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I. Intrdduction

When two bunches pass through one another with a crossing angle
at the collision point, the transverse kick which a particle receives
due to the space charge force produced by the incoming bunch is a
function of not only its transverse position but also its longitudinal
position. The longitudinal momentum is also changed by the amount
given by the projection of this kick into the longitudinal coordinate.
This mechanism which couples the betatron and the synchrotron motions
excites a synchro-betatron resonance when the betatron tune vx and

the synchrotron tune Vg satisfy the condition:

v +qv =n
PV q 8 !

where p, g, and n are integers. This effect has limited the luminosity

of the storage ring DORISI).

The synchro-betatron resonances including ones driven by other

mechanisms were investigated quite thoroughly by Piwinskil) using

both analytical methodsz)
main characteristics of the resonance effects were derived by him from

and computer simulationsa). Some of the

the Hamiltonianz), and agree with the results of computer
simulations. However, since the final form of the Hamiltonian is hard
to calculate numerically, the dynamics of particle motion was studied
only by tracking particle trajectories.

3) show that in spite of a

The computer simulations for ‘DORIS
relatively small tune shift parameters £ = 0.01, betatron motion can
reach an amplitude more than 50% larger than the initial value, and
particle trajectories look quite periodic. The width of most
resonances is very small (< 0.001) compared to the spacing between
resonances. These observations imply that the essential nature of the
synchro-betatron resonance is not governed by chaotic behaviour due to

e.g. resonance overlap, but is just due to single resonance effects.



Remembering this, we will analyse the synchro-betatron resonance
due to a crossing angle using the Hamiltonian and the single resonance
model. Since the other transverse plane which does not have a crossing
angle plays no important role in the matter, we restrict our problem
to the two—dimensional system. In addition, we limit our treatment of
the beam—beam interaction to the "strong—weak" case, namely, only the

particles in the weak beam are perturbed by the beam—beam force.

The plan of the paper is as follows. In Sec. II, by the canonical
transformations and some painful algebra, we will derive the
Hamiltonian in a form computable easily and quickly. We pick up a
single resonance from the Hamiltonian in Sec. III, assuming that the
tune is very close to that resonance. Some characteristics of the
resonance effect derived by Piwinski are rederived there. We will find
a constant of motion at this stage, thus reducing the problem to
one-dimension. The statics and the dynamics of particle motion are
discussed in Sec. IV and V. The theory is compared to computer
simulations for the DORIS. In Sec. VI, we try some qualitative
discussions about the equilibrium particle distribution eventually
obtained in the presence of the resonance, but the radiation damping
and the quantum excitation are not included, so that treatment is

limited to-a proton beam. We conclude the work in Sec. VII.

II. Hamiltonian

4)

The starting point is the well-known Hamiltonian

2
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where U(x + %BA¢) is the potential of beam—beam force at a crossing
angle 2a. The successive collisions are expressed by an infinite

series of 8-functions. For simplicity only one collision per



revolution is assumed. Here x is the transverse coordinate which has a
crossing angle, and Py is the canonical momentum conjugate to x. The
other transverse coordinate which does not have a crossing angle, and

hence does not contribute to the synchro-betatron resonance, is

ignored.

The symbol A® representing the synchrotron coordinate is the rf
AE

phase angle relative to the synchronous phase ¢s. We have W = — -
0%

as the canonical momentum conjugate to A® where AE is the

energy deviation from the centre energy. All the other notations are as

follows:
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= elementary charge

< ®
i

= rf voltage
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average radius.

The form of U depends on the particle distribution of the strong

beam. Assuming a Gaussian distribution, U is written as 2)
2 _uz
g z 1 202
U(z) = 8wk (T Io u (1 -e ) du (2.2)

X

*
where £ is the beam—beam parameter, Bx is the beta-function at

the collision point, and o is the effective standard deviation of

the transverse bunch size given by
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o=, 02 +ato? (2.3)

where o, and o are the standard deviations of beam size in
the collision point for the transverse and longitudinal direction,

respectively.

We change the independent variable from s to the angular position

© defined by

) (2.4)

and the Hamiltonian is multiplied by R. The summation of &—functions
1

can be Fourier expanded using the property 8(ax) = T;TS(x) and
Poisson's formula;
o [+ ] .
§ 8(s - 2mRn) = == § e i2mkO (2.5)
- 27R
n=—o k=—o

Now, we transform to action-angle variables (Vx, Ix' Ws‘ Is) through

a canonical transformation using the generating function

P eyt tan ¥ - 2 X 2
G = 2h7[nlwg (Ad)2 tan s zax tan (Nx+ Vx) + Bx X (2.6)
with
_ (S ds _
W, = fo 5 vo . (2.7)



The old and the new coordinates are related by

%

X = (ZBxIx) cos(wx + Yx) , (2.8)
21x %

P, =~ (E;—) [ax cos(wx + Wx) + sin(wx+ Wx)] , (2.9)
2h2|nlw,

A = (—-;E;;-— Is) cos‘i’s , (2.10)

Zchs | I
W = - (F;TET;: Is) 81n‘{’s . | (2.11)

The new Hamiltonian is

H = vxIx - vsIs + H1 (2.12)
with
_ * _ % 2nlR . % 1 & —i2nké
H1 = U((ZBx Ix) cos(wx+ Vx) + a( Bv Is) cosYs) * o T e .
8 k=—wo
(2.13)

The case above transition energy is assumed here.

