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Abstract

This note evaluates the performance of boosted decision trees for combining the infor-
mation from different ATLAS b-tagging algorithms into a single jet classifier. The rejection
of light quarks given by boosted decision trees is estimated using a Monte Carlo simulation
of WH and tt̄ events. It is shown that this approach yields significant gains in the rejec-
tion of light quarks with respect to a tagging algorithm based in 3D impact parameters and
reconstructed secondary vertices.
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1 Introduction

The correct identification of jets produced by b quarks is an essential requisite for precision measure-
ments in the top quark sector and searches for the Higgs boson and physics beyond the Standard Model
at the LHC. Several methods for tagging b-jets have been developed in the ATLAS experiment [1]. Addi-
tionally, the information from the most efficient taggers has been combined into joint likelihood functions
in order to obtain better tagging performances than those given by individual taggers. The combination
of tagging methods using a neural network approach was also contemplated [2].

Boosted decision trees is a learning technique first introduced in High Energy Physics by the Mini-
BooNE experiment. It was reported [3] that particle identification with boosted decision trees has better
performance than that with neural networks, in a Monte Carlo simulation of MiniBoone data. Sub-
sequently, it has been applied to the search for radiative leptonic decays B → γ lν at BABAR [4], for
detecting the first evidence of single top quark production by the D0 collaboration [5], and it also was
proposed for supersymmetry searches at the LHC [6].

Boosted decision trees can be applied to any classification problem and have shown better per-
formance than feed-forward neural networks for tagging b-jets in a toy Monte Carlo simulation of
WH → lνqq̄ events [7]. This note evaluates the performance of boosted decision trees for combin-
ing the information from different ATLAS b-tagging algorithms into a single classifier. A comparison
with the performance of a tagging algorithm based in 3D impact parameters and reconstructed secondary
vertices is presented.

2 Boosted decision trees

The boosted decision tree algorithm consists of a set of decision trees. Initially, all jets are given the
same weight w(0). After a tree is built, the weight of each jet is changed according to its classification
given by the tree. The final classification of a jet is a weighted average of the individual classifications
over all trees. A decision tree consists of a set of binary splits in the data. The algorithm begins with
a parent node containing a training set of b-jet and u-jet patterns. Then, the algorithm loops over all
possible binary splits in order to find the discriminating variable and corresponding separation value that
optimizes a given figure of merit. This procedure is then repeated for the new daughter nodes until a
stopping criterion is satisfied.

A node is called “signal node” if the sum of the weights of b-jets is greater than the sum of the
weights of u-jets. Otherwise, it is called “background node”. A b-jet (u-jet) is correctly classified if it
lands on a signal (background) node. If p designates the fraction of correctly classified jets in a node,
its Gini index is defined to be Q(p) = −2p(1− p). The optimal discriminating variable and separation
value are the ones which maximize the figure of merit

Qsplit =
wLQ(pL)+wRQ(pR)

wL +wR
, (1)

where wL and wR are the sum of the jet weights in the left and right daughter nodes, respectively, and
Q(pL) and Q(pR) are the Gini indices of the left and right daughter nodes. A node is not split if the
optimal Qsplit is smaller than its own Q(p), or, alternatively, if it contains less events than a prespecified
limit. Unsplit nodes are called “leafs”.

After the kth tree is built, the jet weights are updated. There are several methods to accomplish this.
Here, we will consider the AdaBoost algorithm [8]. First, the total misclassification error εk of the tree,
defined as the sum of the weights of misclassified jets over the sum of the weights of all jets, is calculated:

εk = ∑
imiss

w(k)
i /∑

i

w(k)
i , (2)
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where i loops over all jets in the training sample. Then, the weights of misclassified jets are increased
(boosted)

w(k+1)
i =

w(k)
i

2εk
, (3)

while the weights of correctly classified jets are decreased

w(k+1)
i =

w(k)
i

2(1− εk)
. (4)

Finally, the tree k +1 is constructed using the new weights w(k+1).
After K trees are trained their performance can be evaluated with a test sample of jets. The final

classification of jet i is a weighted sum of the classifications over the individual trees

Fi =
K

∑
k=1

log
(

1− εk

εk

)

f (k)
i , (5)

where f (k)
i = 1(−1) if the kth tree makes the jet land on a signal (background) leaf. Therefore, signal

(b-jet) patterns will have large positive scores, while background (u-jet) patterns will have large negative
scores. Also, trees with lower misclassification errors εk are given more weight when the jet classification
is calculated. Further details of the boosted decision tree algorithm employed here can be found in [9].

