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Convex hull alignment through translation

Michael Hoffmann∗ Vincent Kusters∗ Günter Rote† Maria Saumell‡ Rodrigo I. Silveira§

Abstract

Given k finite point sets A1, . . . , Ak in R2, we are inter-
ested in finding one translation for each point set such
that the union of the translated point sets is in convex
position. We show that if k is part of the input, then it
is NP-hard to determine if such translations exist, even
when each point set has at most three points.

The original motivation of this problem comes from
the question of whether a given triangulation T of a
point set is the empty shape triangulation with respect
to some (strictly convex) shape S. In other words, we
want to find a shape S such that the triangles of T are
precisely those triangles about which we can circum-
scribe a homothetic copy of S that does not contain
any other vertices of T . This is the Delaunay criterion
with respect to S; for the usual Delaunay triangulation,
S is the circle.

1 Introduction

We study the following problem: given k finite point
sets A1, . . . , Ak in R2, are there translations t1, . . . , tk
such that the union of all ti(Ai) is in convex position?
For k = 1 the problem is simply convexity testing. For
k = 2, the problem can be solved using linear program-
ming, under the additional assumption that the order of
points along the convex hull is fixed. Even without this
assumption, the case k = 2 is solvable in polynomial
time: if there is a solution for a given instance, then
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there is also a solution where a point p from the first
set is collinear with two points q and r from the second
set. For each such triple, it remains only to determine
where p should be placed along the line qr, which can
easily be done in polynomial time.

For general k (being part of the input), the straight-
forward formulation does not yield a linear program, be-
cause triples of points may come from different polygons
and, thus, involve several translations, which makes the
constraints quadratic. Similarly, the problem is easy if
the size of the point sets is at most two: sort the line
segments s1, . . . , sn by increasing slope and translate
such that the right endpoint of each si is identified with
the left endpoint of si+1. In contrast we prove that the
general problem is NP-hard by reduction from 3-SAT:

Theorem 1 Given k finite point sets A1, . . . , Ak in R2,
it is NP-hard to decide if there are translations t1, . . . , tk
such that the union of all ti(Ai) is in convex position.

The reduction uses point sets of size three, as well as a
regular polygon with size linear in the size of the 3-SAT
formula. We also show that this regular polygon can be
replaced by a set of triangles:

Theorem 2 Given k finite point sets A1, . . . , Ak in R2,
it is NP-hard to decide if there are translations t1, . . . , tk
such that the union of all ti(Ai) is in convex position,
even if each Ai has size at most three.

Motivation. The original motivation of this problem
comes from the question of whether a given triangu-
lation T of a point set is the empty shape triangula-
tion [10, 11] with respect to some (strictly convex) shape
S (Problem A). In other words, we want to find a shape
S such that the triangles of T are precisely those tri-
angles about which we can circumscribe a homothetic
copy of S that does not contain any other vertices of T .
This is the Delaunay criterion with respect to S. For
the usual Delaunay triangulation, S is the circle.

An abstraction of this question is the following more
general problem (Problem B). We are given families
(P+

i , P
=
i , P

−
i )i=1,2,... of point sets. We look for a

(strictly) convex shape S with the following property:
for each i, we can scale and translate S so that the three
sets P+

i , P
=
i , P

−
i lie inside S, on the boundary, and out-

side S, respectively.
In Problem A, each P=

i is a triplet corresponding to a
triangle, and P−i is the complementary set of points. P+

i



25th Canadian Conference on Computational Geometry, 2013

is always empty. Equivalently, we may form quadruples
with three triangle points P=

i and each remaining point
as a singleton set P−i .

We obtain a variation of this problem (Problem B′)
by allowing only translation of S, but no scaling. Let
Problem C be the special case of Problem B where P+

i =
P−i = ∅ and let Problem C′ be the same special case of
Problem B′. The problem that we consider in this paper
is problem C′. Thus, our answer to problem C′ does
not imply an answer to our original question, since it
is more specialized in one respect (allowing translations
only) and more general in another respect (considering
arbitrary point sets P=

i ).