The potential U is difficult to handle as it is in the integral
form. In order to work out the integration, we expand the exponential

in polynomials, putting off the problem of slow convergence. We obtain

1
gwtoz 2 ()™ 2n
U= Bt ] E . o (axcos(wx + Yx) + @ cos Ys) , (2.14)

where we used the abbreviation

1

R SRS
= vio (ZBxIx) (2.15)

and
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s ~ Jy20

Furthermore we expand each term (ax cos(wx + Yx) + @

(2.16)

2n ,
s cos?s) into a

normal binomial series, when we notice that we can rearrange the whole

series as follows (see Appendix A-1):

O [+ ]
_ 8wEo? 2m 22
U= B [ E E 3 rm 2(2+m) ng(mxcos(wx+ Yx)) (mscosvs)
X m=o0o =0
o @® .
Ty y2m—1 22~
L L B 2eme1)Ganea (G0t UF K0T (agcosY)
(2.17)
where ncm is the binomial coefficient:
c_ _ n!
nms= (n — m)! m! (2.18)
and
-1 n+1
a = L——%————— (n>1)
n n! 2n
=0 (n = 0) (2.19)
The multipoles of the cosine—function are also expanded using the
formulae
2n 1 "ol 1.C
cos = [ I 2n"rcos(2n-2r)+ > 2nn) , (2.20)
2n-1 2
2 r=o0
2n-1 1 n c
cos 0= T Y 2n+l “r cos(2n - 2r + 1)© (2.21)
2 r=o

If we rearrange the resulting quadrupole summation in order of the

resonances, after painful algebra (see Appendix A.2) we finally get

1

1,



_ 2wEo? :
V] [Foo(mx, ms) + ) qu (ax,as)cos(p(wx + Vx) + qu)] ,

= 3%
X ~o¢p, <o
(2.22)
where
° © aZm G?Q
_ Jpl _lal X 3
pa~ % % L I by o lel+ldl ot @ oD
m=o0o 2 =o0 2
(2.23)
with
n+l
n 0 2n-1
nen! 2
=0 (n = o) . (2.24)

The prime in the summation mark means that p = ¢ = o term is excluded
from the summation and p + g must be even. The second constraint on
the combination of p and ¢ follows from the symmetry of the

potentialz)

U(z) = U(-z) . (2.25)
This can easily be seen by looking at the structure of Eq. (2.17)
where no polynomial is multiplied by the polynomial of different

polarity of the other coordinate.

By combining the cosine terms with the Fourier series in © in
Eq. (2.13), the perturbation Hamiltonian can be written as

2

x

]

g
QGHJQ

[Foo(ax, ms) + 3! qu(ax, as)cos(p(wx + Vx) + qWS - kO)] .
—o<p,q, k<o (2.26)

It should be pointed out that the Hamiltonians so far are all "time
(© here)" — dependent because of the explicit © dependence.



III. Single resonance

Now, suppose that the tune v, and v are very close to the

values which satisfy p;x— qzs = k, we pick up only the slowly vary-

ing term, and drop all other fast-oscillating terms which even out
over a few turns. This can be done by moving to coordinates which
rotate in each phase space with the tune ;x and 33 by applying a
canonical transformation whose generating function is

G = Ix(Yx+ wx - vxe) + Is(‘rs + vse) .

The new set of action—angle variables are:

Ix=Ix'

¥ =¥ +W -v0,
X X X

I =1 ,

s s

¥ =¥ +v6

s s 8

The Hamiltonian becomes

where

_ ko2 ¥ v ¥
H, = B§ [Foo(ax,ms) + 2cos(p‘l’x + q?s) qu(mx,ms)] ,

and

§ =v. -v (¢ =x, or s)

(3.

(3

(3.

(3

(3.

