
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 1, FEBRUARY 2008 399

The Process Manager in the ATLAS DAQ System
Giuseppe Avolio, Marc Dobson, Giovanna Lehmann Miotto, and Matthias Wiesmann

Abstract—This paper describes the Process Manager in the
ATLAS DAQ system. The purpose of the Process Manager is to
perform basic process control on behalf of the software compo-
nents of the DAQ system. It is able to create, destroy and monitor
the basic status (e.g., running, exited, killed) of software compo-
nents on the DAQ workstations and front-end processors.

Section I gives a brief overview of the Process Manager function-
alities. Section II focuses on the requirements the Process Manager
system has to fulfil to be fully integrated in the DAQ system. Sec-
tion III shows how the requirements are met by the current imple-
mentation. The communication schema between the different parts
of the Process Manager system, the procedure to launch a process
and the possible states in which a process can be are described in
Sections IV ,V and VI. Section VII deals with some consideration
of the Process Manager performance while some conclusions are
given in Section VIII.

Index Terms—Data acquisition, process control, process moni-
toring.

I. INTRODUCTION

THE Process Manager (PM) [1] system is part of the
distributed architecture upon which the ATLAS DAQ [2]

system is built. It offers a service to manage processes in the
DAQ context. The tasks of the Process Manager can be coarsely
grouped in three categories:

• Process creation: It does not only imply the creation of the
actual process, but also the preparation of all the resources
and data needed to actually start the process. This includes
setting of the process environment variables, resource ac-
quisition and general checking.

• Process control: It includes mostly process termination. At
a lower level this includes the sending of POSIX signals to
the process. In case of process termination, resources need
to be released and general cleanup operations1 initiated.

• Process monitoring: It implies both giving state informa-
tion on request (pull mode), but also dispatching call-backs
to notify clients that a process has changed its status (push
mode).

II. REQUIREMENTS AND CONSTRAINTS

A. Independence

Since the Process Manager is responsible for launching and
controlling almost all the servers that build up the general in-

Manuscript received May 2, 2007; revised August 9, 2007.
The authors are with CERN, CH-1211 Genève 23, Switzerland (e-mail:

giuseppe.avolio@cern.ch).
Digital Object Identifier 10.1109/TNS.2007.910507

1All the files used to start and control the process (see Section IV) are re-
moved. The published (see Section III.B) information regarding the process stop
time, exit code and, eventually, the signal which caused the process to exit, is
updated.

frastructure of the system, it cannot rely on any service that it
has to launch and terminate. Moreover a failure of the Process
Manager system means the loss of control of the system (about
3000 machines and more than 15000 concurrent processes).

Because of this, the Process Manager should be autonomous
and handle the failure of other services gracefully, be robust,
offer some fault tolerance features and be easy to control using
simple command line tools.

B. Functional Requirements

• Process creation: The Process Manager shall be able to
start processes on behalf of the user, either on the user’s
local host or on a remote machine.

• Process ownership: a process created by the Process Man-
ager will run on the host operating system under the iden-
tity of the user that initiates the launch request2;

• Process differentiation: every process the Process Manager
is requested to start, shall be assigned a unique identifier
across all the previous and current process requests (i.e.,
the process Handle);

• Process creation notification: after a process creation at-
tempt, success or failure shall be reported;

• Process creation verification: the user should have the ca-
pability to verify that the created process is running;

• Process termination: the user should have the capability to
terminate a process launched by the Process Manager;

• Process signaling: the Process Manager shall be able to
send signals to a created process on user request;

• Process parameters: the Process Manager shall provide the
user application with the means to specify any relevant
process creation parameters;

• Process monitoring: the Process Manager shall detect
when a created process dies;

• Process termination notification: users shall be able to sub-
scribe to information regarding the state of any managed
process using the process Handle. The user shall also be
notified if the process terminates;

• HW and SW resources: the Process Manager shall take into
account any specified constraint on the use of hardware
resources by software modules and any specified limit on
the number of copies of a given application that can be
run simultaneously. The resources available or used are
specified in the DAQ configuration;

• Access control: requests to start a process, terminate it or
to send signals to it shall be subject to access control;

• Publishing information: the Process Manager shall
make publicly available information about the managed
processes and the Process Manager system itself. The

2This requires the user accounts to be distributed to all the machines in the
cluster.

