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Abstract

In this paper we introduce a variation on the multidi-
mensional segment tree, formed by unifying different in-
terpretations of the dimensionalities of the levels within
the tree. Nodes in the resulting d-dimensional structure
can have up to d parents and 2d children. In order to
better visualize these relationships we introduce a di-
amond representation of the data structure. We show
how the relative positions of the nodes within the dia-
mond determine the possible intersections between their
representative regions. The new data structure adds the
capability to detect intersections between rectangles in
a segment tree. We use this to solve the “Rectangle
Intersection Problem” with a more straightforward al-
gorithm than has been used previously.

1 Introduction

The Segment Tree is a classic data structure from com-
putational geometry which was introduced by Bentley
in 1977 [1]. It is used to store a set of line segments, and
it can be queried at a point so as to efficiently return a
list of all line segments which contain the query point.
The data structure has numerous applications. For
example, in its early days it was used to list all pairs
of intersecting rectangles from a list of rectangles in the
plane [2], to report all rectilinear line segments in the
plane which intersect a query line segment [9], and to
report the perimeter of a set of rectangles [12]. More
recently the segment tree has become popular for use in
pattern recognition and image processing [7].
Vaishnavi described one of the first higher dimen-
sional segment trees in 1982 [8]. Introducing his two-
dimensional segment tree as a self-described “segment
tree of segment trees”, he attached an “inner segment
tree”, representing one dimension, to every node of an
“outer segment tree”, representing another dimension,
and used this for the purpose of storing rectangles in
the plane. A point query would then return a list of all
rectangles containing the point. The recursive nature of
this data structure meant that it could be generalized
to arbitrary dimensions. This has been the standard
model for high dimensional segment trees ever since.
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In this paper, we describe a variation on the higher
dimensional segment tree. In two dimensions, this new
data structure is formed by merging the two segment
trees which would be formed from different choices for
the dimensions of the inner and outer segment trees.
Our purpose in introducing this variation is not to show
that it is faster for a particular application, but rather
that it supports an additional operation, namely the
detection of rectangle intersections, while retaining the
structure and functionality of a segment tree.

In the following sections, we will define the data struc-
ture, and show a useful way to visualize it. We introduce
several new definitions as they apply to this variation of
data structure. We further show some relationships be-
tween the nodes, and the regions those nodes represent.

Finally, we demonstrate that the data structure can
be used to solve the “Rectangle Intersection Problem”.
Existing methods to solve this problem have either in-
volved using range trees, storing d-dimensional rectan-
gles as 2d-dimensional points [3], or sweep planes, pro-
cessing a lower dimensional problem across the sweep
[4]. We think that our new data structure represents
a more natural way to store this data, and it allows a
greatly simplified rectangle intersection algorithm.

2 Segment Tree Properties

In later sections, we will refer to several well known
properties of a one-dimensional segment tree. We list
them here for the conveniece of the reader.

Property 1 A segment tree storing n segments has a
height of O(logn).

Property 2 A segment stored in a segment tree is split
into a canonical representation of O(logn) subsegments,
each of which is stored at a different node of the tree.

Property 3 The ancestors of the nodes of the canon-
ical representation of a segment consist of, at most,
O(logn) nodes.

Property 4 O(logn) time is required to insert a seg-
ment or to query a point in a Segment tree.

Property 5 If two distinct nodes each store a segment
in a segment tree, and one node is a descendant of the
other, then the segment of the descendant node is com-
pletely contained within segment of the ancestor node.
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Property 6 If two distinct nodes each store a segment
in a segment tree, and neither node is an ancestor of
the other, then the two segments are disjoint.

The next property is perhaps less well known, but it
follows directly from the previous two properties.

Property 7 Two line segments stored at any two nodes
i a segment tree are either disjoint, or one is completely
contained in the other.

3 Two-dimensional Segment Trees

Here we introduce a number of definitions relating to
the Unified Segment tree. We begin with a description
of the two-dimensional segment tree given by Vaishnavi
in 1982 [8]. Although we will focus primarily on two
dimensions hereafter, almost every concept we will de-
scribe generalizes into arbitrary dimensions.