Related work. We are not aware of previous work on
the related problems mentioned above. Regarding our
main motivation, Problem A, quite some work has been
devoted to studying properties of Voronoi diagrams and
their duals—often triangulations—based on a particular
convex distance function (see e.g. [6, 12]), but not, to the
best of our knowledge, to tackling the inverse question
in which we are interested here.

The problem of finding a set of translations to place
a set of points in convex position is related to certain
matching and polygon placement problems. In some
matching problems the goal is to find a rigid motion of
one shape to make it as similar as possible to another
shape. Here, similarity can be measured in a variety of
ways, such as using Hausdorff distance [2], Fréchet dis-
tance [3] or maximizing their area of overlap [7], among
others. Polygon placement problems are usually con-
cerned with finding a transformation of a polygon to
place it inside another polygon or to contain/avoid cer-
tain objects (such as points or other polygons). Multi-
ple variants have been studied in the past, depending on
the type of polygon (e.g. convex [14] or simple [4]), the
type of transformation (e.g. translation versus transla-
tion and rotation [4]), and the final goal (e.g. to fit the
largest possible copy of a polygon inside another one [1],
or to cover as many points as possible [8]). We remark
that, besides having clearly different goals, these prob-
lems are usually concerned with two single shapes or
objects, whereas we are interested in translating k > 2
points sets altogether.

2 Reduction from 3-SAT

This section is devoted to the proof of Theorem 1. We
prove the theorem by reduction from 3-SAT. Given a 3-
SAT formula F with variables x0, . . . , xn−1 and clauses
C0, . . . , Cm−1, construct point sets as follows.

Let R = r0, r
′
0, . . . , rt−1, r

′
t−1 be a regular1 convex

1A sufficiently fine rational approximation [5] of R suffices.
The main property of R that is important for our reduction is
that opposite sides are parallel.

polygon on 2t = 8n+16m points centered at the origin.
Given an edge rir

′
i of R, we define the pocket Pi of rir

′
i

to be the compact set bounded by the line segment rir
′
i

and the lines `− through r′i−1ri and `+ through r′iri+1.
The intersection of `− and `+ is the apex of pocket Pi.
Our reduction relies on the following fact: if a point
p is placed on an open line segment rir

′
i, then placing

a point q in Pi \ rir′i destroys convexity of R ∪ {p, q}.
We say that p blocks the pocket Pi. Unblocked pockets
are called free. Note that placing a point in Pi does not
prevent us from placing a point in any other pocket. We
say that two convex sets are compatible if their union is
convex.

Variable gadget. In order to encode the variables
of our formula, we will first define triangles Qd

i =
(qi, qi+d, qi+t/2) for 0 ≤ i < t and 0 ≤ d < t as follows
(note that in this section all indices are taken modulo t,
and that t is even). Consider the diametrically opposed
segments rir

′
i and ri+t/2r

′
i+t/2. Place qi+t/2 on ri+t/2

and place qi+d on the apex of Pi+d (Figure 1). Trans-
late qi+t/2 and qi+d rigidly, parallel along ri+t/2r

′
i+t/2

until qi+d hits the line segment ri+dr
′
i+d. Now place qi

on ri. Note that Qd
i can slide freely along rir

′
i until:

(1) qi hits ri and qi+d hits the line segment ri+dr
′
i+d:

moving further would move qi+d inside the convex
hull of R; or

(2) qi+t/2 hits ri+t/2 and qi+d hits the apex of Pi+d:
moving further would push qi+d outside the pocket,
removing ri+d and r′i+d from the joint convex hull.

Pi

Pi+t/2

ri

ri+d

r′i

qi+d

qi

ri+t/2

qi+t/2

Figure 1: The construction of variable gadget Qd
i . The

figure shows the two extreme positions of the gadget.

Since rir
′
i and ri+t/2r

′
i+t/2 are diametrically opposed

segments, moving Qd
i in any other direction would place

either qi or qi+t/2 inside the convex hull of R. For
most of the compatible translations, the pockets Pi and
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Pi+t/2 are both blocked. However, for the two extreme
positions (shown in Figure 1), where qi+d touches the
apex or the line segment, exactly one of the pockets is
free.