0018-9499/$25.00 © 2008 IEEE

400 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 1, FEBRUARY 2008

Fig. 1. The Process Manager general architecture. The Client and the Server communicate using CORBA [3].

published information shall be updated whenever a change
occurs;

• Error recovery: if the Process Manager fails for any reason
then it shall be able to inherit, when it is restarted, any
alive process created by its previous instance. It shall be
able to recover information about the running processes
and manage them as if they were created by it;

• The Process Manager shall have no requirement for the
kind of processes it is required to start and each managed
process shall not be required to have any knowledge of the
Process Manager system.

C. Operating System Constraints

The Process Manager system needs to interact with the un-
derlying operating system to launch and control processes. As
the Process Manager system is designed to run on Linux systems
it has to adapt to constraints imposed by the system call seman-
tics of the platform. In order to be able to start any process be-
longing to the DAQ infrastructure, the Process Manager needs to
be started automatically and be available before any other DAQ
service. In order to be able to run processes with any user iden-
tity, part of the Process Manager needs to have supervisor per-
missions (super user).

III. IMPLEMENTATION

The Process Manager architecture divides the system into
three main components (Fig. 1): the Process Manager Client,
the Process Manager Server and the Process Manager Launcher.
Together the Server and the Launcher represent the server part
of the Process Manager.

A. The Client Interface

The Client resides on the host where Process Manager re-
quests are initiated and offers the user level interface to the
Process Manager system. This interface gives tools to create

and manipulate processes in the whole system and its function-
alities can be grouped in two main categories: Process Control
and Process Information.

1) Process Control: This category contains all methods that
force the process to change its status (i.e., methods to request the
termination of the process, or to send it a POSIX signal). These
actions have strong authentication needs because the system
should not allow any user to shutdown arbitrary processes. This
requirement is fulfilled by the Server which checks the user au-
thorizations before sending any signal to the process (see Sec-
tion III.B).

2) Process Information: This category contains all methods
requesting process information. It includes the following.

• General process information (process lifetime, standard
output and error destination, the full path of the executable,
parameters, environment variables, process id, process
owner, host, working directory and Handle);

• Information reflecting the state of the process (typically if
the process is running or has exited). This information is
updated constantly and can be retrieved either by accessing
local cached data or by registering a call-back;

• Information about usage statistics from the process (typi-
cally consumed resources on the host machine).

The Client interface defines two kinds of Processes:3 linked
and unlinked. A linked Process is tightly coupled with the actual
process and user defined call-back functions (executed when-
ever the process changes its status) are associated with it. An
unlinked Process has not such a direct coupling but access to the
actual process information is granted using local cached data.
One or the other mode can be used depending on the needs of
the client application and the kind of a Process can be changed
(i.e., a linked Process can be unlinked and vice versa).

Table I summarizes the allowed Process operations for dif-
ferent states (linked, unlinked and terminated) and actions. For
the Process Info category the table specifies if the information

3Process refers to the Client classification, while process always identifiies
the actual launched application.

AVOLIO et al.: THE PROCESS MANAGER IN THE ATLAS DAQ SYSTEM 401

TABLE I
ALLOWED PROCESS OPERATIONS

should be retrieved using local data or invoking remotely the
server. As it can be noticed the Client makes an intensive use of
caching to increase performance and minimize the number of
queries to the Process Manager Server (see Section III.B).

B. The Server

Each host where processes need to be managed by the Process
Manager runs one instance of the Process Manager Server. The
Server acts as an information hub and dispatches request and
stores important data structures. It is responsible of the fol-
lowing tasks.

• Manage process hierarchy (partition, application name,
etc.);

• Manage call-back lists;
• Handle resource allocation using the Resource Manager

(RM)4 [4] service provided by the DAQ infrastructure;
• Handle user authorizations using the Access Manager

(AM)5 [5] service provided by the DAQ infrastructure;
• Interact with Launchers (see Section III.C);
• Interact with Clients;
• Publish information about itself and all the launched pro-

cesses using the Information Service (IS)6 [6] service pro-
vided by the DAQ infrastructure.