Construction of the Vaishnavi segment tree begins
with a single one-dimensional segment tree, called the
“outer segment tree”, which represents divisions of the
plane along one of the two axes. Attached to every node
of this outer segment tree, is an “inner segment tree”,
representing further subdivisions along the other axis.

Note that the choice of axis for the outer segment
tree could have been either the z-axis or the y-axis.
Although this choice is arbitrary, it has a great effect
on the organization of the data structure. Therefore, let
us give different names to the different data structures
resulting from this choice.

Definition 1 (zy-segment tree) Let the xy-segment
tree be the Vaishnavi two-dimensional segment tree
whose outer segment tree divides the plane along the x-
axis, and whose inner segment trees further divide these
regions along the y-azxis.

Definition 2 (yxz-segment tree) Let the yz-segment
tree be the Vaishnavi two-dimensional segment tree
whose outer segment tree divides the plane along the y-
axis, and whose inner segment trees further divide these
regions along the x-axis.

A rectangle inserted into a two-dimensional segment
tree is first divided into subrectangles along one axis,
and then further subdivided along the other axis. These
subrectangles are then stored in the nodes of the tree,
and if necessary any ancestors of these nodes are cre-
ated. We show here that the order of these two axes
does not affect the set of subrectangles.

Theorem 1 A rectangle inserted into an xy-segment
tree and into a yx-segment tree will be stored as an
equivalent set of subrectangles in the each tree.

Proof. Upon insertion into an xy-segment tree, a rect-
angle is first divided along the z-axis, and then along the
y-axis. In the yz-segment tree the order of these axes is
reversed. The canonical subdivisions are the same, re-
gardless of the order in which the two axes are chosen.
Therefore subrectangles created and stored in each of
the trees are the same. 0

Multiple rectangles inserted into a segment tree are
stored independently of each other. So this leads to the
following corollary.

Corollary 2 A set of rectangles inserted into an xy-
segment tree and into a yx-segment tree will be stored
as an equivalent set of subrectangles each tree.

Now we define the Unified Segment Tree in two di-
mensions based on these two structures.

Definition 3 (Unified Segment Tree (in 2 dimen-
sions)) Define the unified segment tree storing a set of
rectangles in the plane to be the data structure created
by the following procedure:

1. Create an xy-segment tree and a yx-segment tree,
and insert the same set of rectangles into both.

2. Merge the root of every inner segment tree with the
node of the outer segment tree to which it is at-
tached, so that they are considered to be one node.

3. Merge any two nodes in the xy-segment tree and
the yx-segment tree which represent the same region
of the plane, so that they become one mode. By
Corollary 2 they would contain the same data.

4. Add all the possible ancestors to any node which is
missing any of its possible ancestors. (Ancestors in
this data structure are defined later.)

We note several features of the new data structure
which are not normally associated with segment trees.
First, a node may have up to two parents, one from
the zy-segment tree and one from the yz-segment tree.
Second, a node may have up to four children, two nodes
each from the xy-segment tree and from the yz-segment
tree. Finally, the new data structure is technically no
longer a tree, as it may contain cycles.

4 Parents, Children, Ancestors, Descendants

In order to accommodate the features of the new data
structure, we must create new definitions of previously
well-defined concepts such as parent and child.

Definition 4 (a-child) Let an z-child of a node be
either of the two nodes representing the regions created
when the original node’s representative region is divided
in half along the x-axis.
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A node can have a left x-child, and a right x-child.

Definition 5 (z-parent) Let the x-parent relation-
ship be the inverse of the x-child relationship.

Definition 6 (z-ancestor) Let an z-ancestor be any
node which can be reached by following a series of x-
parent relationships.

Definition 7 (z-descendant) Let an z-descendant
be any node which can be reached by following a series
of x-child relationships.

Analogous definitions exist for y-child, y-parent, y-
ancestor, and y-descendant.

In addition to z-ancestors, y-ancestors, x-descendants
and y-descendants, we define additional nodes to be sim-
ply ancestors and descendants.

Definition 8 (Ancestor) Let an ancestor of a node
be any node which can be reached by following a series
of x-parent and/or y-parent relationships.