(3

.2)

.4)

5)

.6)

.7)



This Hamiltonian is now a constant of motion, that is, there is
no explicit time-dependence. If we can find another constant of
motion, the problem is solved in the sense that the particle motion is
completely predictable with those two constants of motion as

5)

parameters ‘. Such a system is called integrable mathematically. In

2)

fact, the second constant of motion is found already by Piwinski
If we calculate Hamilton's equations for Ix and Is, it turns out
that the following combination of Ix and I8 is conserved.

d_

g6 (—al, +pI) =0 . (3.8)
We define this constant of motion by

C=- qu + pIs .(3.9)

The problem is now no longer two—dimensional, but only one-dimensional. The

new single set of variable coordinates is the coupled variable
J = pIs + qu , (3.10)

and the slow phase

pr + d?s
‘Y:—"é-p—q—— (3.11)
The canonical transformation with the generating functions)
G = [I(p¥, +a¥)) - C(p¥ —a¥ )1/2pq (3.12)

yields the one—dimensional Hamiltonian

2
H, =J6_-C8 +& %§ [Foo(3.C) + 2 cos (2pa¥)F  (3,0)]1 ,  (3.13)
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where

[~

8
(31:—'%) : (3.14)

i+
Nl

The canonical angle Yc conjugate to C which does not appear in the

Hamiltonian is

h? - dﬁ
\rc:——-—g—b-a——i . (3.15)

Before going to the dynamics problem, let us repeat the remark

pointed out by Piwinski on the sum and the difference resonances!) -
In the (vx, vs) tune diagram, the lines of difference resonances run
diagonally with positive slope, while in the normal difference
resonances occurring between the two transverse oscillations, those
lines run with negative slope. Therefore when the "difference" of the
tunes becomes integer, the "difference resonance" is excited. This is
simply due to the fact that the direction of synchrotron oscillation is
contrary to the betatron oscillation above the transition energy. The

minus sign in front of vsin Eq. (2.12) appears for this reason.

IV. Statics

We introduce some functions7) and fixed points in the phase
space from the Hamiltonian Hc of (3.13). The equations of motion are

given by

dJ ch o2

b= = 4pgk E;’—(.(' sin (qu‘l‘)qu(J,C) , (4.1)
oH oF oF

a¥ _ ¢ _ g2 r_0o0 - B

B3 = §_ + & Br [ 37 * 2cos (2pqg¥) 37 1 . (4.2)
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The second term in Eq. (4.2) defines the nonlinear detuning term

v(JC)—Eg"z'?f'QQ | (4.3)
a(7:C) = &% 33 :

X

which gives the change of tune with amplitude J, and is the same for
all the resonances. At zero amplitude, the tune shift is £, and then
monotonously decreases to zero as the amplitude increases. The third

term in Eq. (4.2) gives the resonance width in tune units:

52 OF
v (30 =2 & §§ —5§9 . (4.4)

Thus, the effective tune of a particle with a certain amplitude J is

i i -+
within % qu(J,C) around 8_ + vNL(J,C).

The fixed points of motion are obtained by the conditions

dl _d¥
de “de = © (4.5)
which lead to
sin (2pg¥) = O (4.6)
and
6_ + vNL(J,C) + cos(quV)qu(J,C) =0 . (4.7)

Of the solutions for Eqgs. (4.6) and (4.7),

Ipl + lal
cos(2pq¥) = (-1) 2

gives the unstable fixed point Ju' while
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Ipl + lal
S+ 1

cos(2pg¥) = (~1)

gives the stable fixed point Js.

A few comments can be made on these quantities using practical
machine parameters of the DORIS which are listed in Table I. They are

the same as used by Piwinski3)
calculated from the partial derivatives of Foo with respect to

. The nonlinear detuning term can be
a and @ :
X s

da OF oa_OF
00 3 00 ]

_p o2 X
v (3.6 =& % L 37 et e

C = const
® ® b m

_ 1 m+ s 2s 2(m-1)
=& 2q ) ) s1z miz %5 Oy

s =0 m=1

az[n]R . 1 < @ byt 2(s-1) _2m
+ Bv * E; ) ) sl2 m!i2 & Ty ]
s s=1 m=20 ) !
(4.8)

The factor a2 Ian/Bvs for DORIS is about 1/300, and therefore

the second term is negligibly small compared to the first term. The
solid line in Fig. 1 shows the detuning curve in units of £, while
the broken line shows the contribution of the second term to it, from
which the statement above can be confirmed. Attention should be paid
to the point that the detuning function starts from the value slightly
less than 1, since there is detuning due to non-zero synchrotron

amplitude.

The order of magnitude of Ix is usually much smaller than that
-2
of Is : Ix/Is ~ 10 for the DORIS parameters. Doubling
the transverse beam size causes only 2% change in the synchrotron

8,9)

amplitude. The situation is similar to the flat-—beam case where
the vertical emittance is an order of magnitude smaller than the
horizontal one, however, the ratio is still an order of magnitude
bigger than the present case. Speaking from the view of analogy with
thermodynamics, the transverse motion can be said to be in the system

which is in "thermal contact" with the isothermal sysfem of
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synchrotron motion, and can absorb the energy from these without
perturbing it. The synchrotron amplitude is kept almost constant in
the dynamic motion, and thus practically, giving a constant of motion

C makes the same sense as fixing a synchrotron amplitude.