3 Monte Carlo simulation

The analysis described in this note was performed with Monte Carlo data samples produced in the frame-
work of the CSC production using a full simulation of the ATLAS detector with Athena 12.0.X. The
detector geometry tag was ATLAS-CSC-01-02. The following physics channels were considered:

• WH → lνlbb̄ with mH = 120 GeV/c2 (5850 CSC sample).

• WH → lνluū with mH = 120 GeV/c2 (5851 CSC sample).

• tt̄ → bb̄lνl j j with mt = 175 GeV/c2 (5205 CSC sample).

The WH samples were produced with the PYTHIA generator [12], while the t t̄ samples were gener-
ated with AcerMC [13]. The parton distribution functions of the protons were described by CTEQ6L and
both initial and final state radiation were included in the simulation. For the reconstruction of jets, the jet
cone algorithm with ∆R =

√

(∆φ)2 +(∆η)2 = 0.4 was considered. Only jets with transverse momentum
pT > 15 GeV/c and pseudorapidity |η | < 2.5 were selected. The association between reconstructed jets
and partons is based on the ∆R distance between the jet and the parton. A jet is matched to a parton if
∆R < 0.3. Events without a reconstructed primary vertex were rejected.

4 ATLAS tagging algorithms

Tagging techniques exploit specific properties of B-hadrons to differentiate them from the large back-
ground of jets produced by light quarks and gluons. The long lifetime of B-hadrons results in displaced
vertices formed by tracks from their decays. Also, tracks from B- and D-hadron decays typically have
large impact parameters. In a different approach, soft-lepton tagging searches for low transverse mo-
mentum leptons inside jets, originating from semileptonic decays of B-hadrons.
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The most developed approaches for tagging b-jets at ATLAS are based on the impact parameter of
tracks and reconstructed secondary vertices [1]. The impact parameter based tagger, assigns to each jet a
weight defined as the sum over all tracks in the jet of the log ratio of the likelihood functions for a track
to belong to a b-jet and to a light jet. These likelihood functions are obtained from impact parameter
distributions. B-jets will typically have large positive weights when compared with light jets. The sec-
ondary vertex based tagger [14] performs an inclusive vertex search in order to find displaced secondary
vertices from B- and D- hadron decays inside the jet. After secondary vertices are reconstructed, several
discriminant variables are built from their properties. These discriminant variables are taken from the
SV1/SV2 vertex reconstruction algorithm. The information from taggers based in soft muons [10] and
soft electrons [11] was also considered. Additionally, other variables show some discriminating power
such as the largest transverse and longitudinal impact parameter significances of tracks in the jet, the
largest transverse momentum of tracks in the jet and the transverse momentum of the jet. In order to
obtain these discriminant variables only tracks with pT > 1 GeV/c and ∆R distance relative to the jet axis
smaller that 0.4 are considered. Note that, because in the node splitting procedure only the best discrim-
inating variable is selected, boosted decision trees are insensitive to the inclusion of variable with weak
discriminating power, while the training time only scales linearly with the number of input variables.
The boosted decision trees were fed with the following list of input variables:

• IP2D: jet weight from transverse impact parameters.

• IP3D: jet weight from 3D impact parameters.

• SV1: jet weight from secondary vertices.

• SV2: jet weight from secondary vertices.

• SVBU: jet weight from secondary vertices.

• lhsig: combination of jet weights IP1D, IP2D and SVBU.

• weight: combination of jet weights IP3D and SV1.

• softm: soft muon based tagger.

• softe: soft electron based tagger.

• mass: mass of the particles which participate in the vertex fit.

• efrc: ratio between the total energy of particles in the vertex and the total energy of all charged
particles in the jet.

• n2t: number of two-track vertices.

• ntrk: number of track in vertex.

• largest transverse impact parameter significance of tracks in the jet.

• largest longitudinal impact parameter significance of tracks in the jet.

• largest transverse momentum of tracks in the jet.

• jet transverse momentum.

• multiplicity of tracks in the jet.
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5 Results

Boosted decision trees (BDT) were implemented using the StatPatternRecognition package [9]. The
reader is referred to the StatPatternRecognition manual for a comprehensive description of the algorithm
employed here. The boosting of the jet weights was accomplished using the AdaBoost algorithm [8].
The trees were fed with the 18 discriminant variables mentioned in the previous section.

5.1 WH events

The decision trees were trained with a training sample consisting of 15000 b-jet patterns and 50000
u-jet patterns, obtained from the W H → lνlqq̄ data, with qq̄ = bb̄,uū. The best results were obtained
with a minimum number of jets per leaf of about 7000 and no significant improvement in the tagging
performance was observed after one hundred tree iterations. An unbiased evaluation of the boosted
decision trees performance is obtained using a distinct sample of b-jet and u-jet patterns (test sample).

