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It was originally propcsed 2) by Goebel and by Chew and
Low that the TWN- MWXN cross-section suitably extrapolated from the
physical region to the W exchange pole (tz/ug) would provide a va-
luable means of determining the T W differential cross-section.’
Many attempts to extract T phases have been based on Chew-Low
extrapolations, until now agreement has been reached on the general
picture of the phases in the ? region 3>. However, with the recent
increase in experimental statistics of the b —p—ﬂt_Tf+n data we are
confronted with the problem of finding the best way to account for the
other exchange mechanisms which are seen to occur in addition to T
exchange. The method we propose is to use the observed moments of the
w nt angular distribution to perform an amplitude analysis of the
production process. In this way we can isolate the dominant T
exchange amplitudes and extrapolate them to the s exchange pole.
That we are able to perform such an amplitude analysis without know-
ledge of the nucleon polarization observables is a fortunate circums-

tance of the nature of the exchanges (see Sections 2 and 3).

We use this method to extract TC T phase shifts from
the high statistics T p-T T'n data at 17.2 GeV/c 4). We discuss
separately the TUT phase shift analysis below and above the KK
threshold. The former is described in Sections 4, 5, 6 and the latter
in Section 7. In Section 8, we comment on the behaviour of the solu-
tions near the KK threshold. However, first let us look at some
experimental ﬂt‘”K+' moments from the point of view of pure TC

exchange.



4. =T EXCHANGE IN W p-> TN ™"N*'n - A QUICK LOOK

Suppose that the reaction T(“p—*Tt_11+n were mediated
entirely by T exchange (cf. Fig. 1). Then the differential cross-

section is of the form

d*e = A -t i_s.;"v
- — |
dt dM, . dQ ) 4, o

where d6wy /4SL is the W' TR differential cross-section in the

K "W~ rest frame. The factor +t arises because the T[ flips the

nucleon spin. For completeness we give

2.

2 2
A = : 2 1F0 g M,

s (A

(2)

where m 1is the nucleon mass, Py, the laboratory momentum, q the

NI c.m. momentum, g2/¢K ~ 14 and F(t) a form factor satisfying

F(/n2)=1.

The experimental observables are the moments <Y&:> of

the T W7 angular distribution as a function of t and Mg

T
d’e = N2 2 TN, Re Yalop)
dt dM . d NS s CYu> Re Yulf), (3)

where N 1is the number of events in the element dt dMyqy , and
where we have chosen the y axis normal to the T p- (T )n
reaction plane. We use <YJ:> to abbreviate Re<Y§:m On the other

M
hand, we wish to calculate the T M partial wave amplitudes

£ (Mg )

2
2 (2L+1) § P (wb) .

{
do 9 t (4)
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For TF+TT" the isospin decomposition is
2 AI=0 | EI=2
:FL = 3 fl. + 3';& for even L,
(5)
I=1
:S:L = &l. for odd L.
The fi are defined so that in the T T elastic region
I . - 1
§ o= sm S =xp (cSL).
(6)

T exchange produces only (t channel) helicity zero
T "t systems, and in this simplified situation only the M=0

d
moments, <YO >, would be non zerc. We may express these moments

in terms of the T p-— TN~ T*'n amplitudes for the production of S,

P,... wave helicity zero T M states

TN Y = (s # R+ 1Dl
Jan N LoD
AN LYy = 20+ 2Re (D) + 2 Ip [ @
FR N> = 8 e (7D

Jm N <YES = £ |

i

2% (SBF) + & Re (BI)

where we neglect F and higher waves. Up to a normalization constant,

the (helicity zero) production amplitudes S, PO, DO are

. At Moo ST
L, = " Fv T 2L+t £, (8)
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In Figs. 2 and % we show the mass spectrum of the unnormalized
t channel moments integrated over the interval 0 < -t < 0.15 GeV2
obtained in the W p— K'-W-Hl CERN-Munich experiment 6) at 17.2 GeV/c.
From these moments, we see :

(a) the presence of the ‘9(770), £(1260), g(1700) mesons with spins

1, 2, 3 respectively ; to establish 6)’4) spin 3% for the g
meson requires the additional knowledge that the Jd=7 and higher

moments are small near 1700 MeV ;

(b) from <Y1 > the presence of a large S wave under the meson ;
, ®

0
(c) from <Y22> the presence of a large S wave under the f meson 7)
0 g
8)

(d) sharp structure near My, =1 and 1.45 GeVl which Odorico
associates with the double pole killing zeros propagating linearly
into the T “wt physical region from the forward direction ; the
effect at 1 GeV is complicated by the opening of the KK channel
with the cross-section at its S wave unitarity limit suggesting

9)

the nearby presence of the s* meson 5

(e) from <Yi-> moments the non-negligible presence of helicity one

nrt production.

It is illuminating to establish statement (c) above in the

following'way. From Figs. 2 and 3 we see at the mass of the f meson

x> Y&
1.5 4 .

the relative sizes of the moments are
Loy 1 Kve> + KYED

€5 :+ 25 9

. e
.

However, assuming the dominance of D wave NI production we see

from eqns. (7) that the ratios are expected to be

{ S - T 064 O : 086,

“e
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To enhance <Ygi> to agree with the data we need to consider the D-S

wave interference term. For example if S = 0.8 D then the predicted

ratios are in rough agreement with the data

-

0-86.

-
se

- ¢4 0 2:24 O

However, in terms of partial waves [;f. eqn. (821

S _ Ss

Gu—

D B

Thus, assuming an elasticity of 0.8 for the f meson and no I=2

contributions, we anticipate that the S wave will be at its unita-

rity limit and approximately in phase with D as shown in Fig. 4.
Even then S in only about 0.5D.

So far we have assumed pure W exchange. If this were
true few problems would exist in the extraction of T T phases from
the data. However, the sizeable <Yi-> moments of Fig. 3 are a
warning that other exchange mechanisms are present, such as A2
exchange or absorptive corrections. Thus a T T phase shift ana-
lysis based on a straightforward extrapolation of the <Ygi> moments

can be very misleading 10). Additional terms occur on the right-hand

sides of eqns. (7) involving amplitudes describing non-zero helicity
"M production. To allow for these other exchanges, we perform a

production amplitude analysis of all the observed moments as a

functions of t and M” .