Because of its complexity provisions are taken to insure that the
Process Manager Server can restart in case of crash. This implies
storing state information in the file system. In case of any Server
failure, its new instance uses this state information (contained
in the Manifest file, see Section IV.A) to inherit already running
processes.

One important Process Manager requirement concerns the
properties of process references to be used for control and mon-
itoring operations. The Server takes care of building process
Handles which have the following properties.

• Each Handle uniquely describes one process in the system;
• The Handle exists as soon as the process creation is re-

quested;
• The Handle is usable with a minimal number of lookups;
• In order to be usable with command line tools, the Handle

is in text format.

4The Resource Manager service task is to marshal multiple access to DAQ
limited resources to avoid conflicts.

5The Access Manager is an online software security service responsible for
DAQ users authorization. It implements the ATLAS DAQ access policy in order
to prevent corruption of the system functionality by actions performed by non-
authorized persons.

6The ATLAS DAQ Information Service is generally used to share information
between applications in a distributed environment.

The Handle format is built upon the structure of Uniform Re-
source Locators (URL) and its format is

where pmg is simply the protocol identifier, server name is the
fully qualified host name of the machine running the process,
partition is the name of the partition the process is running in,
application is the name of the application as defined by the
Client and id is a unique identity number that is generated by the
Server when the start of a process is requested. Within the scope
of a given partition and given application name, those identities
are monotonically increasing.

C. The Launcher

Each process managed by the Process Manager system is han-
dled by a Launcher. This component is responsible for starting,
monitoring and terminating a single process. The goal of the
Launcher is to have one single component that handles low level
process management. The decision to have the Launcher as a
separate process is motivated by the following reasons.

• In order to launch processes under the identity of arbitrary
users, the program that does the actual launching needs to
run as root. Running a large CORBA-based [3] program as
root would represent a large security risk.

• One requirement on the Process Manager system is to be
able to restart the Server process in case of crash. Reat-
taching the Server to all launched processes would have
been a complicated task, and would imply running the
Server as root because only the root user can wait for an
arbitrary process to exit.

• A small launcher component has less chances of crashing
and offers a better abstraction level. Additionally, the
Launcher is designed to be controlled using simple com-
mand line tools; this means that in case of problems some
cleanup tasks can be done by hand if required.

Each Launcher is responsible for the following tasks:
• start one process with the correct parameters and permis-

sions;
• monitor this process for termination;
• send control signals to the process;
• transmit process status information to the Server.

In order to accomplish its tasks the Launcher binary is installed
in a well known place on the target machine, the binary is owned
by root and has the setuid bit.

IV. COMMUNICATION SCHEMA

Fig. 2 illustrates the process view of the Process Manager
system. The Client sends requests to the Server using CORBA.
The Server and each Launcher communicate using a pair of
named pipes7 (one used by the Server to control the Launcher,
the other one used by the Launcher to notify the Server of
process state updates) and a memory mapped file (the Mani-
fest). Each Launcher is the parent of one process and controls
it using POSIX system calls. The Server interacts with other

7An operating system pseudo-file that offers first-in, first-out semantics.

402 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 1, FEBRUARY 2008

Fig. 2. The Process Manager communication schema.

server processes that implement different online services, like
the Resource Manager and the Access Manager servers. Each
instance of the Launcher contains two threads: one waiting for
the child process to exit, the other one waiting for instructions
from the Server with a blocking read on a named pipe. For each
Launcher the Server has one thread doing a blocking read on a
named pipe waiting for process status updates.

Manifest and named pipes data structures are resident in the
local file system of the host machine.

A. The Manifest

The Manifest file is used both as a means of communica-
tion between the Launcher and the Server and to store infor-
mation about a process (i.e., process and Launcher PID, binary
name, process environment, Handle, status, etc.). Since the file
is mapped into memory it allows the Process Manager system
to share data between the Launcher and the Server in an effi-
cient way. The information stored in the Manifest is used by the
Server to reconnect to running Launchers after a failure.