BDT score
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-310

-210

-110

Figure 1: Normalized distributions of jet scores given by the boosted decision tree algorithm. The solid
(dashed) line corresponds to b-jets (u-jets).

Figure 1 shows the distributions of jet scores, normalized to be within the interval [0,1], given by
the boosted decision tree algorithm for a test sample of b-jets (solid line) and u-jets (dashed line). The
distribution of b-jet scores shows a sharp peak at the value 1. On the other hand, the distribution of u-jet
scores exhibits a smoother shape. Jets with a score above some specified threshold value are tagged as
b-jets. The threshold value is contingent on the desired efficiency for tagging b-jets εb = Ntag

b /Nb, where
Nb is the number of b-jets in the data and N tag

b is the number of tagged b-jets, or, alternatively, on the
tolerated level of contamination by light jets.

The black dots in Figure 2 show the light jet rejection Ru = ε−1
u as a function of the b-jet selection

efficiency, given by boosted decision trees. For comparison, the rejections given by a b-tagging algo-
rithm based in 3D impact parameters and reconstructed secondary vertices (IP3D+SV1) are depicted as
gray squares. One can observe that the performance of both approaches are similar for high b-tagging
efficiencies. However, for smaller efficiencies BDT outperforms IP3D+SV1. For a b-tagging efficiency
of 60% the light jet rejection given by BDT is about 50% higher than that given by IP3D+SV1.

5



bε
0.5 0.6 0.7 0.8 0.9 1

u
R

0

100

200

300

400

500

600

Figure 2: Light jet rejection as a function of b-jet efficiency for W H → lνqq̄ events, given by boosted
decision trees (black dots) and IP3D+SV1 tagger (gray squares).

5.2 tt̄ events

The trees were also trained with 50000 b-jet patterns and 50000 u-jet patterns, from t t̄ → bb̄lνl j j events.
Again, the best performance of BDT was obtained with a minimum number of jets per leaf of about
7000 and 100 trees. Figure 3 shows the results for a test sample of jets from t t̄ → bb̄lνl j j events. For a
b-tagging efficiency of 60% the light jet rejection given by BDT is about 45% higher than that given by
IP3D+SV1.

Also of note is that the performance of both BDT and IP3D+SV1 is lower in t t̄ events with respect
to W H events. For a b-tagging efficiency of 60%, the light jet rejection of BDT (IP3D+SV1) in t t̄ events
is about 15% (7%) smaller than in W H events. On the other hand, the performance of both algorithms is
expected to be better in t t̄ events because in this channel the jets are more central than in WH events. The
reduced performance of the algorithms in t t̄ events may be attributed to the contamination of light jets by
heavy flavour, which is more frequent in the high jet multiplicity environment of t t̄ events [1]. In order
to corroborate this hypothesis a “purification” cut was imposed on u-jets in t t̄ events: only u-jets without
a heavy quark within a ∆R < 0.8 distance are selected. Figure 4 shows the light jet rejections given by
IP3D+SV1 and BDT when purified u-jets are considered. It can be observed that, after purification and
for a b-tagging efficiency of 60%, the light jet rejection in t t̄ events given by IP3D+SV1 is increased by
about 40% and the light jet rejection given by BDT is increased by about 65%. Furthermore, the light jet
rejection given by BDT is about 70% higher than that given by IP3D+SV1.

Finally, the performance of BDT for t t̄ events when the algorithm is trained with W H events was
also studied. For a b-tagging efficiency of 60% one finds that, when the training is performed on WH
events, the light jet rejection in t t̄ events is decreased by about 20%. For purified light jets, the light jet
rejection is decreased by about 25%. The reduction in the performance of BDT is expected since the
algorithm was trained to learn a different pattern. Still, the performance of BDT in t t̄ events trained with
WH events is about 20% higher than that of IP3D+SV1. For purified light jets the performance of BDT
is about 25% higher than that of IP3D+SV1.
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Figure 3: Light jet rejection as a function of b-jet efficiency for t t̄ events, given by boosted decision trees
(black dots) and IP3D+SV1 tagger (gray squares).

6 Conclusions

The performance of boosted decision trees for tagging b-jets at ATLAS was evaluated using a sample
of WH → lνlqq̄ and tt̄ → bb̄lνl j j Monte Carlo events. The results show that boosted decision trees
outperform the IP3D+SV1 tagger. For the W H channel and for a b-tagging efficiency of 60%, the light
jet rejection given by BDT is about 50% higher than that given by IP3D+SV1. For the t t̄ channel the
light jet rejection given by BDT is about 45% higher than that given by IP3D+SV1. When purified light
jets are selected, the light jet rejection given by BDT in t t̄ events is about 70% higher than that given by
IP3D+SV1
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