We say that the state of Qd
i is true if Qd

i does not
block Pi, false if it does not block Pi+t/2 and undefined
if Pi and Pi+t/2 are both blocked. After defining the

other two gadgets, we will associate some Qd
j with each

variable xi, with the interpretation that xi is true if and
only if the state of Qd

j is true and x̄i is true if and only if

the state of Qd
j is false. If the state of Qd

j is undefined,
then both xi and x̄i are false. Note that if R and a
translation of Qd

i are compatible, then xi and x̄i are
not both true.

Copy gadget. Given a variable gadget Qd
i , we can

copy the state of Qd
i with the gadget Qd−k

i+k , provided
k 6∈ {0, t/2, d}. This can be seen as follows. Assume
for the moment that Qd

i is in one of its two extreme po-
sitions. The gadget Qd−k

i+k shares the pocket Pi+d with

Qd
i (see Figure 2). If Qd

i touches the apex of Pi+d (as
in Figure 2), then so must Qd−k

i+k in order to be com-

patible with R and the translation of Qd
i . Similarly,

if Qd
i touches the open line segment ri+dr

′
i+d, then so

must Qd−k
i+k . Hence, the state of Qd−k

i+k is completely de-

termined by the state of Qd
i . Specifically, the state of

Pi is copied to Pi+k and the state of Pi+t/2 is copied

to Pi+k+t/2. If Qd
i is not in an extreme position, then

neither is Qd−k
i+k and hence both states are undefined.

Pi

Pi+t/2

ri

qi+d

ri+k

Pi+k

Pi+k+t/2

ri+dqi

ri+t/2 =
qi+t/2

qi+k

ri+k+t/2 =
qi+k+t/2

Figure 2: The construction of copy gadget Qd−k
i+k with

k = −1.

Clause gadget. Given i, j and k, let Tijk be the trian-
gle whose vertices ti, tj , tk are the midpoints of the seg-

ments rir
′
i, rjr

′
j and rkr

′
k, respectively. For each clause

C on variables x, y, z, we will use three copy gadgets to
copy the states of the literals x (or x̄), y (or ȳ) and z
(or z̄) of C to pockets Pi, Pj , Pk such that Tijk contains
the origin. Some care must be taken to ensure that this
clause does not interfere with existing gadgets, but we
will cover this issue in the subsection below. Figure 3
shows an example for a clause C = x ∨ ȳ ∨ z. Only the
relevant corner of each copy gadget is shown.

x

ȳ

z

Figure 3: The construction of a clause gadget for a
clause C = x ∨ ȳ ∨ z.

Note that x and ȳ are both in the false (or undefined)
state, whereas z is in the true state. We now scale
Tijk by a factor of 1 + ε for ε sufficiently small. Since
triangle Tijk contains the origin, it no longer fits inside
R. If it did not contain the origin, a small translation
towards the origin would potentially bring it back in
convex position with R. If one of the pockets Pi, Pj

or Pk is free, e.g. Pi, then we can translate Tijk such
that tj is again on rjr

′
j and tk is again on rkr

′
k and ti

is inside Pi. This translation of Tijk is compatible with
R: hence, the clause C is satisfied. If all three pockets
are blocked, then there is no translation for which Tijk
is compatible with R and hence C is not satisfied.

Selecting the gadgets. We are now ready to explic-
itly define the gadgets to be used for the given 3-
SAT formula F with variables x0, . . . , xn−1 and clauses
C0, . . . , Cm−1. We partition the polygon into paths
A,B′1, B2, Q,B

′
3, X,A

′, B1, B
′
2, Q

′, B3, X
′ as shown in

Figure 4. The paths A, Q, A′ and Q′ all have length
2n. The other paths have length 2m. Hence R has size
2t = 8n + 16m. We will not use the paths X, Q′ and
X ′. Associate with each variable xi the variable gadget
Q2m+n

i . This places the variable gadgets in paths A, Q
and A′. For each clause Ci = {`a, `b, `c} add copy gad-
gets as follows. If `a = x̄a (i.e. the literal is negative),
then add Qa+2m−i

i+n to copy the value of xa to the ith
pocket in B′1. This copies the value of x̄a into the ith
pocket in B1. Alternatively, if `a = xa (i.e. the literal is
positive), then add Qa−2n−2m−i

i+3n+4m to copy the value of xa
to the ith pocket in B1. Copy `b and `c analogously to
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B2 and B3 and add the clause gadget corresponding to
the selected pocket. Note that any triangle of vertices
selected from B1, B2, B3 contains the origin.

