III-C);
• Interact with Clients;
• Publish information about itself and all the launched

processes using the Information Service (IS)4 [6] service
provided by the DAQ infrastructure.

Because of its complexity provisions are taken to insure that
the Process Manager Server can restart in case of crash. This
implies storing state information in the file system. In case of
any Server failure, its new instance uses this state information
(contained in the Manifest file, see Section IV-A) to inherit
already running processes.

One important Process Manager requirement concerns the
properties of process references to be used for control and
monitoring operations. The Server takes care of building
process Handles which have the following properties:

• Each Handle uniquely describes one process in the sys-
tem;

• The Handle exists as soon as the process creation is
requested;

• The Handle is usable with a minimal number of lookups;
• In order to be usable with command line tools, the Handle

is in text format.

The Handle format is built upon the structure of Uniform
Resource Locators (URL) and its format is

pmg:://server name/partition/application/id

where pmg is simply the protocol identifier, server name
is the fully qualified host name of the machine running the
process, partition is the name of the partition the process
is running in, application is the name of the application as
defined by the Client and id is a unique identity number
that is generated by the Server when the start of a process
is requested. Within the scope of a given partition and given
application name, those identities are monotonically increas-
ing.

C. The Launcher

Each process managed by the Process Manager system is
handled by a Launcher. This component is responsible for
starting, monitoring and terminating a single process. The goal
of the Launcher is to have one single component that handles
low level process management. The decision to have the
Launcher as a separate process is motivated by the following
reasons:

• In order to launch processes under the identity of arbitrary
users, the program that does the actual launching needs to

3The Access Manager is an online software security service responsible
for DAQ users authorization. It implements the ATLAS DAQ access policy
in order to prevent corruption of the system functionality by actions performed
by non-authorized persons.

4The ATLAS DAQ Information Service is generally used to share infor-
mation between applications in a distributed environment.

run as root. Running a large CORBA-based [3] program
as root would represent a large security risk.

• One requirement on the Process Manager system is to
be able to restart the Server process in case of crash.
Reattaching the Server to all launched processes would
have been a complicated task, and would imply running
the Server as root because only the root user can wait
for an arbitrary processes to exit.

• A small launcher component has less chances of crash-
ing and offers a better abstraction level. Additionally,
the Launcher is designed to be controlled using simple
command line tools; this means that in case of problems
some cleanup tasks can be done by hand if required.

Each Launcher is responsible for the following tasks:

• Start one process with the correct parameters and permis-
sions;

• Monitor this process for termination;
• Send control signals to the process;
• Transmit process status information to the Server.

In order to accomplish its tasks the Launcher binary is
installed in a well known place on the target machine, the
binary is owned by root and has the setuid bit.

PM

Client
PM

Server

Access

Manager

Resource

Manager

PM

Launcher

PM

Launcher

PM

Launcher

Process Process Process

CORBA

Mapped FilesNamed Pipe

Child Status

Fig. 2. The Process Manager communication schema.

IV. COMMUNICATION SCHEMA

Fig. 2 illustrates the process view of the Process Manager
system. The Client sends requests to the Server using CORBA.
The Server and each Launcher communicate using a pair of
named pipes5 (one used by the Server to control the Launcher,
the other one used by the Launcher to notify the Server
of process state updates) and a memory mapped file (the
Manifest). Each Launcher is the parent of one process and

5An operating system pseudo-file that offers first-in, first-out semantics.



controls it using POSIX system calls. The Server interacts
with other server processes that implement different online
services, like the Resource Manager and the Access Manager
servers. Each instance of the Launcher contains two threads:
one waiting for the child process to exit, the other one waiting
for instructions from the Server with a blocking read on a
named pipe. For each Launcher the Server has one thread
doing a blocking read on a named pipe waiting for process
status updates.

Manifest and named pipes data structures are resident in the
local file system of the host machine.

A. The Manifest

The Manifest file is used both as a means of communication
between the Launcher and the Server and to store information
about a process (i.e., process and Launcher PID, binary name,
process environment, Handle, status, etc.). Since the file is
mapped into memory it allows the Process Manager system to
share data between the Launcher and the Server in an efficient
way. The information stored in the Manifest is used by the
Server to reconnect to running Launchers after a failure.

