
CCCG 2013, Waterloo, Ontario, August 8–10, 2013

How To Place a Point to Maximize Angles

Boris Aronov∗

aronov@poly.edu
Mark V. Yagnatinsky†

myag@cis.poly.edu

Polytechnic Institute of NYU, Brooklyn, New York

Abstract

We describe a randomized algorithm that, given a set of
points in the plane, computes the best location to insert
a new point, such that the Delaunay triangulation of
the resulting point set has the largest possible minimum
angle. The expected running time of our algorithm is at
most cubic on any input, improving the roughly quartic
time of the best previously known algorithm.

1 Introduction

The subject of meshing and specifically constructing
“well behaved” triangulations has been researched exten-
sively [B04]. One of the problems extensively addressed
in the literature is that of refining or improving an ex-
isting mesh by incremental means. Motivated by this,
Aronov et al. [AAF10] considered the following prob-
lem: Given a set of points in the plane, where would
you place one additional point, so as to maximize the
smallest angle in a good triangulation of the point set.
Since Delaunay triangulations are known to maximize
the smallest angle over all possible triangulations with
a given vertex set [S78], the question can be rephrased
as: “Given a point set, where do we place an additional
point, so as to maximize the minimum angle in the De-
launay triangulation of the resulting set?” In the rest
of the paper we always picture the new point as lying
within the convex hull of the existing points, but the
algorithm is essentially the same without this simpli-
fication. (Another variant of the problem mentioned
in [AAF10] involved incrementally improving an existing
triangulation by “tweaking” the position of an existing
interior vertex, one at a time, so that, again, the small-
est angle is maximized.) They also discuss the more
challenging question of how to position several points
in the best possible coordinated way; we do not address
this variant of the problem in the current paper.

The previous algorithm [AAF10] for placing an ad-
ditional point runs in worst-case O(n4+ε) time, for
any ε > 0, with the constant of proportionality de-
pending on ε. We propose a randomized algorithm
whose expected running time is roughly an order of

∗Supported by NSF grants CCF-11-17336 and CCF-12-18791.
†Supported by NSF grant CCF-11-17336.

magnitude lower. Somewhat surprisingly, Aronov et
al. considered and rejected the approach we use in this
paper [AAF10, page 96].

We present our algorithm in the following section. The
analyses of this and the precursor algorithm [AAF10]
are misleading in that they reflect situations unlikely
to happen for “reasonable” inputs. We discuss how to
quantify reasonableness of the inputs and the resulting
behavior of both algorithms in section 3 and conclude
in section 4.

2 The Algorithm

Our algorithm takes a set P of n points in the plane and
computes the best location for a new point p, such that
the Delaunay triangulation of P ∪ {p} has the largest
possible minimum angle; for ease of presentation we
will assume that the points of P are in general position,
that is no three points of P lie on a line and no four
on a circle. We start by recalling an argument detailed
in [AAF10] which duplicates the insertion step of the
standard incremental Delaunay triangulation algorithm
[GS85]. Let T be the Delaunay triangulation of P . We
begin by computing the arrangement A induced by the
Delaunay circles of P , i.e., of the circumcircles of the
triangles of T . Although there are only a linear number of
such circles, in the worst case every pair of them intersect,
so that A has quadratic complexity. We examine how
the Delaunay triangulation Tp of P ∪ {p} differs from T .
Let c be the face of A containing p. Recall that a triangle
is present in a Delaunay triangulation if and only if its
Delaunay disk is empty of vertices. Point p invalidates
some triangles of T by appearing in the interior of the
corresponding disks. After we have inserted p, we no
longer have a triangulation; instead we have a star-
shaped polygonal hole H in T containing p; see Figure 1.
Since the insertion of p only invalidates previously valid
triangles, but cannot make an invalid triangle valid (since
insertion of p can not turn nonempty disks into empty
ones), new edges of Tp must have p as an endpoint. So,
connecting p to all vertices of H (Figure 1, right) is
the way to complete Tp. This suggests this algorithm
outline:

1. Compute the Delaunay triangulation T .
2. Build the arrangement A of Delaunay circles of T .

25th Canadian Conference on Computational Geometry, 2013

p

T

p

Tp

Figure 1: The new point p is in the kernel of the shaded star-shaped polygonal hole H. Removed edges of T are
shown dashed (left) and added edges are dotted (right).