TIv



-6 -

2. - PRODUCTION AMPLITUDES AND OBSERVABLES FOR T N-— WM N

For the reaction WM p —’K-I+n we use the variables
shown in Fig. 5. The production of a T T system of spin L
is described by helicity amplitudes HL""(s,t,M%“ ) with heli-
helicity A = 0, £14...4,4L. For the moment we omit the nucleon
helicity labels. This simplifies the discussion and will be corrected

for later.

It.is convenient to introduce the combinations of helicity

amplitudes

(HL,) = (-l)" HL,-X).

~ll~

L)\.p =

-

(9a)

At high energies (that is, to order 1/s) the amplitudes L, = and
describe the production of a T T system of spin L, heli-

L

A-
city A Dby natural and unnatural parity exchange, respectively.
We see that L 7hL=O for A =0 MR production, that is a zero

helicity TWTTW system cannot be produced at high energies by natural
parity exchange. In this case we have only an unnatural parity
exchange amplitude, which we define as

Lo

L, = H. (95)

At a given s, t and My, » the experimental observables
are the moments <Y&:> of the 1(+TT_ angular distribution with res-
pect to some specified frame [éf. eqn. (BE]. The two standard choices
of axes, the s and t channel helicity frames, are shown in Fig. 6.

The observables in one frame can be obtained in the other by the trans-

formation

5 (s) T - ()
{Ya >5 = ‘g, d'M'M (w) < Ym’>.
(10)
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A useful (large s, small +t) approximation for the crossing angle

W is
2
My +t 2A-t

Meg -t Mur - (11)

J

The crossing matrix for the helicity amplitudes is block diagonal in

the combinations L, ~ and L, _ formed in egqn. (9). The L
"aatural" parity exchange amplitudes have the crossing property
ts) L » L &)
Lx-» = Z— [dxa(“) - (-1) i_a’a(“’)] LA’+

Ao ’ (12)

Similarly the L+ 1 '"unnatural" parity exchange amplitudes, L)\_,

cross amongst themselves.

The observables <Y&I> may be expressed in terms of the
amplitudes (SO, Pys Puys Doy Doy DZi"") of eqn. (9). Each moment
is a sum over bilinear terms of the form Re(L'R, L;.)' A given moment
<Y§I> will only contain terms with L'+L >J and | A - 7\| = M.
Furthermore L'+L must be even (0dd) if J 1is even (odd). These
restrictions are embodied in the Clebsch-Gordan coefficients
<ILL'A - A'|JM > and <IL'00{J0 > which occur when the density
matrix is expressed in terms of the moments 11). Moreover, the moments

contain no interference terms between ];A+- and L>\_ amplitudes.

For example, in a region of Mnn where only S and P
wave TN production is appreciable, the observables can be expressed

in terms of the production amplitudes SO’ PO, P1i as follows

st N Y8
Aam N S
Aot N YD

1si2 + B+ IR+ IP1°

(1]

2%e (5TF)

Ap> 12&(.5?}) (13)

L



T Ny - & (27" - ARy
Ji® N Y = e Re (RT)
IR T ALY

(13, conf)

So far we have simplified the discussion by disregarding
the nucleon helicities. Each amplitude is really two independent
amplitudes, a nucleon helicity flip and a non-flip amplitude HE:X
L,A
and H

++

formed for both the nucleon flip and non-flip amplitudes. For an

, respectively. The combinations of eqn. (9) are to be

experiment involving unpolarized nucleons, eqns. (13) are correct
provided it is understood that the nucleon helicities are summed over

as follows

2
“—\2 2 “-++|2+“—+-‘
Re (L,L*) z Re (L.:.g. L.;r + L.:.. L.:i), (14)

Here we have omitted the T T helicity label. Furthermore the crossing

relations, eqn. (12), are unchanged.

In conclusion, we See that when we analyze an unpolarized
nuclenon experiment we need only treat the spin of the TTT system
explicitly, provided we make an incoherent sum over the nucleon heli-
cities. When nucleon polarization measurements are available, we can
study the nucleon non-flip and flip amplitudes separately and, more-
over, observe interference effects between I)K+' and ];K- ampli-

tudes.



3. = EXCHANGE MECHANISMS

The absence of nucleon polarization data prevents a model
independent determination of the amplitudes for 7(N—*(7IT()N. Howgver,
the unnatural parity exchanges have the simplifying property * that W
exchange contributes only to nucleon flip amplitudes, whereas the ampli-
tudes with the quantum numbers of A1 exchange have nucleon non-flip
(cf. Table I). We shall call the latter A_1 exchange contributions
regardless of whether they arise from A1 exchange, absorption, etc.,
with the exception of the order 1/s T exchange contribution in the
s channel which we include explicitly. It is reasonable to assune
that the non-flip A1 exchange is negligible in comparison to the K
exchange flip amplitudes, particularly as the neglected quantities only
enter quadratically in the expressions for the observables <Y&:>, that

is there are no 1(-A1 interference terms.

The most direct check of this assumption will be nucleon
polarization measurements for TN- TCMN ; the polarization associated
with unnatural parity exchange is due to T <A1 interference. Another
check is the measurement of both the target and recoil polarization for
¥p~ T'n ; P =P, would imply that the A  exchange amplitude
H1 -H;1 is zero 12). Also we can check the small t dependence of

++
the observable (3 9fo+ 950)d6‘/dt in a TN mass region where S

and P waves are dominant. The T exchange contribution vanishes
like t 1in contrast to the non-flip A1 contribution. In practice
this test 13) is difficult, requiring very high statistics and depending
mainly on the extreme forward data points. Finally, by considering the
eigenvalues of the density matrix within the positivity domain, bounds
14

can be obtained for the A1 type contributions

e (T e e e o o S S M s St e o e et S e o S S e S . S S e o e S o s B S S e e o o S A e e S s S S o o s

*
) This is exactly true for T exchange in the +t channel ; in the
s channel we have order 1/s T exchange contributions to the

nucleon non-flip amplitudes.
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With the assumption of negligible A1 exchange contri-

butions it follows, for example, that the relative phases

CP aﬁ% CFL) - ax% <$2)
A = am (S) - o (R) (15)

u

n

determine the phase between SO and P_. Thus in a region of Myy

where only S and P wave M N'Y states are important we can use
the six observable moments, eqns. (13), to determine 15) IP+|, |PO|,
IP_I, ]Sl , ? and A as functions of Mgy and t. In Section 4

we discuss the uniqueness of the solution and also how we include the

small D wave contribution.