A′

Q

B1

B′
1

B2

B′
2

B3

B′
3

X

Q′

X ′
A

Figure 4: Placing the gadgets on the polygon.

Correctness. If our 3-SAT formula F is satisfiable,
then set the state of the initial variable gadgets accord-
ing to a satisfying assignment of F . The copy gadgets
preserve the state of these initial variable gadgets, so
each clause gadget has at least one free pocket. Hence,
the union of R with all gadgets is in convex position.
Conversely, if F is unsatisfiable, then suppose for the
sake of obtaining a contradiction that the union of R
with all gadgets is in convex position. Consider the as-
signment α of F corresponding to the state of the vari-
able gadgets (this may set some xi and x̄i both to false).
Since F is unsatisfiable, there must be a clause C that
is not satisfied by assignment α. Since the copy gad-
gets preserve the state of the original variable gadgets,
all pockets of C are blocked. Hence, C is not compat-
ible with the other gadgets and the union of R with
all gadgets cannot be in convex position, which yields a
contradiction. Theorem 1 follows.

3 Replacing a regular polygon by triangles

In this section we show that we can replace the regular
polygon from our reduction above by a set of triangles.
This will prove Theorem 2.

Proposition 3 Let p1, p2, . . . , pn be the vertices of a
regular n-gon in counterclockwise order. Let us consider
the family of triangles

T = {4p1p2p3,4p2p3p4, . . . ,4pnp1p2,
4p1p2pn−2,4p2p3pn−1, . . . ,4pnp1pn−3}.

Let S be a point set obtained by translating each triangle
in T independently. If S is in convex position, then S
consists of the vertices of a regular n-gon.

The rest of this section is devoted to the proof of Propo-
sition 3. For a given set S of points in the plane, let
CH(S) denote the vertices of the convex hull of S.

Let T ⊆ T . Suppose that every triangle Ti ∈ T is
translated according to some vector λi, and let STλ be
the resulting set of points. We call STλ a geometric
placement of T . A placement of T is called combinato-
rial if the order of the vertices of T around the convex
hull is known, but not the exact position of the trian-
gles. We say that STλ satisfies the convex condition if
all points of STλ belong to CH(STλ). In this case we
might also say that the placement of the triangles is
valid. We say that p ∈ STλ violates the convex condi-
tion if p /∈ CH(STλ).

Every vertex of the regular n-gon belongs to sev-
eral triangles of T . To distinguish the distinct copies
of the vertex, we use superscripts, so for example pi1
will denote vertex p1 in some particular triangle of
T . We set T1 = 4p11p12p13, T2 = 4p22p23p24, . . ., and
Tn = 4pnnpn1pn2 . We also set Tn+1 = 4pn+1

1 pn+1
2 pn+1

n−2,

Tn+2 = 4pn+2
2 pn+2

3 pn+2
n−1, . . . , and T2n = 4p2nn p2n1 p2nn−3.

We assume that n is a multiple of 4, that the regular
n-gon is oriented so that two of its sides are horizontal,
and that p2p3 is the bottom horizontal side.

Observation 1 Let p ∈ S ⊆ S′. If p /∈ CH(S), then
p /∈ CH(S′).

Lemma 4 Let T = {T1, T2}. Suppose that STλ sat-
isfies the convex condition, and p12p

1
3 is not collinear

with p22p
2
3. Then the counterclockwise order of STλ in

CH(STλ) is either p11p
1
2p

2
2p

2
3p

2
4p

1
3 or p11p

1
2p

1
3p

2
3p

2
4p

2
2.