From the arguments mentioned above, we can demonstrate what
follows on the sum and the difference resonances which have the same
combination of p,q and k, but different sign of g. First, since the
second term in Eq. (4.8) is negligible, the amount of detuning for the
sum resonance is as big as for the difference resonance. In the
flat-beam case, onea) expects the cancellation of the two terms of
Eq. (4.8) for a coupling resonance pq ¢ O which yields the weaker
detuning, and hence allows a particle to stay in the resonance up to

large amplitude, but this is not the case. Besides, since the function

Fpg which specifies the strength of the resonance pVy — qVg = k

does not depend on the sign of p and g (see Eq. (2.23)), the same
argument can be made for the resonance width. One arrives at the
conclusion that the funétions and the fixed points introduced here are
nearly identical for the sum and the difference resonances. In the
next section, we study the dynamical motion of particle to estimate
the maximum amplitude which will furn out to be almost the same again

for the sum and the difference resonances.

V. Dynamics
The Hamiltonian H. for the resonance 5v4 + Vg = 31 can be

plotted as a function of J or Ix as in Fig. 2(a). The higher (lower)
curve shows the cos(2pq¥) = 1 (~1) case. The top of the higher

(lower) curve corresponds to the amplitude JS(JU) of the stable
(unstable) fixed point. The tunes here are: 8x = - 0.0014, and

8s.= 0. The dot—dash line below the horizontal axis shows the
unperturbed part J§_ - C&+ which is equal to Ixsx for

the present parameters. It should be noted that this term is no longer
entirely much larger than the perturbation term, on the contrary, it

can be smaller than that. This is because our reference system is now
rotating with the resonance tune Vv, and Vg4, and the rotational
energy of a particle is quite small. As going to larger amplitude, the

perturbation term gets smaller, reflecting that the beam—beam kick

becomes weaker, and the above two solid curves asymptotically merge to

the lowest dot—dash line.
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Since the Hamiltonian is a constant of motion, a particle moves
on the straight line of constant Hc within the range limited by the
6,7)

cos(2pq¥) = £ 1 curves
Jo,, changing the initial phase ¥, means giving a different

. For a fixed initial amplitude

Hamiltonian. If the initial phase is taken such that the Hamiltonian
becomes HA in Fig. 2, the particle motion can reach the large
amplitude beyond the unstable fixed point, while in the case of
H,.=H

C B’
region. The physical pictures may be understood by looking at their

the particle trajectory is limited within a narrow

trajectories in the J,¥ phase space shown in Fig. 3. As obvious on
inspection of the figures, the maximum amplitude Jmax for a particle
with the initial amplitude smaller than Ju is obtained when the
initial phase is chosen so that the line of constant Hamiltonian is
tangential to the top of the cos(2pg¥) = -1 curve as the solid line
Hu of Fig. 3. In other words, this is when the initial position of
particle is put on the trajectory which passes through the unstable

fixed point.

The maximum amplitude Jmax is common for particles with the
amplitude being within Ju and Jmin which is determined by the left
intersection of the constant Hu line and the cos(2pq¥) = 1 curve.
If the initial amplitude is smaller than Jmin‘ the particle motion
has no way to be enhanced to reach the large amplitude region, and
stays on the trajectory which is somewhat distorted from the
unperturbed one. All the points Ju' Js, Jmax' and Jmin dependA

on the tune §,. (In what what follows, we always suppose 845 = 0).

When stl is small, the initial amplitude J, is smaller
than Jmin‘ and enhancement of the trajectory is limited, as shown in
Fig. 4(a). At a certain I8x| = 8*x, J, coincides with
Jmin‘ and the maximum enhancement is obtained (Fig. 4(b)). As
l8x| increases further (Fig. 4(c)), Jmax becomes smaller and

smaller, and is approaching J,.

The solid line of Fig. 5 shows the calculated maximum amplitude

X in the real space versus the tune v_ for the resonance 5v_+ v_= 31.
max X X f0)

It is in excellent agreement with the result of computer simulation
which is expressed by the broken line. Both curves show the triangular

shape as one can expect from the argument above. The maximum ampli-
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tudes X calculated for some other resonances are tabulated in

."max.cal.

Table II with the results of simulations XMax.sim.

Agreement is quite good. Listed are the tunes which give the maximum

for comparison .

value of the maximum amplitudes among other tunes, and those for the

calculations agree with those for the simulations.

This good agreement indicates that the single resonance model is

quite sufficient for synchro-betatron resonances.