V. PROCESS STARTING PROCEDURE

In order to create a process, the Process Manager has to pass
via a certain number of phases. Fig. 3 illustrates those phases:

• The Server receives a request from a Client to start a
process;

• The right to launch the process is checked with the Access
Manager;

• Available resources are acquired asking the Resource Man-
ager;

• The Manifest is created and initialized;
• The Server builds the Handle for the process and sends it

to the Client;
• The Client uses the received Handle to create its own data

structures;
• If needed a call-back is registered for the process;
• The Client asks the Server to really start the process;
• The Launcher process is started.

Fig. 3. Flow diagram showing all the phases to launch a process.

VI. PROCESS STATES

A process is represented by the Process Manager as a state
machine (Fig. 4). When a client application requests the start of
a process the process is in the REQUESTED state. If the process
is properly launched then it is in the RUNNING state, otherwise
it goes into the FAIL state. Processes configured to notify the
Process Manager system when they are actively running have
a different path. They first go into the CREATED state. Once
they confirm they are running, they go into the RUNNING state.
If they fail to do so within a certain amount of time, they are
first terminated and then go into the SYNC ERROR state. A run-
ning process can do two state changes. First it can terminate and
go to the EXITED state. Some clients can also request termina-
tion for the process in which case the Process Manager will then
send this process signals to terminate it. When a process termi-
nates because of a signal (either an internal one, like segmenta-
tion fault, or an external one) it goes into the SIGNALED state.
The Process Manager can terminate a process both by sending
signals that the process can ignore and by sending signals that
cannot be masked (like KILL). It is also possible to combine the
former two actions: first sending a TERM signal, waiting for a
defined amount of time for the process to exit and then eventu-
ally sending a KILL signal.

The states represented in Fig. 4 with a gray background are
states that are reported to the client. All states on the bottom line
(FAIL, SIGNALED, EXITED and SYNC ERROR) are “pit” states
that a process cannot leave.

VII. PERFORMANCE AND QUALITY

The process management activity will mostly be high during
state transitions. The design is done in such a way that no com-
ponent needs to do polling. So while there will be many in-

AVOLIO et al.: THE PROCESS MANAGER IN THE ATLAS DAQ SYSTEM 403

Fig. 4. The process state machine.

stances of the Launcher, they will all be blocked waiting for
either their child process to terminate, or some command to be
sent to their control named pipe. The Manifest file will stay small
(32 KB) and data transfer between the Server and the Launcher
will have a negligible impact on performances because of the
shared memory area.

The Process Manager architecture is built to be able to tolerate
the crash of certain elements of the system. If the Server crashes,
it can be restarted. Upon restart, it reads the Manifest files and
resumes processing. Client crashing have a small impact on the
overall system. The only vulnerable element is the Launcher and
for this reason it is designed to be small and simple in order to
minimize the probability of bugs.8

A. Single Host Tests

In order to prove the efficiency and performances of the
Process Manager design implementation some tests have been
accomplished using a single host configuration and disabling
all the connections to external services (i.e., AM and RM). Such
a configuration is suitable for removing any bottleneck due to
the latency of the network connection between the Server and
the Client application and for decoupling the Process Manager
from any other software module. Tests consist of a certain
number of concurrent Client applications (up to 6) asking
the local Process Manager Server to start and terminate very
simple processes.9 To pass the test the Server has to be able to
deal with about 200000 start/kill steady requests without any
failure. The prompt notification to the client applications of any
change in the status of the controlled processes is mandatory.
This kind of test has been successfully passed and an average
time of 0.05 s to start a process, terminate it and dispatch all its

8Anyway the Process Manager system is able to notify the user when, for any
reason, the Launcher terminates while the launched process is still running. In
this case some very low level utilities provided by the DAQ infrastructure can
be used to avoid having dangling processes in the system.

9Here simple refers to processes linking a small number of shared libraries,
so as to minimize their loading time when the process is launched. A basic test
process just sleeping for a given amount of time was frequently used.

status updates was measured.10 No dependence on the number
of already started processes has been noticed. A single Server
did also succeed in managing a large number of concurrent
processes (up to 50).

B. Distributed Tests

This category of tests includes the case of both single and
multiple Clients sending requests to several Servers running on
different hosts. The connections to all the external services are
enabled. The aim of this test procedure is to check the Process
Manager system capability to interact with all the DAQ infra-
structure and its ability to deal with any external service failure.
The Process Manager is requested to distinguish between the
missing availability of a fundamental or accessory infrastruc-
ture component11 and take opportune actions after having no-
tified the client applications. Such tests were performed during
some DAQ system technical runs and detector commissioning
activities exploiting up to 100 different hosts. During all the test
period the Process Manager was able to carry out its tasks in a
proper way.