3.1. - Choice of frame and absorptive corrections

In order to extract T T phase shifts we must isolate
the M N- (XT )N amplitudes which are dominated by T pole exchange
and suitably extrapolate them from the physical region to t::/w2.
Clearly So’ PO, Do"" are the desired amplitudes. Now the ampli-
tude analysis can be done equally well using either the s or t
channel moments of the T +T(— angular distribution (cf. Pig. 6).
However, we argue that it is appropriate to extrapolate s channel
amplitudes. The reason is that we believe thé absorptive corrections
to the exchange pole contributions are simpler in the s channel .
At present we do not have a reliable prescription for determining
these corrections. The indications are that they interfere destruct-
ively with the pole contributions and that, to a good approximation,
they conserve s channel helicities. Moreover, they are expected to
be largest in x#0 s channel amplitudes, and, for x=0 ampli-
tudes, to decrease with increasing net helicity flip n. For an s

channel helicity amplitude the net helicity flip, n= I)\ + )‘p - >‘v1| ’
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specified the forward behaviour arising from angular momentum conser-
vation, and n+ x = l)‘[+l‘)p—'3nl specifies the behaviour for de-
finite parity (Regge pole) exchange. This behaviour, together with

the values of n and x, is listed in Table I.

Consider the x=2 HE:1 S channel helicity amplitude.
The pole contributions, which are required to vanish as t'y, are
expected to be modified by destructive interference with a non-vanish-
ing (absorptive) background. The cross-over zeros in the s channel
<Yii>' moments near —t::/&2 are experimental support for this
picture. This absorptive correction to the s channel P1_, D1_,...
amplitudes will, when crossed, affect the t channel Po, DO,...
amplitudes. Of course, the s channel So, PO,... amplitudes may
themselves have absorptive corrections, but as these are helicity
flip amplitudes these modifications should be relatively small. In
either channel the absorptive modifications to SO, PO, Do"" do
not in principle cause a problem since they should disappear on
appropriate extrapolation to the T exchange pole. However, to
determine T T phases it is desirable to extrapolate what are
believed to be the "purest" T( exchange amplitudes and for this

reason we shall use the s channel SO, Po’ DO,... amplitudes.

One slight complication of this choice is that the TC
pole contribution, which in the t channel contributes only to So’
PO,..., is distributed among all the I:)__ S channel amplitudes.

For example, for P wave 7T+1r— production we have to leading
order in s
2 2
(P) = uY° % EiMy - JE
0 /4~ +- = F— r 2
W Mﬂw 't‘/“~

oo 2
g top

= H‘l’° = A'Hl'f with *’A[tmin/'e'

++

(16)

v
1
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The last amplitude is only relevant at very small t. To include
its contribution we multiply each product of N = 0 amplitudes
[e.g., IPOIZ, Re(Soszl occurring in the expressions for the
observable moments, egns. (13), by 1+ 1° before solving for the
amplitudes 15). Thus from now on by So’ PO,... we mean only the

helicity flip amplitudes HE:O.

4. - PRODUCTION AMPLITUDE ANALYSIS FOR Moy BELOW_1 GeV

We have seen that the neglect of A1 exchange amplitudes
permits the determination of the magnitudes and relative phases of
the amplitudes (S, P, P ) and the magnitude of P_ directly from
the data. Instead of using the relative phases (F and A of ean. (15)
it is convenient to project S and P_ 1into components parallel and
perpehdicular to PO on the Argand plot, as illustrated in Fig. 7. In
terms of these amplitude components the moments of the n-‘ﬂ+' angular

distribution become

Aa N e
Agr N <Y
TN Xy = 2 (877 + $HEY)

Jw N2> = L 2ml - IRl - 1) - |22 %)
AEEIRSEO T (A

B ey s - (- 177 [221°)

lsl/'2+ 151‘2 + l.Po\i_‘_ !,P+\2 + I.P-//l2 + ‘,P:\.lZ

2s?|r|

n

(17)
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Eliminating all amplitude components in favour of IPOI we obtain a
cubic equation for IPOIZ. From the observed moments it turns out
that a second solution is unphysical, !POI2 < 0, and that the re-
maining two solutions are both physical with similar values of

2
|2 |°.

We are considering a region of MNgp where D waves are
relatively small. Although in eqmns. (17) we have omitted the terms
depending on the D wave amplitudes we do, in fact, allow for these
small contributions. In the first place we solve for the two solu-

tions using <Yg > - y%% <Y2:> instead of <Yg > since, unlike

<Y;'>, this combination does not contain the dominant D wave inter-

3

ference term Re(PODé). Moreover, using the <YO

Do’ D1i as described in Section 5.2. We allow for these small D

wave contributions in the S and P wave amplitude analysis by

> moment we estimate

iteration starting from the two exact solutions.

As an example we show in Fig. 8 the two solutions found at
the different t values from the s channel moments in the mass bin
700 < Mﬂ1t < 720 MeV as measured by the CERN-Munich collaboration 4).
The amplitudes S and PO have similar t behaviour and so we show

yl=sl/[p | and ¥ =5t/|P,
that the component S1 1is less constrained than sl and this is re-

. By inspection of egns. (17) we notice

flected in the resulting errors. Similarly the component PE is better
determined than Pi. Moreover the data do not determine the absolute
signs of S1 and Pi, but only their relative sign. In the ambiguous

cases we have chosen PL +to be positive in Fig. 8.

We may compare the structure of these amplitude components
with the behaviour anticipated from the contributions of T exchange
to PO and P_  and A2 exchange to P+ (cf. Section 3). Up to
slope factors of the form exp[}(t—/h2il, the P wave amplitudes

are expected to have the following structure



2
P2 I [/8,‘ oo —C('c)] )

2

ST BT NP IR P

to leading order in s, where ,Xi are signature factors

%+%e)ip(—i1to(i) with g~ t and O(A%o.5+t, and gﬁ and

gﬂ are the A2 exchange couplings to nucleon helicity flip and
non-flip respectively. Studies 17) of .? and A2 exchange in
spin 0 - spin %’ processes indicate that there gﬁ/gﬁF ~ 4. The

additional contribution g4 c(t), which is non-vanishing at t'=0
can be regarded as the absorptive correction to T and A2 exchange
in the (evasive) s channel H1_ amplitude. At t'=0 we have
P+==P_. The Williams' model 18) is a special case of eqns. (18),

namely that with 'gi’NF=O, S, =1 and C=1.