Proof. Suppose that we fix the position of T1. Then if
we extend the line segments of T1 to lines, the plane
is decomposed into four open regions F1, . . . , F4 and
three closed regions R1, . . . , R3, as shown in Figure 5.
It is easy to verify that in order to satisfy the convex
condition, no point of T2 can lie in any of the regions
F1, F2, F3, and no vertex of T2 can lie in F4. In par-
ticular, p22, p

2
3, and p24 can lie only in R1 ∪ R2 ∪ R3. In

principle, there are 27 cases to consider, based on all
possible combinations. Fortunately, we only need to
distinguish a few situations.

p11

p12 p13

R1

R2

R3

F1

F2

F3

F4

p22 p23

p24

Figure 5: A valid combinatorial placement of T1 and T2.

We first suppose that p22 ∈ R1. Notice that in this
case it is not possible that p23 ∈ R2 or p23 ∈ R3. So
we can assume that p23 ∈ R1. Now we can easily rule
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out the case p24 ∈ R3. Point p24 cannot lie in R2 ei-
ther, because in this case the side p23p

2
4 would intersect

F3. Therefore p24 can lie only in R1. This gives a valid
combinatorial placement of T1 and T2 where the coun-
terclockwise order of STλ in CH(STλ) is p11p

1
2p

2
2p

2
3p

2
4p

1
3

(see Figure 5).
Next suppose that p22 ∈ R2. Then, p23 ∈ R2 and p24 ∈

R2. This gives another valid combinatorial placement
of T1 and T2 where the counterclockwise order of STλ

in CH(STλ) is p11p
1
2p

1
3p

2
3p

2
4p

2
2 (see Figure 6). Note that

there are no other possible combinatorial placements
since we assume that p12p

1
3 and p22p

2
3 are not collinear.

p11

p12 p13

R1

R2

R3

F1

F2

F3

F4

p22 p23

p24

Figure 6: A valid combinatorial placement of T1 and T2.

Finally suppose that p22 ∈ R3. Then, p23 /∈ R1 and
p24 /∈ R1. Recall that p22 is on the same horizontal line
as p23 and to its left, and p24 is above and to the right
of p23. If p23 ∈ R2 and p24 ∈ R2, then we have that
p13 is below and to the right of p23. Consequently, p23
lies inside the triangle 4p22p24p13 and violates the convex
condition. The combination p23 ∈ R2 and p24 ∈ R3 is not
possible. If p23 ∈ R3, then we have that p12 is below and
to the right of p23 (since we are assuming that p12p

1
3 is

not collinear with p22p
2
3). Consequently, p23 lies inside the

triangle 4p22p24p12 and violates the convex condition. �

Lemma 5 Let T = {T1, T2, Tn2 +1, Tn2 +2}. If STλ sat-

isfies the convex condition, then p12p
1
3 is collinear with

p22p
2
3.

Proof. [Sketch] Due to space limitations, we only
sketch the proof here. It suffices to prove that the
combinatorial placements for 4p11p12p13 and 4p22p23p24 of
Lemma 4 are no longer valid. To show that the com-
binatorial placement in which the counterclockwise or-
der around the convex hull is p11p

1
2p

2
2p

2
3p

2
4p

1
3 is no longer

valid, we try to add Tn
2 +1 to the placement, and prove

that this is not possible. The other combinatorial place-
ment from Lemma 4 can be ruled out analogously. �

By symmetry, we have the following corollary:

Corollary 6 If STλ satisfies the convex condition, then
p12p

1
3 is collinear with p22p

2
3, p23p

2
4 is collinear with

p33p
3
4, . . ., and pn1p

n
2 is collinear with p11p

1
2.

Lemma 7 If STλ satisfies the convex condition, then
p12p

1
3 is collinear with p22p

2
3, and p12 is not right of p22.