This conclusion validates one advantage of the present
Hamiltonian analysis, compared with the computer simulation. Namely,
once the functions FOO(J,C) + 2qu(J,C) are calculated, the total
Hamiltonian for any tune can be obtained simply adding up the J8_ - C8+
term which is just linear in J. Then for a particle with any given
initial amplitude, its maximum amplitude can immediately be computed
as well as its variation with tune, by changing only the linear term.
This may help to save computation time, particularly in the case which

requires a very large number of revolutions as for a proton beam.

One thing to be noticed here is that the maximum amplitude for
the sum resonance.is as big as that for the difference resonance. This
is because the Hamiltonian curves as shown in Fig. 2 are similar for
both resonances due to qu which is independent of the sign of p and
. Therefore it is not true that the difference resonance is more
dangerous than the sum resonance in the sense that the former can
distort the particle trajectory much more than the latter, unless the
Hamiltonian curves are so flat that a slight difference of the curves

causes a large difference of the maximum amplitude reachable.

VI. Equilibrium particle distribution

So far we have seen that it is possible to have a large
enhancement of particle orbits which is, however, not directly linked
with particle loss, or emittance blow~up11). One might think that
since particles, particularly in the tail, can now reach the large

amplitude, they may hit the physical aperture, and then be lost, or
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the new emittance defined by the new maximum amplitude may be

enlarged. However, if all the particles in the tail move to the core

as a result of resonance effect, it is possible that there is no

particle left on the orbit which can reach the large amplitude, hence

neither particle loss, nor emittance blow-up happen. We need to

examine the change in the particle distribution.

The equilibrium particle distribution in the presence of the

beam—beam effect and the synchrotron radiation effects has been
studied by Kheifetslz) 13) 14). They start
with the Fokker-Plank equation, and thus the solution can be

, Ruggiero and others

determined uniquely, independently of the initial distribution. It has

not yet been possible to include the synchrotron oscillation into the

formalisms.

Here we do not take into account the radiation damping nor the

quantum excitation, for simplicity and for spotlighting the pure

effect of synchro-betatron resonances. This is a good approximation

for a proton beam, and recalling the assumption of a Gaussian

distribution for the "strong beam", the system under consideration

corresponds to that of an ep storage ring.

In the system which is described by the Hamiltonian, the particle

distribution A obeys Liouville's theorem:

M G, U,y B, M
00 oy oJ c oY, oc
where the dot denotes the derivative with respect to ©. We are

interested in the equilibrium distribution achieved after many

revolutions, which satisfies

3l

e =9

Since the derivatives satisfy Hamilton's equations, we have

(6.1)

(6.2)
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., Al=0, (6.3)
where the bracket is the Poisson bracket. Classical mechanics says
that A which satisfies Eqg. (6.3) must be a function of the

Hamiltonian or constants of motion, i.e.
A=AH_, C) . (6.4)

We find that A is a function only of ¥, J, and C. The function A

is normalized such that

IIff A dJd¥dCd¥ = Ne (6.5)

where N is the number of particles in a bunch. From the mechanics

theory, we can impose no more constraints on A.

Let us try other methods. Although £ is a small number, since
the unperturbed term J§ - c8+ is not necessarily larger than
the perturbation part, we cannot solve Eq. (6.7) in terms of the
perturbation method using £ as an infinitesimally small perturbative

parameter. However, if we consider the case where

o2
28 §§ qu

is smaller than the other terms as seen from Fig. 2, we notice that
Hc can be divided into two parts according to the order of magnitude

as
J§ - C8§ o’ 28 % 2pGY¥)F
HC - - ++ E B;(. 0o + g B;’: COS( Pq ) pg
A\ p— J/ \ yp— /
= K, (3. C, E) + K, (3.C, ¥, E),
(6.6)
where

K, >> K . (6.7)
[+] 1
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The Y dependence is only in the K, term. The particle
distribution function can be Fourier expanded in the J,¥ phase space

because of the periodicity in ¥ with period 2w as

A=N7,(J3,CE) +
n

cos(qunW)Acn(J,C,ﬁ)
1

He~e

+ sin(qunW)Asn(J,C, £y . (6.8)

1

[ W]

n

The ¥ dependence is introduced to A only by the K, term, so that
is of the same order as ’ g% . With

the ratio e = , g%ﬁ , C=cors
this e as perturbative parameter, we can develop the perturbation
theory. The cost that we pay for this change of perturbative parameter
is that Ny (J.C,E) now depends on £, and an unknown function differing
from the initial distribution. However, A,(J.C,E) is supposed to be
about the initial distribution Ay(J.C, & = 0), for in the laboratory
system the nonlinear detuning due to beam-beam effect is small compared
with the tune V., SO that the particle distribution cannot change much

due to such a small perturbation.