For the amplitudes obtained from the data in the §
mass band, 730 < My, < 810 MeV, such a breakdown has been dis-
cussed in Ref. 15) [éee also Refs. 19), 202]. The actual inter-
pretation of the various contributions to Pi is not important as
far as the extraction of WM phases is concerned. However Pi
give sizeable contributions to the moments and it is crucial to

allow for their presence in the Chew-Low extrapolation.

The two allowed solutions for the amplitude components
are distinguished mainly by their differing values of S! and this
leads to an ambiguity in the determination of the T S wave

phase.
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4.1. - Connection with T W phases

For each Mgy bin the dominant T exchange amplitudes,
S and PO, are the appropriate quantities to extrapolate in t 1o
t = /«-2 to determine T ©phase shifts. We discuss first the P

wave and then the S wave extrapolation.

To extrapolate IPOI to the T exchange pole we fit
the calculated amplitudes for -t < 0.2 +to the form [:cf. eqn. (8[[

AR PR

(19)

where for Myg in the T MY elastic region fp=sin SP ei SP.
In other words from IPOI we determine AIfP] and thus knowing the
normalization A we obtain SP the P wave NN phase shift.
The normalization factor A has an M'Mt' dependence

2 Mz
Mam |_Mun

2
A ) ()‘( “’ Mllﬂ’z _4/'3. (20)

where M%.tt /q arises from the Chew-Low formula and the factor in
brackets is due to crossing Po from the t to the s channel at
t= /M.2. It remains to fix the over-all normalization constant, d‘(‘ ’
of the R p— N M'n cross-section dG‘/dM,"l . To do this we
extrapolate IPOI for each M, bin in the region of the @
resonance, and adjust the constant N until the resulting QP
goes smoothly through the resonance. Knowing the constant N,
and therefore A, we can calculate SP as a function of M,

in the W M elastic region.



- 16 -

Consider now the extrapolation of the S wave amplitude.
To a good approximation the values of S/Po are constant in t.
2
Therefore, to obtain the value at t= /M“, we simply fit the values

for -t <« 0.2 to a constant
2 A0 1 o2
fé - 3 &+ 338
To B (21)

At the sample energy, Mun = 710 MeV, the resulting extrapolations

for S“/PO and SL/P_ are indicated by dashed lines on Fig. 8.

It is illuminating to view the results in terms of the
unitarity circles for the T partial wave amplitudes, fi. We
cannot determine both the I=0 and I=2 S wave TCTC  phase
shifts and so we input fg using the values obtained in analyses 3)’21>
of 7T+p—*'ﬂ+1f+n data. The values we use for Sé are listed in
Table II. The situation at 710 MeV is shown in Fig. 9. The larger
unitarity circle corresponds to the P wave which we assume to be
elastic. Then, as described above, [POI determines SP' The P
wave results for the two solutions are almost identical and are shown
by a single line on Fig. 9. Also we show the unitarity circle for the
I=0 S wave, scaled down by the factor 2/33 arising from 2L+
and isospin. The shift of origin from O to Os is due to the
input I=2 S wave amplitude fé. Knowing S“/PO and Sl/Po we
may plot the S wave amplitude on Fig. 9. The two soluti>ns are
indicated by crosses which represent their error bars. If the S
wave is elastic, as we expect, then the cross representing the phy-
sical solution should be on the unitarity circle. We notice that
the well determined component s is similar for the two solutions,
whereas the poorly known component St distinguishes the two solu-
tions. It is apparent that it is not going to be easy to select
the physical solution for 8% simply from an analysis of
T p—» W N*n data alone. As in previous analyses 3)’5>’22>—24>,
we will have to take care to keep track of both solutions as a

function of My, . Essentially the M=0 moments determine 2,15

144
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sl anad |S|2+-|P0]2 "and so the best chance of getting a unique Sg
appears to be in a region away from the ‘? where ISI is signifi-
cantly different for the two solutions and leads to different extra-
polated cross-sections. The inclusion of the M#ZO moments is ]
necessary to allow a reliable determination of PO and S. Moreover,
in principle, from a knowledge of the sign of PL, they also allow the
sign of St ‘to be determined (cf. <Y: >). In practice Pt is small

and poorly determined and so is not decisive.

So far S wave unitarity has not been imposed. At first
sight it appears that this could select the physical solution - perhaps
one solution is always nearer to the circle than the other solution.
However, S+, 1like P, 1is badly determined and it would be misleading
to select the solution in this way. Rather at the outset we should
impose unitarity (at t::/wz) on the analysis and then see if one so-

lution is preferred to the other. We describe such an analysis below.

5. = TUT  PHASE SHIFT ANALYSIS FOR Mae 1 BELOW 1 GeV

The analysis is based on the high statistics M p- TR
data obtained by the CERN-Munich collaboration 4) at a laboratory mo-
mentum of 17.2 GeV/c. S channel moments of the 'R—'ﬂ+ angular dis-
tribution are used in 20 MeV TUTl mass bins from MTm = 440 MeV
upwards. In each mass bin we determine the structure of the product-
ion amplitudes in the range 0 < -t < 0.2 GeV2 by fitting the data to
parametric forms based on egns. (18). We include D waves as outlined
in Section 4. We impose elastic unitarity, ﬁL==sin.€L ei L, through
eqns. (19) and (21), except that, above the onset of the Tew channel,
]MWW = 920 MeV, we allow the P wave to be iﬁelastic.

The unitarity constraint is only true at t= 2. However,

we included a term [:1 +a(t—/‘t2):[ on the right-hand side of egn. (21).

Since the unitarity phase is preserved 25 we took the parameter a to
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be real. Such a term'could also arise from differing amounts of
absorption in the T pole contributions to S and PO, or from a

t dependence associated with crossing from the t to the s channel.
The values found for the parameter a in the different mass bins were
distributed about zero, and typically a = + 0.5 GeV_z. The results
we present have a=0. Values of a=4%£ 0.5 lead to changes in Sg
and SP of about + 2° and =+ 0.5O respectively.

We tried several different forms of amplitude parametri-
zation, allowing different slope factors exp[@(t-/KQZI on individual
contributions, using different input values of gﬁ/gXF, etc. The
phase shift results were extremely stable to such changes of parame-
trization. We also repeated the analysis uéing only the data for
-t < 0.1. Again the results were essentially unaltered. The curves
shown in Fig. 8 are the form of the amplitudes at 710 MeV. We see
that they are a good description of the amplitude components determined
t by t indicating that the chosen parametric form is adequate. The

fit to the observed s channel moments is shown in Fig. 10.