P
ro

c
e
s
s
 M

a
n

a
g

e
r

C
li

en
t

Create a process

description
Client

Application

P
ro

c
e
s
s
 M

a
n

a
g

e
r

S
er

ve
r

Acquire

Resources

Resource

Manager

Create

Reference & 

Manifest
Filesystem

Start the 

Launcher

Ask

Authorization

Access

Manager

Fig. 3. Flow diagram showing all the phases to launch a process.

V. PROCESS STARTING PROCEDURE

In order to create a process, the Process Manager has to
pass via a certain number of phases. Fig. 3 illustrates those
phases:

• The Server receives a request from a Client to start a
process;

• The right to launch the process is checked with the Access
Manager;

• Available resources are acquired asking the Resource
Manager;

Running

Requested

Exited

Created

Sync ErrorSignaledFail

Start

ExecError

Exec

Timeout

Exit

Signal

Run

Fig. 4. The process state machine.

• The Manifest is created and initialized;
• The Server builds the Handle for the process and sends

it to the Client;
• The Client uses the received Handle to create its own

data structures;
• If needed a call-back is registered for the process;
• The Client asks the Server to really start the process;
• The Launcher process is started.

VI. PROCESS STATES

A process is represented by the Process Manager as a state
machine (Fig. 4). When a client application requests the start
of a process the process is in the REQUESTED state. If the
process is properly launched then it is in the RUNNING state,
otherwise it goes into the FAIL state. Processes configured
to notify the Process Manager system when they are actively
running have a different path. They first go into the CREATED
state. Once they confirm they are running, they go into the
RUNNING state. If they fail to do so within a certain amount
of time, they are first terminated and then go into the SYNC
ERROR state. A running process can do two state changes.
First it can terminate and go to the EXITED state. Some clients
can also request termination for the process in which case
the Process Manager will then send this process signals to
terminate it. When a process terminates because of a signal
(either an internal one, like segmentation fault, or an external
one) it goes into the SIGNALED state. The Process Manager
can terminate a process both by sending signals that the
process can ignore and by sending signals that cannot be
masked (like KILL). It is also possible to combine the former
two actions: first sending a TERM signal, waiting for a defined
amount of time for the process to exit and then eventually
sending a KILL signal.

The states represented in Fig. 4 with a grey background are
states that are reported to the client. All states on the bottom
line (FAIL, SIGNALED, EXITED and SYNC ERROR) are “pit”
states that a process cannot leave.

VII. PERFORMANCE AND QUALITY

The process management activity will mostly be high during
state transitions. The design is done in such a way that no



component needs to do polling. So while there will be many
instances of the Launcher, they will all be blocked waiting for
either their child process to terminate, or some command to
be sent to their control named pipe. The Manifest file will stay
small (32KB) and data transfer between the Server and the
Launcher will be basically free because of the shared memory
area.

The Process Manager architecture is built to be able to
tolerate the crash of certain elements of the system. If the
Server crashes, it can be restarted. Upon restart, it reads the
Manifest files and resumes processing. Client crashing have
a small impact on the overall system. The only vulnerable
element is the Launcher and for this reason it is designed to
be small and simple in order to minimize the probability of
bugs.

A. Single host tests

In order to prove the efficiency and performances of the
Process Manager design implementation some tests have been
accomplished using a single host configuration and disabling
all the connections to external services (i.e., AM and RM).
Such a configuration is suitable for removing any bottleneck
due to the latency of the network connection between the
Server and the Client application and for decoupling the
Process Manager from any other software module. Tests
consist of a certain number of concurrent Client applications
(up to 6) asking the local Process Manager Server to start
and terminate very simple processes6. To pass the test the
Server has to be able to deal with about 200000 start/kill
steady requests without any failure. The prompt notification
to the client applications of any change in the status of the
controlled processes is mandatory. This kind of test has been
successfully passed and an average time of 0.05s to start a
process, terminate it and dispatch all its status updates was
measured7. A single Server did also succeed in managing a
large number of concurrent processes (up to 50).