For a while we turn our attention to the transverse distri-

bution which is given by the projection of A into the transverse

phase space:

fx = [ Ad Ides . (6.9)

If we perform the integration with respect to Ys, the ¥
dependent parts of A drop out, and we find that fx is a function

only of Ix :

fx = fx (Ix) = 21rJ'A°cIIs . (6.10)
The physical reason for this is that any Wx can produce the same
Y with a suitable Ys, and hence the ¥ dependence of A in the

J.¥ phase space is averaged in the Ix'vx phase space. After

all, it is A, (J,C,E) which we have to know.
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We give up trying to solve A, (J.C,E) exactly, but we will
qualitatively discuss how Ay (J,C,E) "should look" in the
presence of a resonance. Substituting Eqs. (4.1), (4,2) and (6.8) into
Eq. (6.1), we have

ol o oA o oA

28 g2 sin(2pq¥)F [—~2 + ¥ €hn cos(2pgn¥) + % 20 sin(2pgn¥)]
Bt pgq-9J nei oJ el oJ

[« 1]
+ (6_ + vNL(J.C) + cos(quW)qu) o (~ nzl n Acn sin(2pgn¥)

+ ¥ n Asn cos(2pqgn¥)) = 0.

Multiplying sin(2pq¥), integrating over ¥, and keeping only

the linear term in e, we obtain

an
- —2k = a2 -2

where
Sy(T.C.E) = 6_+ v (J.C.E) . (6.13)

The higher harmonic terms Acn and Asn turn out to be the order

n
of e .

For J much smaller than Jf, the zero of 8N(J,C,5), which
is situated between the unstable and the stable fixed points, 8N

is the same order of £ (see Eq. (4.3)).

ah, an,
1 ,
If (53--—)g = ~ (53—)5 =0 " O(T; + f;) , A1 is much smaller than A,.

As the amplitude goes close to J_., the denominator becomes close to
zero, and A, diverges to infinity even if F_ is small. In

reality, A, cannot be bigger than ,, otherwise the number
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’ *
of particles becomes negative at the phase cos(2pg¥) = -1 . It is
natural to think that the derivative 9A,/8J gets smaller there

in order to suppress the divergence:
lim L2 . const (6.14)
é oJ ) )

For a large value of Jf, the change in the tune with amplitude is
slow (this is why the particle motion can reach the large amplitude
without detuning of the resonance), with the result that the
derivative 9A,/8J must be very small in the long range of

amplitude.

The change in the equilibrium distribution is sketched in Fig. 6.
The flattening effect of A, prevents the particle density from
reducing up to the large amplitude. The size and position of the
plateau corresponds to that of the resonance island. When the island
is situated in the tail of the distribution like in this example, we
can see a blow-up of the tail. In the case that the island is near to
the core, the change in the tune with amplitude there is so fast that
the plateau may not grow large enough to be observed. This is a
plausible explanation of why the observed blow-up of the beam takes
place mostly only in the tail in computer simulationsll)
explanation might be valid also for a blow-up of the flat—beam in the

. A similar

taills) even in the presence of the radiation damping and the
quantum excitation. The flattening of the particle distribution in
the resonant particle region can be seen also in plasma physics in the

16)

nonlinear effect of Landau damping

VII. Conclusions

We have analysed synchro-betatron resonances due to a crossing
angle with the Hamiltonian method, and obtain good numerical agreement

with the computer simulations of the particle dynamics. We proved the

following:

¥ In an approximation that other terms are neglected.
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- The single isolated resonance model is a very good approximation

to synchro-betatron resonances.

- The particle motion in the present integrable system with two
constants of motion is therefore predictable and analysable. In

this sense, the motion is stable.

- Nevertheless, a synchro-betatron resonance can cause a large
enhancement of the amplitude of particle trajectories in the
transverse phase space. The key of understanding it is that the
synchrotron motion which has an energy widely different from the
transverse motion, plays a role as energy supply to the

transverse motion almost without disturbing itself.

- The resonant island in the tail results in the flattening of the
equilibrium particle distribution there. The size of the plateau

corresponds to that of the island.

The reason why synchro—-betatron resonances are relatively more
dangerous than the single resonances due to normal beam—beam
interaction without a crossing angle may be as illustrated in Fig. 2;
the small curvature, and the widely open area at large amplitude. In
the present example, the enhancement factcr is 2.5 at most, while the
simulation for HERA with a crossing angle shows the factor 617). The
situation is possibly as in Fig. 4(a); very flat curves, the most

dangerous pattern.

Through many calculations in the present study, the problem of
slow convergence of the double summation in the Hamiltonian (2.22)
turned out to be no hindrance to the numerical calculation. The total
CPU time spent for all the calculations in the present paper was
within 20 minutes with CERN IBM 3081. One of the fast calculation
methods which can also avoid the false divergence of each term of
series due to factorials of large number, etc. is presented in

Appendix B.



-22 -

The particle distribution could not be solved easily, even though
the system is described by the simple Hamiltonian for the single
resonance, and the synchrotron radiation effects are not included.