5.1. — S _and P wave TCTC  phases

The phase shifts obtained by the method outlined above
are shown in Fig. 11 and listed in Table II. There are two solutions
mainly differing in the values of Sg. Solution 1 is characterized
by a small P+ and Solution 2 by a small St. By this means or by
following the Barrelet zeros (see Section 7, Fig. 20) it is possible
to keep track of the two solutions through the JP mass region. The
solutions are stable to changes of parametrization and to changes of
the t region over which the data are fitted. With the exception of
Solution 2 below M““, = 650 MeV the solutions are also stable to
reasonable variations of the input values of Sg and Sif The
black dots and open circles of Fig. 11 denote Solutions 1 and 2
respectively. For comparison we show by a dashed curve the solution

obtained by Protopopescu et al. 24) from an analysis of W p- ntm T AT
data.
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In contrast to recent analyses 6)’22)’24), we obtain
two acceptable solutions below (as weil as abOve) the .9 mass. At
low Mn“ the solutions have very different ]Sl and therefore
lead to different extrapolated TT cross-sections. However, bo?h
values are compatible with the physical region data since the non TC
exchange background differs for the two solutions in such a way as
to give good fits to the data in each case. We discuss this further

in the next section.

If we were to believe that the non-vanishing absorptive
background [@(t) of eqn. (18{] is dominantly real relative to m
exchange then this appears to favour the solution with the smaller
PL, +that is, Solution 1. On the other hand, although the results
of the phase coherent analysis (Pi::O) described in the next section
do in general prefer Solution 1, we find even there an acceptable
Solution 2 at Mgy values below and above the >JP mass region.
In summary the M " N*n data alone do not resolve the s wave

ambiguity in the elastic region.

The most direct way to select the physical solution is
to study the W°W° mass distribution 26)’27), since here only
even L TT partial waves can contribute. The histogram in Fig. 12
is the MN°W° mass spectrum for 2/&2 < -t < §/~2 obtained from
a 1T—p—*1(OTTOn experiment 26) at 8 GeV/c. In terms of TTT
phase shifts this spectrum is, to a good approximation, proportional

to

ono z \ )
de(en?) o Mm > (214 I-_o;ff - éf..z,
AMyx 9  Leo2

where the partial wave amplitudes, fg, are defined as in eqn. (6).
The predictions of the two solutions are shown on the figure. A

comparison of the shapes of the mass spectrum clearly selects Solution

1 as the physical solution.
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Above MNgpe = 920 MeV we allow the P wave to be
inelastic. Although [fPI is well determined, the inelasticity
parameter ‘)ZP is poorly constrained by the data for M‘rt'rt ~ 950 MeV.
The reason 1is apparent from Fig. 13. The data determine !fP| ’ lf&‘
and cos(SS - SP) but not the over-all phase, and thus the solutlions

shown have comparable %2. The phase shifts listed assume that the P

wave 1s elastic below 1 GeV.

28)

To determine resonance parameters we use the form

P x Mg M
L M1l2 - Mu: - aMg I (22)

) 9 2L+4 :Dt-(ﬂ ,;v)
= <“y1z) Du(q 1) .

For the © we use D1(y)= 1+y and fit to the P wave phase shift

of Solution 1 in the range 650 < Mypy < 890 MeV. ith this parame-

trization, we find for the g

M, = 772:2 % 0:6 MeV, [ = 1434211 MeV

5:.2. — D wave in the elastic region
2.

3

In the o mass region the observed s channel <YO>

moment has a systematic behaviour versus both M'ﬂ'w and t which

s}
is consistent with P-D interference. For a fixed 1 ~ -0.05 GeV©

the normalized <Y2> moment decreases from around C.04 for

M ~ 600 MeV, through zero in the region of the @ mass, to

T
about -0.03 for M,mt ~ 900 MeV. For fixed MTH( <Y2> reaches
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a maximum size for -t ~ 0.05 and then decreases changing sign for
3

@)

-t ~ 0.15 GeV2. Examples of the observed s channel <Y7> moment

are shown in Fig. 14.

In terms of production amplitudes

%
JEN YD = & R (BRDY - BB - BD)

= %ig \% [(»pof. |~a|2,mﬂ A (5%), (23)

The last equality is obtained assuming the proportionality relation

j)H = /Sg D, (?:t/?b>

(24)

where the «/3 arises from crossing the L exchange contribution to
the s channel. For instance such a relation is implied by the

Williams model. In eqn. (23) the Mgq behaviour of <¥J
mainly from the factor cos( SP - SD), while the t Dbehaviour of

<Y2> is due to the term in square brackets.

> arises

Knowing the P wave amplitudes and taking the D wave
to be elastic below My, = 900 MeV and dominantly I=0 we calculate
8% for each My, bin by comparing ean. (23) with the <Y2> data.
Over the entire range 620 MeV < My, < 900 MeV we find §) is
essentially constant with a value of 8%: 4..50. For mass values close
to M.m‘ = 780 MeV S]C; cannot be reliably determined since the P
and D amplitudes are about /2 out of phase. That S]o) should
be so large for Maux ~ 650 MeV 1is puzzling. The curves in Fig. 14
are calculated from eqn. (23) using S%=4.5O. Eqn. (23) gives a
good (one parameter) description of the Mgy and t behaviour of
the <Y2> moment. Versus Mgq it predicts a <Y2> sign change
at Mgg 780 MeV (the data cross-over is at Mgy ~ 800 MeV) and

versus t a sign change at -t ~ 0.2 (compared to 0.15 in the data).
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In the S and P wave phase analysis in the region
620 < My, < 900 MeV we took S‘Io)= 4.5°. Below 620 MeV the esti-

o
mates of SD

anomalous behaviour is observed in some higher moments

fore we assumed a q5 threshold behaviour of 8;;. For My > 900 MeV

may not be reliable, since for HNgp < 500 eV an

4), and there-

we included the J= 3,4 moments and determined Sg in each mass bin.

6. — PHASE COHERENT ANATLYSIS

We repeated the T phase shift analysis using essen-
tially a Williams' model parametrization of the production amplitudes.