Definition 9 (Descendant) Let a descendant of a
node be any node which can be reached by following a
series of x-child and/or y-child relationships.

Some additional properties can be seen from these
definitions

Property 8 The z-parent of the y-parent of a node is
the same node as the y-parent of its x-parent.

Property 9 The x-children of the y-children of a node
are the same nodes as the y-children of its x-children.

5 \Visualization

We find it useful to visualize the unified segment tree
as a diamond, where the root of the data structure is
at the top of the diamond. We divide the diamond into
units, such that all nodes representing a rectangle of the
same shape and size are located in the same unit.

The two z-children of any node appear in the same
unit below and to the left of their z-parent. The two
y-children of any node appear in the same unit below
and to the right of their y-parent. Thus, each horizontal
row of the diamond has double the number of nodes per
unit, as the row above it. See Figure 1.

It is possible to see the xy-segment tree and the yx-
segment tree embedded in the diamond representation
of the unified segment tree. See Figure 2.

Using this visualization, the ancestors of a node ap-
pear in the diamond shaped region above the node. The
descendants appear in the diamond shaped region be-
low the node. See Figure 3. The number of ancestors
can be bounded as follows.

root root

Figure 1: (a) A diamond-shaped visualization of par-
ent child relationships, and the number of nodes in each
unit of the diamond. (b) The rectangles which are rep-
resented by the nodes in each unit of the diamond.

Figure 2: (a) The zy-segment tree embedded into the
unified segment tree. (b) The yx-segment tree embed-
ded into the unified segment tree.

Theorem 3 A node has at most one ancestor per unit
of the diamond.

Proof. Assume there are two ancestors of a node within
the same unit. These two nodes must represent rect-
angles of the same shape and size, because they are
within the same unit. The representative rectangles
must contain a common point, since the nodes have
a common descendant. The representative rectangles
must not partially overlap, by Property 7 of Segment
Trees. Therefore, the rectangles, and the nodes repre-
senting them, must be the same. O

We think it is interesting that the nodes taken from
the central vertical column of the diamond form a quad
tree, while the central column and a neighboring column
form a k-D tree. See Figure 4 for a depiction of this.

6 Relationships between Nodes

The relative positions of the nodes within a unified seg-
ment tree determine the possible intersections between
the rectangular regions they represent. We examine
that relationship here.

Theorem 4 A node is a descendant of another node,
if and only if it represents a rectangle that falls entirely
within the rectangle represented by the ancestor node.
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(a)

Figure 3: (a) The location of the ancestors and de-
scendants of a node within the diamond. (b) The lo-
cation of x-ancestors, y-ancestors, x-descendants, and
y-descendants within the diamond.
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Figure 4: (a) A k-D tree embedded in the unified seg-
ment tree. (b) A quad tree embedded in the unified
segment tree.

Proof. First, consider two nodes in the segment tree,
one of which is a descendant of the other. The rectan-
gle represented by the descendant was formed by suc-
cessively subdividing the rectangle represented by the
ancestor. Therefore, the rectangle represented by a de-
scendant falls entirely within the rectangle represented
by any of its ancestors.

Next, consider two rectangles represented by two dif-
ferent nodes of the tree, such that one rectangle falls
entirely within the other. Follow the x-parents of the
node representing the smaller rectangle, until a node is
found which has the same size in the x direction as the
larger rectangle. This must have the same z-coordinates
as the larger rectangle, otherwise Property 7 would be
violated. From there, follow y-parents until a node is
found which has the same size in the y direction. This
node must have the same y-coordinates as the larger
rectangle, for the same reason. Therefore it must be the
node which represents the larger rectangle, and the node
representing the smaller rectangle must be a descendant
of the node representing the larger rectangle. O

Theorem 5 Two nodes can have a common ancestor
which is an x-ancestor of one node and a y-ancestor of
the other, if and only if their representative rectangles
completely cross over each other, one in the x direction,
and the other in the y direction (see Figure 5).

]

Figure 5: Possible intersections between rectangles rep-
resented by nodes in a unified segment tree.

=]

Figure 6: Impossible intersections between rectangles
represented by nodes in a unified segment tree.