More elaborate study is necessary for quantitative estimation.
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Appendix A : Derivation of qu

Throughout this appendix, the key of manipulation is to reorder

the summation following

@® m @® [ ] @® (s +]
) I b = I ! b = 1 r b (A.1)
m=0 n=0 ™ n=0 m=n ™ n=0 m=0 " +nn )
A.1 Applying formula (A.1) to Eq. (2.14) leads to
$2 o 3n
U/(8w 2 )= I a (e cos(W+ ¥ )+ a cosY
Bﬁ hn=o N X X X s )
[+ ] . @®
- 28 2(k-2)
= . E o(as cos¥, ) ) § . 3y 2k022 (e, cos(W, + ¥,))
[+ ] ®
221 2(k-2) + 1
+ 2 E l(as cosYs) K E 2 " 2kC22—1(mx cos(Nx + vx))
@ o
_ 22 2m
= . E o . E o & v m 208 + m)CZQ (as cosVs) (ax cos(wx + Yx))
@ ®
20-1 2m-1
+ 9 E 1 m § la£+m-1 2(2+m—1)C22—1(a3 cosYs) (ax cos(wx *+ wx))

(R.2)

A.2 We substitute Eqs. (2.20) and (2.21) into Eq. (A.2) and continue
the manipulation. For the first term of Eq. (A.2), this is done below:

[« ®
2m 2%
hX I a C.o(@ cos(W + ¥ )) (¢ cosY¥ )
=0 m=0 2+m 2(2+m) 22 "x X X s s
® ¢ ] 2m 1 m-1 chm
= 2 1 2 39+m 2(2+m)C229x ® TTom-1 ) chr cosZ(m—r)(wx + Yx) + 2 1
=1 m=1 2 r=20
-1 C
1 222
. 222_1 [s E o 22;3 cos Z(QFS)WS + ~E-~]



; 2m_ 1 m= 1 ZmCm
+ a C., a e = L 2 C_ cos2(m=-r)(W_ + ¥ ) + =
l“___lmZmOx 22m—-1r=02mr X x) 2]
© -1
22 1 2%
+ ¥ a C,p @ ® =7 [ % C cos2(R-s)¥ + = ]
2=1222.22.s 2252.—1 s=0252.3 s 2
[ -] @ -
- (2(2 + m))! 2m 22 1
S L, L %t QT amt % % * 2+ D2
m
(2m)! (2m)
° [pzl m=p)i(m+p)! cos2p (W + ¥ ) +2(m!)3 ]
.l % (22)! cos2a¥ 4 (222!
Gl @-al @ra os2a¥, + 7Nz 1
® m
2m 1 (2m)! s (2m)!
+m§:1 a o Jan1 [p£1 tp) ! (mp) ! cos2p(W  + ¥ ) +2(m!)2]
4 1 2 22)! (2)!
+££ 1a9' e T [qE | T @) cos2q¥, * 72 1
@ @ 2p 29 o o (2 (m+2 +p+q))!
=p£1 qEIcOSZp(Nx+‘I'x)coquYs e @ mio 2.20“'! (nt Zp)l 2T (L + 29!
. aR.+z_r_L+g+g_ aZm GZ.Q.
_ 22(m-|-52.+|:>+c|)--2 X s
2m 22
@ © ] 44 @
2p (2(2 + m + p))! X s
+p£1cos Zp(Nx-l-‘fx)omx mEo 221 aT(m + 2p)1 2(A)2 .2(2+m+p)-—2 32.+m+p
2m 2%
@ [} ® @ @
2q (2 (2 +m+ g))! X 3 a
*’q£1°°°2°"'s“s m£1 QEO 2m)? IR+ 29)! T R +mt a2 t+m+a
2m
@ (] [+ 4
2p 2 (m+ p))! X
+p£1cos Zp(wx+Yx)o e mzo ol (m + 2p)1 . 2(m+p)-1 am+p
= 29§ (20 + q)! et
2 !
”qﬁl"“ a¥,e o, 2__2302! @+ 2! @+ a1 L+q
® ® a2m “22.
+l by T a (22 + m))! . X s
4 gty niorem T@Imn:? L2+ m)-2

(A.3)
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Here, using the formula for product of cosines

cos O, cos O, = > [cos(O, +6,) + cos (6, - 6,)] (A.8)

N =

and defining a new coefficient

_qyn +1 |
p = &L Cm)! )
n n e nl 22n—1 *.5)
=0 , (n=0)
we can summarize Eq. (A.3) as
2m 22
1 @ @ e
Be. (A3 =54 I I em @hT@D?
1 1
+3 X ?93 [Zp(wx + Yx) + Zqu]
-0 < p,g<co
2m 22
o 2Pl G2lal E ; b % %s
X s m=0 2 =0 L+m+ |pl + 1gl m! (m+ 2ipl)! & (R + 2iql)! ,

(A.4)

where the prime means that p + @ = 0 term is excluded from the
summation.