In place of eqns. (18), we use the simplified forms

> . _Ir % H’c-/\’)
"o Aﬁi‘ bﬂﬂﬁ. e

P (25)

A

|
(@)
A
—
N
O
1
=
,‘.
1
LA

0
|
3

O

®
®

RS

T

where C, which specifies the absorptive background, is assumed to be
real and independent of t. Strictly speaking the Williams' model has
C=1, however, here we take C as a parameter to be determined in each
mass bin. Departures from the above simple parametrization occur for

-t > 0.15 GeV2 due to the neglect of A 15)

5 exchange contributions, etc. é
Therefore we restrict the analysis to the data in the region -t < 0.1 GeV .
The points shown in Fig. 15 for M““. < 1 GeV are the results of this
analysis. The values of Sg are in excellent agreement with Solution 1

of Section 5 and are a demonstration of the stability of the phase shifts

to a change of parametrization.
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Since phése coherence between PO and P_ 1is an input
assumption here, it is not surprising that we obtain Solution 1.
However, for mass bins where the two solutions of Section 5 are
dissimilar (i.e., away from the region of the 9 mass) we also
find Solution 2, and with comparable 0b2. Moreover the values of
C are almost identical for the two solutions, whereas for
Mpq ~ 500 MeV we have already remarked (cf. Section 5) that the
background has to be different for the two solutions. This apparent
contradiction is resolved when we note that SI’ is significantly

different for the two solutions in this mass region.

7. — PHASE SHIFT ANALYSIS IN THE INELASTIC REGION

Above the KK threshold we cannot impose elastic uni-
tarity. Indeed, the TTW - KK cross-section is observed 24),29) to
rise rapidly to its S wave unitarity limit. Further we can no
ldnger regard the D wave as a small correction. On the other hand
we still want to perform a phase shift analysis at each M“R
independently. We use a similar method to that described in

Sections 4 and 5.

7.1. = Production amplitude analysis

From the observed s channel moments—with Jy M < 4 we
determine the production amplitudes L‘ki with L,A < 2, and extra-
polate S, Po’ DO to the T exchange pole. The data determine the
magnitudes and relative phases of 3, PO, Do’ but not the over-all
phase. In the elastic region unitarity determined the over-all phase,
but in the inelastic region the unitarity constraint is weaker. For
example a solution such as shown in Fig. 16 can be rotated through

any angle provided that the partial waves lie within their unitarity

circles.
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We have tfied several different forms of parametrization
of the s channel amplitudes. As in the elastic region we find that,
as long as we include the A # O amplitudes, the phase shifts are
stable to changes of the form of the parametrization and to change§
of the t interval over which the moments are fitted. The results
we present are based on the parametrization of egns. (18) with the

additional assumptions

D
‘j>(t = /Eg ’E& 359
° (26)

-£I
Dar = g P
(27)

which are motivated by studying the t to s channel crossing matrix.
Equations (26) and (27) are correct provided the main contribution to
the s channel A = 1,2 amplitudes is due to T exchange and its
absorptive correction. This is expected to be a good approximation for
-t < 0.2 GeV2, particularly as A2 exchange decreases *) relative

to T exchange with increasing ]MW" .

In the region 1.0 < M““ < 1.4 GeV we used data 1) in

40 MeV mass bins. In each mass bin we fitted the s channel moments
with J < 4 in the interval 0 < -t < 0.2 GeVQ. A typical fit is
shown in Fig. 17. The two solutions have comparable 0L2 but have
different magnitudes and relative phases of S, PO and Do' We

parametrize the partial wave amplitudes fL of eqn. (8), in the form

X et g L=t
5 - |
L LSL tvr L:O)Z (28)

*
) For instance, for -t > 0.4 GeV2 the moments indicate that the
natural parity exchange contribution is less dominant in the £

region than in the g region.
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and fix the over=-all phase by the choice 85 = 900. The 2/3 is
inserted for even L so that, if there WereAno I=2 TR ampli-
tude, unitarity would require ry < sulsL. This bound is not imposed
in the fit to the data. The results for each 40 MeV mass bin are
listed in Table III. In Fig. 18 they are shown in the form \Eﬁmj1fh,
which represents their relative strength in the production process.

We must now explain why we have shown two solutions.

T7.2. — Zero contours

In addition to the continuum ambiguity of the over-all
phase are there discrete ambiguities in the phase shift analysis ?
Yes, for S, P, D waves there are four solutions giving identical
d6ng /dL2. A useful way 30),31) of seeing this and of keeping
track of the four solutions is to study the zeros of the T T~
scattering amplitude in the complex =z = cosenu plane. These have
been called Barrelet gzeros 32). For S, P, D waves the TN ampli-
tude A(z) will have two such zeros, say at z = z, 8and z = 7.

Thus,

°_(§7mr = A(z) A*(z*) = C(Z-Z,)(Z-Z},) (z—zf‘)(z-zz*>

aQ (29)

and for each z; there is a two-fold ambiguity. Is 2z = z; or

z = zz the zero of A ? For example, at IMw“. = 1.18 GeV from
Solution 1 of Fig. 19 we calculate the zeros and predict the other
three solutions that are shown. Having obtained one solution the
procedure is to use these three predictions as starting values in
the analysis of the observed moments. In this way we obtain four
solutions at each M,,,mt . Two of the solutions (those denoted
Solutions 3 and 4 in the example shown in Fig. 19) are clearly ruled
out by studying continuity of the partial waves with Mtﬂ' . The
real and imaginary parts of the positions of the zercs for the other

two solutions are shown in Pig. 20. By following the zero contours
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we can keep track of the solutions. However, two similar solutions
exist whenever Im z; X 0. For example for M“ﬂ. > 1.26 GeV we have
to use continuity of the zeros to decide which is Solution 1 and which
is Solution 2. We also see that Solutions 3 and 4 will need to be’

considered for Mﬁnr > 1.4 GeV as Im Z, is becoming small.

The actual solutions need not have exactly complex con-
jugate zeros, since, for example, the predicted absorption in the
production process may differ for the solutions and so lead to a dif-
ferent extrapolated TN cross-section, d 6 e /d£f2. Absorption
decreases rapildly with Mgy and in the region above 1 GeV we do,
in fact, have solutions with approximately complex conjugate zeros.
In Fig. 20 we also show the positions of the zeros obtained from the
phase shifts in the elastic region. The two solutions there are not,
in general, due to complex conjugate zeros, but arise because the
production amplitude analysis leads to different extrapolated
d65x /dLQ. For example, at My, ~ 600 MeV there are two solu-

tions with Im z1 > 0 but with partial waves that do not satisfy

unitarity.