Proof. Consider any two nodes, having a common an-
cestor which is an z-ancestor of one and a y-ancestor of
the other. The rectangle represented by the common an-
cestor of the two nodes can be formed by expanding one
of the original two rectangles in the z direction, or by
expanding the other in the y direction. Therefore, the
rectangle of the ancestor must be completely spanned
in y direction by the first rectangle, and completely
spanned in the x direction by the other. Therefore the
two rectangles must completely cross each other.

Next, consider two nodes which represent rectan-
gles that completely cross over each other. The small-
est rectangle enclosing both original rectangles can be
found by expanding one rectangle in the z-direction
or by expanding the other rectangle in the y-direction.
Therefore, the enclosing rectangle is represented by an
z-ancestor of one of the original nodes, and a y-ancestor
of the other node. O

Theorem 6 Two rectangles which are represented by
nodes in a unified segment tree may only intersect in
one of two ways. FEither one rectangle can be completely
inside of the other, or the two rectangles can completely
cross over each other, one in the x direction, and the
other in the y direction.

Proof. By enumerating the possible rectangle intersec-
tions, we can see that all other intersections would vio-
late Property 7. See Figures 5 and 6 for a visual depic-
tion of the possible and impossible intersections. O

7 Analysis

Here we analyze the performance of the unified segment
tree, showing bounds on its size, and on the running
time of the standard segment tree operations.

Theorem 7 After the insertion of n rectangles into a
unified segment tree, the deepest x-descendant of the root
and the deepest y-descendant of the root have a maxi-
mum depth of O(logn).
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Proof. Recall that the unified segment tree was created
from an xy-segment tree, and a yx-segment tree. The
outer segment trees of these two trees exactly comprise
the x-descendants and the y-descendants of the root.
By Property 1, these two trees can have a maximum
height of O(logn). O

Corollary 8 Any node in a unified segment tree can
have a mazimum of O(logn) x-ancestors and a mazi-
mum of O(logn) y-ancestors.

Theorem 9 Any node in a two-dimensional unified
segment tree can have a mazimum of O(log®n) ances-
tors.

Proof. A node can have a maximum of O(logn) a-
ancestors, and each of these nodes can have a maximum
of O(logn) y-ancestors. All ancestors can be reached
along one of these routes. 0

Theorem 10 The canonical representation of a rect-
angle in a two-dimensional segment tree is comprised of
a mazimum of O(log® n) subrectangles.

Proof. Any rectangle is decomposed into a maximum
of O(logn) regions in the x direction by Property 2 of
Segment Trees. Each of these regions is further subdi-
vided into a maximum of O(logn) subregions in the y
direction. O

Theorem 11 All nodes representing the canonical sub-
regions of a rectangle have a maximum of O(log2 n) an-
cestors in a two-dimensional unified segment tree.

Proof. The limit on the number of the ancestors of
the canonical representation exists because there can
be no more than 16 ancestors of a given shape. Con-
sider that there are 17 ancestors of a particular shape
in the tree. By Property 7, these shapes cannot over-
lap in their z-coordinates, or their y-coordinates, unless
the coordinates are the same. Since there are 17 dis-
tinct sets of x and y-coordinates, there must be at least
5 distinct pairs of xz-coordinates, or 5 distinct pairs of
y-coordinates. Assume, without loss of generality that
there are 5 distinct pairs of z-coordinates. Consider
the node representing the middle of these 5 pairs of co-
ordinates. The z-parent of the node representing this
rectangle must be located entirely within the original
rectangle. Therefore there is no reason to include the
middle rectangle, or any of its descendants in the canon-
ical representation. O

Corollary 12 Insertion of a rectangle into a two-
dimensional segment tree requires O(log2 n) time.

Corollary 13 A two-dimensional unified segment tree
requires O(n log2 n) space to store n rectangles.

Theorem 14 A point query of a two-dimensional uni-
fied segment tree returns the list of enclosing rectangles
in O(log® n+k) time where k is the number of rectangles
reported.