We omit the proof due to space considerations.
Suppose that, in some placement of Ti−1 and Ti,

pi−1i pi−1i+1 is collinear with piip
i
i+1. Suppose that we ro-

tate the triangles so that Ti−1 has the same orientation
as T1 and Ti has the same orientation as T2. We say
that Ti−1 and Ti cross if, after this rotation, pi−1i is to
the right of pii. By symmetry, we have the following
corollary, which subsumes Corollary 6 and Lemma 7:

Corollary 8 Suppose that STλ satisfies the convex con-
dition. Then p12p

1
3 is collinear with p22p

2
3, p23p

2
4 is

collinear with p33p
3
4, . . ., and pn1p

n
2 is collinear with p11p

1
2.

Furthermore, none of the pairs {Ti, Ti+1} cross.

Lemma 9 Suppose that STλ satisfies the convex condi-
tion. Then p12p

1
3 is collinear with p22p

2
3, and p12 is not to

the left of p22.

Proof. We proceed by contradiction. Consider the reg-
ular n-gon having one side at p22p

2
3. Since none of the

pairs {Ti, Ti+1} cross, this polygon lies inside the poly-
gon formed by the placement of T1, . . . , Tn (see Figure 7
for an example). Since we are assuming that p12 is to
the left of p22, we also have that pn of the polygon lies
strictly inside (that is, not on the boundary) the polygon
formed by the placement of T1, . . . , Tn. We now try to
place Tn+3. In order to maintain the convex condition,
the vertices of Tn+3 must be placed on the boundary
of the polygon formed by the placement of T1, . . . , Tn,
or on the triangles bounded by an edge of the polygon
and two dotted segments shown in Figure 7. Such a
placement of Tn+3 is not possible. �

By symmetry, we obtain the following corollary, which
subsumes Lemma 9 and Corollary 8:

Corollary 10 Suppose that STλ satisfies the convex
condition. Then p12 is on the same position as p22,
p23 is on the same position as p33, . . ., and pn1 is on
the same position as p11. Equivalently, the vertices of
4p11p12p13,4p22p23p24, . . . ,4pnnpn1pn2 form a regular n-gon.

To complete the proof of Proposition 3, it only re-
mains to see that the triangles Tn+1, Tn+2, . . . , T2n are
also placed in the “natural” way. We prove it in the
next lemma for Tn+2 and, by symmetry, the result also
holds for the other triangles.

Lemma 11 Suppose that STλ satisfies the convex con-
dition. Then, 4pn+2

2 pn+2
3 pn+2

n−1 is placed so that pn+2
2 is

on the same position as p22.
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pn1

pn2

pnn

p11

p12 p13p22 p23

p24
pn+3
4

pn+3
3

pn+3
n

Figure 7: The vertex pn+3
n cannot be placed in Lemma 9

if p12 is to the left of p22 (case 1).

Proof. We know that the vertices of T1, T2, . . . , Tn form
a regular n-gon. In order to maintain the convex condi-
tion, the vertices of Tn+2 must be placed on the bound-
ary of the regular n-gon or on the triangles bounded by
an edge of the polygon and two dotted segments shown
in Figure 8. It is clear that the only way to do it consists
in placing pn+2

2 on the same position as p22. �

p22 p33pn+2
2

pn+2
3

pn+2
n−1

Figure 8: Points with the same superscript must again
coincide after the translations.

4 Concluding remarks

If we allow scaling in addition to translation (Problem C
from the introduction), then it is not known if the prob-

lem is still NP-hard. In addition, it is not clear if our
problem is in NP. The obvious certificate would be the
sequence of translations, but one must argue that the
representation of these translations is not too large in
terms of the input representation. In fact, our problem
has some similarities to the order type realizability prob-
lem, which is known to be complete for the existential
theory of the reals [13], and the coordinate representa-
tion of some order types requires exponential storage [9].

Acknowledgments. This research was initiated during
a EuroGIGA workshop in Assisi (Italy) in March 2012.
We thank Jan Kratochv́ıl, Tillmann Miltzow, Alexander
Pilz, and Vera Sacristán for helpful discussions.

References

[1] P. K. Agarwal, N. Amenta, and M. Sharir. Largest
placement of one convex polygon inside another. Dis-
crete Comput. Geom., 19(1):95–104, 1998.

[2] H. Alt, B. Behrends, and J. Blömer. Approximate
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