It is illuminating to draw the contours of Re z;, on the
Mandelstam plot. They are shown in Fig. 21. The continuation of the
contour Zy towards the Mandelstam triangle has been associated 33)
with the on-shell appearance of the Adler zero. The contour Z, is
reasonably consistent with the propdsal by Odorico 8) that the double

pole killing zeros propagate along straight lines.

Te3e = T partial waves

To determine the TU T partial waves in the inelastic
region it remains to specify the over-all phase at each IM“W . The
possible values are limited by the unitarity constraints on the three
partial waves. Moreover each partial wave must be reasonably continuous
as a function of M“ . Indeed, the presence of the f resonance in

n
this mass region essentially removes the phase ambiguity. Suitably
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rotating the two solutions of Fig. 18 we obtain the partial waves shown
in Figs. 22 and 23, together with their unitarity circles. Solution 1

is selected as the physical solution for the following reasons. In the
region just above the KK threshold the I =0 S wave of Solutiqn 2
contributes very little to 6 (WM — KK) contrary to the data. Further,
the M matrix fits across the KK threshold prefer to join Solution 1
to the physical solution below threshold. Finally, for Mpp > 1.26 GeV

the magnitude of the S wave of Solution 2 violates unitarity.

Notice that in Fig. 22 the P wave lies outside its uni-
tarity circle for Mg > 1.26 GeV. The reason we believe that the
picture is basically correct as it stands, apart from this violation,
is the neglect of the MW F wave. The data that we used did not
include the J = 5 or higher moments and so we were unable to deter-
mine the L = 3 partial wave. On the other hand we investigated the
stability of the analysis to the inclusion of elastic F waveé with
S}?:SSO. We find that the D wave is essentially uachanged and that
the S wave is only slightly altered. The major change is in the P
wave which decreases and rotates in the clockwise direction (for

0

example, for &, = 4° at My, = 1.38 GeV, we finda A &, = -10

and l\rP/rP = —0.12).

To determine the parameters of the f resonance we fift

the resonance form, egn. (22) with

D, () = 9+ 3y + 4y,

to the values of [rDI in the region 1.14 < Mg, < 1.38 GeV. Since
IrDI is well determined and independent of the over-all phase this

procedure should be reliable. We find

Mg = 127112 MeV, e = 18224 Mev

o

xﬁ_ 0'81't 0’01, ’q-& = O'70t O'ng,
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Figure 22 also indicates the presence of a resonant I =0 S wave
under the f, with a mass and width of roughly 1240 and 200 MeV
respectively. To confirm these parameters we wish to include F

waves and to extend the analysis to higher Mg, - .

7.4. - Phase coherent analysis

As in the elastic region we have performed a phase shift
analysis with a simplified form of parametrization, cf. eqns. (25).
We neglect A2 exchange and assume that the absorptive background
C is real relative to T  exchange. We include a common slope
factor, exp[}(t-—/uzzl, in all amplitudes. In addition to the
parameters C and b we have the magnitudes and relative phases of
the S, P, D partial waves. In each 40 MeV mass bin these seven
parameters give a good fit to the s channel moments in the region
0 < -t <«0.1 GeVz. The results for C, b and the I =0 S wave
are shown in Fig. 15, where the over-all phase has been fixed by
requiring the P wave to be elastic. The partial waves are very
similar to the Solution 1 results of Fig. 22. Moreover we also

find a solution almost identical to Solution 2.

A surprising result 34),35) is the rapid decrease of the
strength of absorption, C, with increasing MﬂTt . This could be
anticipated from the data by inspection of the positions of the cross-

over zeros in the s channel <Yi'>» moments. For example comparing

the moments shown at Mpe = 710 Mev (Fig. 10) and at Meew = 1140 MeV
(Fig. 17) we see that at the higher mass the zeros gccu§ at smaller
36)515

|t]. The Williams model, with C = 1, is known to give a
good description of the small t data in the j? region, but is

unsatisfactory in the f region.

"
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8. - S REGION

The data and the phase shift results indicate a dramatic
effect in the I =0 S wave in the region of the XK threshold.
Moreover the effect occurs in a small range of M““, . Up to 980 MeV
and beyond 1 GeV the partial wave amplitudes do not change rapidly,
and yet, in between, the I=0 S wave amplitude has altered drastic—
ally. Clearly to investigate this effect properly we require the
moments for 7(—p'* K.—“+h, together with those for 7‘—p - K K'n
(and KOKOn), in smaller ]ﬂwﬂ bins. However, even a study of the

11
existing data and phase shifts is illuminating.

First we performed an S, P, D wave M matrix fit
directly on the data in the region 920 < Mg < 1080 MeV. That is
we parametrized the production amplitudes as a function of Mwn ’
as well as of t. We did fits with and without effective range terms
in the M matrix. As an alternative approach we also fitted the
I =0 S wave phase shifts (of Figs. 18, 22, 23) to an M matrix
over the same Mu“ region. We discuss the results of the second
method first. The preferred fit was the one which joined the phase
shifts of Solution 1 below the KK threshold to those of Solution 1
above threshold. An example of such a fit is shown in Fig. 24, cor-

responding to an I = O two channel (MM, KK) M matrix

027 083 -1
083 -0:09

The resulting S wave amplitude has a pole on the second Riemann

sheet of the complex energy plane at

* - o
S (W) = 997 - 45 MeV. o)
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The existence of such a pole was suggested by Hoang 37) and sub-
sequently confirmed by Protopopescu et al. 24 whose favoured solution
gives s*¥ = 997 - i27 MeV. In Fig. 24 we compare the S wave contri-
pution to & (MM~ - KK), calculated from Eq. (30), to the data of
Ref. 24). The narrower the peak in this cross-section, the larger the

9)

x coupling to the KK channel .

S

It is interesting to compare the above results with our
M matrix fit directly to the data. There we find a wider S
structure. The reason is that, although the fit basically follows
phase shift Solution 1, it jumps to Solution 2 for a range of Mpar
in the immediate vicinity of the KK threshold. This is likely to
happen in any energy dependent fit to such a narrow structure, and
is well illustrated in Fig. 11 where the solution of Protopopescu
et al. 24) goes from the region of our Solution 1 to Solution 2 just
below the KK threshold. For this reason we believe that such fits

can give misleading s¥ parameters.

The rapidly changing S partial wave in the region of
the KK threshold produces a sharp structure in the zero contours.
For example, in Fig. 24 we show the behaviour of Im Zy calculated
using the parameters of Eq. (30) and reasonable constant values for
the other phase shifts. In the energy dependent fit Im Z is found
to dip to zero less sharply. Comparison with the erergy independent
results of Fig. 20 again emphasizes the need for data in smaller

M bins in this mass region.