B. Distributed tests

This category of tests includes the case of both single and
multiple Clients sending requests to several Servers running
on different hosts. The connections to all the external services
are enabled. The aim of this test procedure is to check the
Process Manager system capability to interact with all the
DAQ infrastructure and its ability to deal with any external
service failure. The Process Manager is requested to dis-
tinguish between the missing availability of a fundamental
or accessory infrastructure component8 and take opportune
actions after having notified the client applications. Such tests
were performed during some DAQ system technical runs

6Here simple refers to processes linking a small number of shared libraries,
so as to minimize their loading time when the process is launched. A basic
test process just sleeping for a given amount of time was frequently used.

7On an Intel Xeon 5150 CPU.
8Is considered fundamental any service whose failure will not permit to

launch a process (i.e., an RM unavailability could cause the wrong starting of
a process whose used resources could conflict with other running processes).
On the contrary an IS failure does not prevent a process to be safely started.

and detector commissioning activities exploiting up to 100
different hosts. During all the test period the Process Manager
was able to carry out its tasks in a proper way.

C. Recovery tests

To simulate a Process Manager failure the Server is killed
after launching a number of processes, causing the new Server
instance to try and reattach to all the existing Launchers. This
test has always been successful and the new Server has shown
its ability to treat the running processes as if started by itself.

D. System resource usage

During all the tests the Process Manager has shown a small
system resource usage. In real life operations the average CPU
utilization is less than 15% when launching processes9 and is
virtually zero during the running period. The average memory
usage is around 10 MB for the Server and less than 4 MB
for the Launcher.

During the development phase some reliable memory
checker tools (i.e., valgrind [7]) were used to detect memory
leaks, accesses to uninitialised memory and misuse of allo-
cated memory (e.g., double frees, access after free). All the
tests in this area did not show any memory leak or corruption.

VIII. CONCLUSIONS

In this paper, the design, implementation and performances
of the Process Manager for the ATLAS DAQ system have
been presented. The aim of the software design has been to
realize a component able to start, monitor and terminate pro-
cesses without any restriction on the process type. Particular
attention has been given to ensure a small usage of the host
system resources in the monitoring phase, when all the DAQ
infrastructure is running and engaged in data taking activities.
This is crucial to avoid performance deterioration of the whole
DAQ system (one Server instance runs on each host). The
severe requirements to fulfil and guarantee stable and reliable
operations are justified by the extreme and basic importance
of the process management: loosing the control of the running
processes will mean loosing the control of the system. All
the performed tests have contributed to and helped verify
the robustness of the current implementation of the Process
Manager: even in case of failure the arranged procedures allow
to recover the control of all the started processes.

REFERENCES

[1] M. Dobson, M. Wiesmann, G. Lehmann. Pro-
cess Manager Requirements. [Online]. Available:
https://edms.cern.ch/file/528906/2.4/Requirements2.4.doc.

[2] ATLAS Collaboration, ”ATLAS High Level Trigger, Data Acquisition
and Controls Technical Design Report”, CERN/LHCC/2003-033, 30 June
2003.

[3] OMG, CORBA/IIOP 3.0.3 Specification. [Online]. Available:
http://www.omg.org/docs/formal/04-03-01.pdf

[4] I. Alexandrov, V. Kotov, R. Roumiantsev. User Guide and
Implementation of the Resource Manager. [Online]. Available:
http://atddoc.cern.ch/Atlas/postscript/Note130.ps.

9Value measured running one Client and one Server on two separte hosts
featuring an Intel Xeon 5150 CPU. The client application continuosly asks
the Server to start a simple process and receives status updates.



[5] J. E. Sloper, M. Leahu, M. Dobson, G. Lehmann. Access
Management in the ATLAS TDAQ. [Online]. Available:
http://doc.cern.ch//archive/electronic/cern/others/atlnot/CONF/daq/daq-
conf-2006-015.pdf.

[6] S. Kolos. Information Service User Guide. [On-
line]. Available: http://atlas-onlsw.web.cern.ch/Atlas-
onlsw/components/is/doc/userguide/is-usersguide.pdf.

[7] The Valgrind developers. The Valgrind User Manual. [Online]. Available:
http://www.valgrind.org/docs/manual/manual.html.