3. For each of the O(n2) cells c ∈ A:
(a) Find the set of O(n) triangles invalidated by

placing p in c, the union of which forms the
hole H.

(b) Optimize the placement of p in c.
4. Return the best placement of p found.

This outline was in fact used in [AAF10]. The main
contribution of this paper is to use a different approach
for step 3b. Specifically, in [MSW96], it was shown that
the following is an LP-type problem.1

Given a star-shaped polygonH, find the point p
in its kernel that maximizes the smallest angle
in the triangulation that results by connecting p
to all vertices of H.

Being an LP-type problem, it can be solved in expected
time linear in the number of polygon vertices, while the
approach from [AAF10], based on explicitly computing
lower envelopes of bivariate functions, takes time roughly
quadratic in the number of vertices. However, this LP-
type problem is not quite the problem we actually wish
to solve, as we need the optimal placement of p within
the current cell c, which is why this idea was rejected
in [AAF10]. Fortunately, there is a conceptually simple
fix. In the region search stage of our procedure, for each
cell c, we run the algorithm from [MSW96] discarding
the result if the returned optimum lies outside c. A
simple argument (see Lemma 1 below) shows that if
the solution to the unconstrained problem results in a
point not in c, then the optimum within c must lie on
its boundary. So in a separate boundary search step
detailed below, we find the best placement of p on any
cell boundary. Combining the results from the two steps
we obtain the globally optimal placement for p.

Lemma 1 If the optimum solution to the unconstrained
LP-type problem corresponding to cell c is not in c, then
the optimum solution for c lies on its boundary.

Proof. Consider the locus R(x) of points p such that
the smallest angle in the new triangulation of H is at

1In [ABE99], this and related problems are presented in a
unified framework.

least x. It was shown in [MSW96] that R(x) is a convex
region; it is easy to see that it varies continuously with x,
when non-empty. Clearly, R(x) ⊂ R(y) for y < x. As x
decreases from its optimum unconstrained value, R(x)
will gradually grow from a single point outside c and
eventually intersect c; as it is connected and changes
continuously with x, the first intersection must occur
along the boundary of c. �

It remains to find the best placement for p on each
cell boundary. A cell boundary has two sides, and we
process each separately. First consider each edge of
A separately. For a fixed side of a fixed edge e, we
know which cell of A we are in, and thus the hole H.
If H has h vertices, the triangulation has 3h angles.
The measure of each of these angles is a function of
the position of p. To maximize the smallest of these
functions, find the maximum of their lower envelope by
computing the envelope explicitly. We will show that
the graphs of any pair of these functions intersect at
most 16 times. A well-known result from the theory of
Davenport-Schinzel sequences immediately implies that
the maximum complexity E(n) of the lower envelope
is O(λ16(n)), which is o(n log∗ n), where λs(n) is the
maximum length of a DS(s, n) sequence [AS00]. If the
worst-case complexity of the lower envelope of h functions
from some class is E(h), then we can compute the lower
envelope of n functions from that class in O(E(n) log n)
time using a simple divide-and-conquer algorithm [AS00].

Lemma 2 The complexity of the lower envelope of n
angle functions is O(λ16(n)).