Proof. A point is represented in a unified segment tree
at the deepest node. All enclosing rectangles are rep-
resented by O(log®n) ancestors of this node. Thus it
is sufficient to report all rectangles stored in all ances-
tors. O

8 Higher Dimensions

Most every aspect of the unified segment tree can be
generalized into arbitrary dimensions in a straightfor-
ward way. In d dimensions, each node can have up to
d parents, 2d children, and O(log?n) ancestors. Inser-
tion requires O(logd n) time. Query requires O(logd +k)
time, where k is the number of results reported. The
entire data structure occupies O(n logd n) space.

9 The Rectangle Intersection Problem

The rectangle intersection problem is a classic problem
dating back to the early days of computational geom-
etry. The problem has been studied by many authors,
and numerous variations have been inspired [5, 6].

Although multiple definitions of the “rectangle inter-
section problem” have appeared in the literature, we use
this definition. Store a set of n axis-parallel rectangles
so that a rectangle query will efficiently report all rect-
angles from the set which intersect the query rectangle.

Edelsbrunner and Maurer gave one of the first gen-
eral purpose algorithms solving this problem in 1981
[4]. Their method involves storing the rectangles in a
combination of segment trees and range trees, and these
are queried to detect four kinds of intersections between
rectangles. In higher dimensions, they sweep across the
problem, solving a lower dimensional problems during
the sweep, and thereby giving an overall solution that
is recursive by dimension.

Edelsbrunner demonstrated two further methods to
solve the problem in 1983 [3]. The first of these involves
storing the d-dimensional rectangle in a 2d-dimensional
range tree, and performing an appropriate range query.
For the second, a data structure called the “rectangle
tree” is developed, and this is queried similarly to the
range tree.

Here we show yet another way to solve this problem
using an augmented version of our unified segment tree.
Our method does not claim a speedup over the previ-
ous methods. However, we feel the unified segment tree
uses a more natural representation of the data than the
range tree or rectangle tree. Additionally, given the ma-
chinery that we have already developed in this paper,
the algorithm is quite straightforward.
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9.1 Augmenting the Unified Segment Tree

For the purpose of supporting a rectangle intersection
operation, we augment each node of the unified segment
tree with the following additional data:

e A list of rectangles in all descendants of the node.
e A list of rectangles in all z-descendants of the node.
o A list of rectangles in all y-descendants of the node.

Thus a node of a two-dimensional augmented segment
tree contains the following information.

struct NODE {

struct NODE * xparent, yparent;

struct NODE * leftxchild, rightxchild;
struct NODE * leftychild, rightychild;
Segment storedHere[];

Segment storedInDescendants[];

Segment storedInXDescendants[];
Segment storedInYDescendants[];

When a segment is inserted, its identifier must be
inserted into all canonical nodes, and all ancestors of
the canonical nodes, in the appropriate lists. In two
dimensions, this does not affect the asymptotic running
time of the insert operation. However, in d dimensions,
there can exist 2¢ separate lists, so an alternate method
of storage may be desirable if d is large.

9.2 Rectangle Query Algorithm

A rectangle query operation returns a list of all rectan-
gles which intersect the given query rectangle. Our algo-
rithm for rectangle query first divides the query rectan-
gle into its canonical regions. It then performs a query
on each rectangle individually, reporting the union of
the rectangles found.

Note that the same rectangle might be found in mul-
tiple places, so care must be taken to avoid reporting
duplicates, if that is undesirable. If duplicates are re-
ported this may adversely affect the running time by a
polylogarithmic factor.

Recall from Theorem 6 that rectangles can only in-
tersect if one is completely inside the other, or if they
completely cross over each other, one in each dimen-
sion. Therefore, it is sufficient to report the rectangles
described in Theorems 4 and 5.

This gives us the following straightforward algorithm,
which is performed on each node representing a subrect-
angle of canonical subdivision of the query rectangle:

1. Report all rectangles stored in ancestors of the
node.

2. Report all rectangles stored in the descendant list
of the node.

3. Report all rectangles stored in the x-descendant list
of a y-ancestor of the node.

4. Report all rectangles stored in the y-descendant list
of an z-ancestor of the node.

This information is available in the ancestors of the
canonical nodes of the query rectangles. So only
O(log® n) nodes need to be accessed. Again care must
be taken to avoid reporting duplicates.
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