C. Recovery Tests

To simulate a Process Manager failure the Server is killed
after launching a number of processes, causing the new Server
instance to try and reattach to all the existing Launchers. This
test has always been successful and the new Server has shown
its ability to treat the running processes as if started by itself.

D. System Resource Usage

During all the tests the Process Manager has shown a small
system resource usage. In real life operations the average CPU

10Tests were hosted by a machine featuring two Intel Xeon 5150 CPUs (4
MB internal cache, 2.66 GHz clock and 1066 MHz system bus clock provided
by the Intel 5000P chipset) running Scientific Linux CERN 4.5 (2.6.9 Linux
kernel version).

11Is considered fundamental any service whose failure will not permit to
launch a process (i.e., an RM unavailability could cause the wrong starting of a
process whose used resources could conflict with other running processes). On
the contrary an IS failure does not prevent a process to be safely started.

404 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 1, FEBRUARY 2008

utilization is less than 15% when launching processes12 and is
virtually zero during the running period. The average memory
usage is around 10 MB for the Server and less than 4 MB for
the Launcher.

During the development phase some reliable memory checker
tools (i.e., valgrind [7]) were used to detect memory leaks, ac-
cesses to uninitialised memory and misuse of allocated memory
(e.g., double frees, access after free). All the tests in this area did
not show any memory leak or corruption.

VIII. CONCLUSION

In this paper, the design, implementation and performances of
the Process Manager for the ATLAS DAQ system have been pre-
sented. The aim of the software design has been to realize a com-
ponent able to start, monitor and terminate processes without
any restriction on the process type. Particular attention has been
given to ensure a small usage of the host system resources in
the monitoring phase, when all the DAQ infrastructure is run-
ning and engaged in data taking activities. This is crucial to
avoid performance deterioration of the whole DAQ system (one
Server instance runs on each host). The severe requirements to

12Value measured running one Client and one Server on two separte hosts
(both machine with the same hardware and software configuration as for the
single host tests). The client application continuosly asks the Server to start a
simple process and receives status updates.

fulfil and guarantee stable and reliable operations are justified
by the extreme and basic importance of the process manage-
ment: loosing the control of the running processes will mean
loosing the control of the system. All the performed tests have
contributed to and helped verify the robustness of the current
implementation of the Process Manager: even in case of failure
the arranged procedures allow to recover the control of all the
started processes.

REFERENCES

[1] M. Dobson, M. Wiesmann, and G. Lehmann, Process Manager Re-
quirements, Feb. 7, 2004 [Online]. Available: https://edms.cern.ch/file/
528906/2.4/Requirements2.4.doc

[2] “The atlas collaboration,” ATLAS High Level Trigger, Data Acqui-
sition and Controls Technical Design Rep. CERN-LHCC-2003-022,
CERN,. Geneva, Switzerland, Jun. 2003, .

[3] Object Management Group, Inc., CORBA/IIOP 3.0.3 Specifica-
tion, Mar. 2004 [Online]. Available: http://www.omg.org/docs/
formal/04-03-12.pdf

[4] I. Alexandrov, V. Kotov, and R. Roumiantsev, User Guide and Imple-
mentation of the Resource Manager, Jun. 21, 1999 [Online]. Available:
http://atddoc.cern.ch/Atlas/postscript/Note130.ps

[5] J. E. Sloper et al., Access Management in the ATLAS TDAQ,
Nov. 9, 2006 [Online]. Available: http://doc.cern.ch//archive/elec-
tronic/cern/others/atlnot/CONF/daq/daq-conf-2006-015.pdf

[6] S. Kolos, Information Service User Guide, Nov. 2005 [Online].
Available: http://atlas-onlsw.web.cern.ch/Atlas-onlsw/compo-
nents/is/doc/userguide/is-usersguide.pdf

[7] “The Valgrind developers,” The Valgrind User Manual. Jun. 2006 [On-
line]. Available: http://www.valgrind.org/docs/manual/manual.html