Proof. There are two kinds of angles to consider: angles
at the boundary of H, and angles at the new point p.
We consider first angles at p. Let p = (x, y), and let
q and r be two consecutive vertices of H. Note that
the coordinates of q and r are known constants. We
are interested in the angle ∠qpr at which p sees the
segment qr; see Figure 2 (left). Let s, t be another
pair of consecutive vertices. The angle that p makes
with the segment st is ∠spt. Now consider the locus of
points p specified by the equation ∠qpr = ∠spt; a point p

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

p
q

r

s

t

p

s t

q
r

pq
r

t
s

Figure 2: “Artist’s impression” of the curves defined by
the three types of angle equality constraints.

satisfying this equation will see qr and st at the same
angle; refer to Figure 2 (left). An intersection between
this curve and an edge of A corresponds precisely to an
intersection of the graphs of two angle functions. Once
we prove that there are at most 16 such intersections,
we are done. For convenience, we will equate the cosines
of the angles instead of the angles themselves. Using
| · | to denote distances, the law of cosines gives |qr|2 =
|pr|2 + |pq|2 − 2|pr||pq| cos∠qpr. Solving for cos∠qpr
gives

cos∠qpr =
|pr|2 + |pq|2 − |qr|2

2|pr||pq|
.

Setting cos∠qpr equal to cos∠spt produces

|pr|2 + |pq|2 − |qr|2

|pr||pq|
=
|ps|2 + |pt|2 − |st|2

|ps||pt|
.

After squaring both sides and reshuffling, we get

(|pr|2 + |pq|2 − |qr|2)2|ps|2|pt|2 =

(|ps|2 + |pt|2 − |st|2)2|pr|2|pq|2.

Now each side of the equation is a polynomial in x and
y of total degree eight. So, the question now is: how
many times can a curve of degree eight intersect an edge
of A? An edge is an arc of a circle, which is the zero set
of a polynomial of degree two. According to Bézout’s
theorem [B1779], the number of intersection points is at
most the product of the degrees, so there can be at most
16 intersection points. So, the complexity of the envelope
is O(λ16(n)), and we are done. A similar argument is
needed for ∠qpr = ∠pst and also ∠pqr = ∠pst (refer
to Figure 2 (right)), but they also result in polynomial
equations of degree at most eight; we omit the entirely
analogous calculation. �

The approach outlined above is inefficient in that there
may be a quadratic number of arcs, and since we spend
more than linear time on each, this would become this
bottleneck of the algorithm. However, we are duplicating
much work: if we follow a Delaunay circle as it crosses
another circle, very little changes when we cross: either
one triangle of T ceases to be valid, or else one triangle
becomes valid. (This assumes that we only cross one

circle at at time. At a vertex, we may cross many circles
at once, so the total change is large, but it is still true
that each circle we cross does only one triangle’s worth
of damage.) Suppose that a triangle becomes valid when
we cross (the other case is symmetric). Then H loses a
boundary vertex, and our triangulation of H loses two
old triangles and gains one new one, which means our
set of angle functions gains 3 new angles and loses 6
old ones. The other angle functions remain unchanged.
Thus, we can define the functions over the an entire
circle (provided we are consistent whether we are on the
inside or outside of the circle.) On a given arc, there are
at most 3n functions. If there are m circles, then the
boundary of a fixed circle can only have 2(m− 1) < 2m
intersections with other circles, and for each of those
intersections, at most 6 new functions appear. The
number of circles equals the number of triangles, which
is less than 2n. Thus for the entire circle, there are at
most a linear number of functions (2n × 2 × 6 + 3n ≤
27n). It is still the case that any pair of function graphs
intersect at most 16 times, but because each is not
defined over the entire circle, but only a contiguous arc
on it, the complexity of the lower envelope can increase
slightly, up to λ18(n) [AS00]. Thus, the running time of
the boundary search stage is O(nλ18(n) log n) and the
total (expected) running time is dominated by the O(n3)
region search time. (The boundary search can be sped
up slightly to O(nλ17(n) log n) by using the algorithm
of Hershberger [H89].)

3 Realistic inputs

In the long tradition in computational geometry, exem-
plified by [BKSV02], we would like to be able to analyze
our problem in non-worst-case situations. To this end,
we introduce several parameters, besides n that measures
the number of input points, that quantify the “badness”
of the input point set and express the running time of
the algorithms in terms of them.