A similar manipulation is made for the second term of Eq. (A.2).
We obtain

The second term = % Y cos[(2p - 1)(wx + Yx) + (2q —l)Ys]

-o < p,g¢ @
® ] sz GZQ
12p-1], _l2g-1] _ x s
e ea L L B 12eell s D2l ST TR ¢ T2a S

(A.5)

Combining Eqs. (A.4) and (A.5), and defining the function
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® ® aZm aza
= a|p| a'Ql ) by b IEI + lgl X S
pq X S =0 =0 M+ 2+ 2 m! (m+ |pl)! I (R + lgl)! (‘ )
A.6

after all we find

= 2wEo? .
U= ST IR (eLe) + I F
—o{p,{o

pq(mx,as) cos(p(W x+ Vx) + qu)] .

(A.7)
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Appendix B : A fast numerical calculation method for qu

First, since the coefficient bn changed its sign alternatively with

n, we should put together the terms of the same sign as follows:

2m 22
F =P ¥ Y b x %
pg x's 20 =0 ™% L+t m! (m+ p)! ! (Q + g)!
2(n - 2) 2%

= oP of ; S b % %

x s "o g=o Nt t (n-V!I (n-2+p)! 2! (L + g)!
= ap ag ; g A
*h=o0 2=0 nk
@®

= o o nEOBn , (B.1)
where t = 2_%,9 . (B.2)

The series Bn now changes the sign alternatively. The convergence

judgement condition of series may be, for instance,

B
n
n-1 < € , (B.3)
X B
L=0 %

where ¢ is a certain small number.

If we directly calculate Ank from the definition as it is,
the factorials or the powers of e and @ may cause the false
numerical overflow. Namely, although the ratio does not diverge, the
numerator or the denominator is overflowed in the middle of individual
calculation. Meanwhile, looking at Eq. (B.1) carefully, we find the

following recurrence equation for Ank :
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A a 2
A = n-12 - R <¢<n-~-1) (B.4)
nf- (n-2W(M -2+ p) n
a? '
An= AT ® " (8.5)
nm- n(n+4g) n '
with
b
B
Poo™ plqg! (B.6)
where
L Pnst __Qosvn (hrto1)
noB st 2(n + t)
(B.7)

Of the functions above, only r increases with n, but the

increase is just linear in n. Calculating Rnk in order avoids not
only the false overflow but also repetition of calculation of the same

factorial, which greatly reduces the computation time.
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Table I

Parameters for the DORISs)

xX

ini
(AE/E°)ini

a

: beam energy (GeV)
: beam — beam parameter
: beta-function at the collision point (m)

: effective transverse beam size (mm)

synchrotron tune

: harmonic number
: momentum compaction factor

: circumference (m)

initial transverse amplitude (mm)

initial synchrotron amplitude

: half of the crossing angle (mrad)

1.8

0.01

0.23
0.034
480
0.018
288

0.8

-3
1.8 x 10

12




The maximum

(Xipi = 0.8 mm, vg = vg = 0.034)
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Table II

amplitude for some resonances

X Tmax.cal.

resonance ;x Vx Xmax.cal.(mm) Xmax.sim.(mm) max.sim.
59 + GS =31 | 6.1934 | 6.19208 1.902 1.887 1.008
5v - 63 =31 | 6.2068 | 6.2057 1.923 1.892 1.016
4 + 2v_= 25 | 6.233 6.2320 1.862 1.909 - 0.975
4 - 2v_ =25 | 6.267 6.2660 1.855 1.831 1.013
5V  + Gs =32 | 6.3932 | 6.3921 1,923 2.026 0.949
53x -~ v, =32 | 6.4068 | 6.4057 1.923 1.872 1.027
73x +3v =45 ] 6.414 6.4124 1.206 1.337 0.902
7§x - 3v_ = 45 | 6.4431 | 6.44155 1.209 1.193 1.013
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Fig. 1 Detuning curve. _ _
The scale of J is for the resonance 5vx + v, = 31.



I. (mm.mrad)

X
‘ 0 0.4 0.8 1.2 1.6 2.0 2.4
< 1072 | r | I |
| stable fixed point
i CoS (2pay)=1
Hg : t
| unstable
1. | fixed point
i
- i COS (2pqy)= -1
3 !
Lol
£ %
- ]
{
i
= i
B I
i
0. : | | | |
IO 197 198

Fig.

2

b

The Hamiltonian H for the resonance
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Particle trajectory in the J,¢ phase space.
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Calculation

Simulation
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Fig. 5 The maximum amplitude X in_the feal space
versus v for the resonance va +v_ = 31.



Fig. 6

Sketch of the change in the equilibrium particle dis
The flattening occurs around the resonance island.

tribution.