TR
Since we predict such a small width for the s¥ it is
clear that the parameters of egns. (30) and (31) are not reliably
determined from the data in 20-40 IleV mass bins. However, the point
we wish to make is that the s* structure is probably much narrower
than hitherto thought. An accurate determination of its parameters

must await more data.
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Regge pole exchange
s ch. hel. amp. ang. mMome. nat. p. unnat. p.
R AT ()
P ~-t!
s
Ans Ap (T4,) (T )
HEZO 1.0 V-t T N
HL’O 0 O const A const
++ 1
s 1 , 41
HE_ 0 2 const A2 + TC 4
y =1 ' - —t !
HE_ 2 0 t A2 T t
71 -+ 1 -t §
H’f'_+ 1 0 V-t Ay, + A, W=t
goo 1 0 V-t A, - A V-t
++ 2 1
N 1 2 g A, + TC (W-t1)7
-2 3
o 5 0 | (V-tr)? 4, + T (-t1)?
TABLE I Regge exchange contributions to the s channel helicity

and their behaviour in
i = O- N is the
The amplitudes L7t+

To leading order

ﬂ}>“(ﬁhﬂ+h
1t =4 -t

system.

amplitudes for
the forward directicn,
TR

are defined in egns. (9).

helicity of the
and L?A—
only the exchanges listed contribute to L7\+

in S,

and L% e
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900 Iied
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)
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shifts,

phase
K
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values

T

in 20 MeV
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FIGURE CAPTIONS

Figure _1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Figure 8

T exchange in M p - TN ta.

»

The upper (lower) points are the corrected (uncorrected)

number of events in AM‘RR A t2 bins with A Mg,
= 20 MeV and O < -t < 0.15 GeV", taken from Ref. 5).
The M= moments are 2N<Y&:>, and not as labelled.

The corrected unnormalized t channel moments,
as a function of TT+7T_ mass for the interval

taken from Ref. 5).

J
N <YM >

0 < -t < 0.15 GeV?,

I =0 S wave in the region
)
<10 >
V2L+1lfL.

T

resonance from a naive study of the

Expectations of the
of the f

moments. The unitarity circles are drawn for

Np - T I,

Variables for the process
The s and t channel axes used to describe the angular
distribution of the produced T TV
The

system as seen from
T p -

The two choices of the =z

its rest frame. y axis is normal to the
- (T )n reaction plane.

axis are shown.

Vectors representing the unnatural parity exchange ampli-
tudes. The components S, Pﬂ and PO are well deter-
mined by the data, whereas essentially only the product

PL sS4,

of the perpendicular components, is measured.

channel amplitude components

700 < Mppe <
The points are the solutions obtained at the

The two solutions for the s
calculated from the data in the mass bin
< 720 MeV.

different t values and the dashed lines represent the re-
S/PO.
obtained from the parametric fit to the data that is

sulting average values of The continuous lines are

described in Section 5.
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Figure 9 The S and P wave NN phases at Mpp = 710 MeV
obtained by extrapolating the amplitude solutions of
Fig. 8. The scale of the unitarity circles (1: 2/3v"3)
represents the relative size of the amplitudes in the
production process. The length OOS is the input I = 2
S wave. The crosses are the S wave results obtained
from the dashed lines of Fig. 8. The black dots are the
results of the parametric fit with elastic unitarity

imposed.

Figure 10 The fits to the s channel moments with J <2 at
Myqg = 710 MeV corresponding to Solutions 1 and 2 of
Table II. The description of the J = 3 moments is

also shown (8% = 4.5°).

Figure 11 The S and P wave TN phase shifts, 8; and gP’
below 1 GeV determined from the T p - T %K 'n ampli-
tudes. The values are listed in Table II. Solution 1
is the physical solution. For comparison the dashed line

is the favoured solution obtained by Protopopescu et al. 24).

Figure 12  The histogram is the TO°NR® mass spectrum for
2/,~2<—t <8me from T p- W°W°n at 8 GeV/c 26)
The circles (triangles) are the shape of the spectrum
calculated from the T T phases of Solution 1 (Solution

2) respectively. The scale is arbitrary.

Figure 13 S, P denote Solution 1 at MKW = 930 MeV. The solution

S', P', with an inelastic P wave gives a comparable fit

to the data.

Figure 14 The t dependence of the s channel <Y2:> moment in
three typical 20 MeV Mﬂ“ bins. The curves are the
description of the data for SS = 4.50.



Figure 17

Figure 18

Figure 19

Figure 20

Figure 21
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i
Some results of a phase shift analysis using a simplified

parametrization, eqns. (25). The results above 1 GeV are
discussed in Section 7.4.
Dominant N exchange amplitudes. Only the magnitudes

and felative phases are determined.

The fits to the s channel moments in a typical mass bin,
1.12 <:MR“ < 1.16 GeV. The partial wave parameters are
given in Table III.

Two solutions for the TC T partial wave amplitudes fp
(scaled by ~2L+1) found by analyzing T p - T T*n
data in 40 MeV mass bins in the range 1.0 < Mpe < 1.4

GeV. We choose SI>= 90°. Typical errors are shown at
.M““ = 1.1 and 1.3 GeV. The results are listed in
Table III.

The four solutions at M““ = 1.18 GeV.

+ —
The positions of the zeros, z = z;, of the M T
amplitude as calculated from the two partial wave solu-

tions listed in Tables II and III. =z is the cosine of

the WIC c.m. scattering angle.

The zero contours in the Mandelstam plot.

The physical solution, Solution 1, for the MM partial

wave amplitudes above 1 GeV. The I =0 S wave, P wave

and I = 0 D wave unitarity circles are in the ratio
2 2

—iANS5: .

SRERE

The MM partial waves for the unphysical solution,

Solution 2.



Figure 24
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The I =0 S wave unitarity circle. The open circles
are Solution 1 of the energy independent analysis. The
black dots come from the sample M matrix fit. The last
curve is the behaviour of Im z, (cf. Fig. 20) calcylated
using the M ratrix and assuming that Sg = —200,

S, = 156°, 8% = 6°.
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EXTRAPOLATED S,P,,D,

PRODUCTION AMPLITUDES (1.0 <My <14 GeV )
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nm PARTIAL WAVES (10<M,<14 GeV)
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