Consider the arrangement A of Delaunay disks of P
and let k be its complexity, that is the total number of
vertices, edges, and faces; let d be the maximum depth of
the arrangement, that is the maximum, over all points in
the plane, of the number of disks covering the point. In
the worst case k is Θ(n2) and d is Θ(n). In well-behaved
point sets, such as those corresponding to uniformly
distributed points, k is Θ(n); one would also expect d
to be near-constant, however, somewhat surprisingly, an
unfortunate, but arbitrarily small perturbation of the√
n ×
√
n grid can cause d to be Θ(

√
n) (we omit the

details in this version).
We now express the running times in terms of n, k,

and d. Our algorithm starts by computing the Delaunay
triangulation, which can be done in O(n log n) time. We
then compute the arrangement of circles in O(k log n)

25th Canadian Conference on Computational Geometry, 2013

time using a standard sweepline algorithm (better run-
ning times are possible using more involved techniques).
Our algorithm and that of [AAF10] share the first two
steps of the outline. Their analog of the region search
runs in time O(kd2+ε), for any positive ε, since for every
cell c ∈ A, it performs an independent bivariate lower
envelope calculation on O(d) functions, for a total time
of O(kd2+ε + k log n). We analyze the region search and
the boundary search stages of our proposed algorithm
separately. The region search runs in expected time
O(kd), as its bottleneck is solving k LP-type problems
of size at most d each. (Note that this requires that we
quickly determine the set of constraints that correspond
to a cell. This is easy to arrange if we visit adjacent cells
in order.)

We now turn our attention to the boundary search.
Our analysis here needs stronger general position as-
sumptions than the algorithm itself does. In particular,
we require that if two circles intersect in some point not
in P , no third circle goes through that point.

The running time for one circle is affected by how many
functions we need to take the lower envelope of along that
circle. We earlier derived a bound of 27n for the number
of functions on a given circle. We now make this more
precise. Let fi denote the number of functions along
circle Ci. If Ci intersects xi other circles, and further is
not adjacent to any cell having depth more than di, then
by our previous analysis fi ≤ 3(di + 1) + 12xi. Note that
since these circles are Delaunay, no disk fully contains
another. Hence, any circle containing a cell of large
depth must intersect many other circles. In particular,
xi ≥ di − 1. Thus, we have fi ≤ 3(di + 1) + 12xi ≤
3(xi + 2) + 12xi = 15xi + 6, which is O(xi).

We now show that the sum of xi over all circles is
at most proportional to the arrangement complexity k.
Note first that this sum is simply twice the number of
pairs of intersecting circles. Our approach will thus be to
show that most pairs of intersecting circles contribute a
vertex of degree 4 to the arrangement A, that is, a vertex
that no third circle goes through. Indeed, consider a
pair of intersecting circles such that both intersection
points, call them p and q, have degree at least 6 (in a
circle arrangement, all vertices have even degree). By
our stronger general position assumption, both p and q
are from the original point set P . We now have a pair
of points with two Delaunay circles passing through it:
hence pq must be a Delaunay edge! But there are only
a linear number of such edges, so we are done: all but
O(n) pairs of intersecting circles contribute a new vertex
to the arrangement.

Finally, let m be the number of circles, X be the
number of pairs of intersecting circles, u be the number
of vertices of degree 4, and e be the number of edges of
the Delaunay triangulation. We now bound the sum of xi
over all circles:

∑m
i=1 xi = 2X ≤ 2(u+ e) = 2u+ 2e <

2k+ 2e ≤ 2k+ 2(n+m− 2) ≤ 2k+ 2(m+ 2 +m− 2) =
2k + 4m < 2k + 4k = 6k, which is O(k).

Lastly, the total running time of the boundary search
stage is at most proportional to:∑m

i=1 λ18(xi) log xi ≤
∑m

i=1 λ18(xi) logm

= logm ·
∑m

i=1 λ18(xi)

≤ logm · λ18(
∑m

i=1 xi)

≤ λ18(6k) logm,

which is O(λ18(k) log n), and thus the running time of
our entire algorithm is O(kd + λ18(k) log n). There-
fore, our algorithm outperforms (in expectation) that
of [AAF10] for all values of k and d.

We can slightly refine the above analysis in another
direction: Recall that we defined d to be the maximum
depth of the arrangement A. If we let d̄ be the average
depth, over all the cells, the running time of the region
search can then be bounded by O(kd̄), while the running
time of the analogous part of algorithm of [AAF10] is
O(

∑
c∈A d

2+ε
c), where dc is the depth of cell c; the latter

quantity is, roughly, k times the average squared depth.
The running time of the boundary search is not easily
expressed in terms of d̄, but it is less likely to dominate
the running time of our algorithm.

It would be interesting to connect the parameters d
and k (and ultimately the behavior of the algorithms) to
the more commonly used measures of how well-behaved
a point set in the plane is, such as its spread, which is
the ratio between the largest and the smallest interpoint
distances.

4 Conclusions and open problems

We believe our algorithm can be easily modified to work
with constrained Delaunay triangulations, which was
the original setting of [AAF10]; we omit the extension
in this version. (The key differences are that the set
of invalidated triangles depends on the constraints, and
that the arrangement A is formed by circles and the
constraining segments.)

It would be interesting to see if our algorithm can
be derandomized using the results of Chazelle and Ma-
toušek [CM93]; the LP-type problem needs to meet some
technical requirements the discussion of which is omitted
here.

Can the algorithm be sped up by roughly another order
of magnitude by observing that there is generally very
little difference between LP-type problems corresponding
to adjacent cells of A?

Is there any hope of generalizing our approach to
multiple Steiner points as in [AAF10]?

CCCG 2013, Waterloo, Ontario, August 8–10, 2013

References

[AS00] P.K. Agarwal and M. Sharir. Davenport-Schinzel
sequences and their geometric applications. In Hand-
book of Computational Geometry, J.-R. Sack and J. Ur-
rutia, Eds., 1–47. Elsevier Science Publishers B.V.
North-Holland, Amsterdam, 2000.

[ABE99] N. Amenta, M. Bern, and D. Eppstein. Op-
timal point placement for mesh smoothing. J. Algo-
rithms 30(2), 302–322, 1999.

[AAF10] B. Aronov, T. Asano, and S. Funke. Optimal
triangulations of points and segments with Steiner
points. Int. J. Comput. Geom. Appl., 20(1) 89–104,
2010.

[BKSV02] M. de Berg, M. J. Katz, A. F. van der Stap-
pen, and J. Vleugels. Realistic input models for geo-
metric algorithms. Algorithmica, 34:81–97, 2002.

[B04] M. Bern. Triangulations and mesh generation. In
Handbook of Discrete and Computational Geometry,
2nd Ed., J. E. Goodman and J. O’Rourke, Eds., 563–
582. CRC Press LLC, Boca Raton, FL, April 2004.

[B1779] Bézout theorem. Wikipedia. From http://en.

wikipedia.org/wiki/B%C3%A9zout%27s_theorem;
retrieved 11 May 2013.

[CM93] B. Chazelle and J. Matoušek. On linear-time
deterministic algorithms for optimization problems
in fixed dimension. Proc. Fourth Annu. ACM-SIAM
Symp. Discr. Algorithms, pp. 281–290, 1993.

[GS85] L. Guibas and J. Stolfi. Primitives for the manip-
ulation of general subdivisions and the computation
of Voronoi diagrams. ACM Transactions on Graphics,
4(2) 74–123, 1985.

[H89] J. Hershberger. Finding the upper envelope of n
line segments in O(n log n) time. Inf. Proc. Letters,
33(4) 169–174, 1989.

[MSW96] J. Matoušek, M. Sharir, and E. Welzl. A
subexponential bound for linear programming. Al-
gorithmica, 16(4–5) 498–516, 1996.

[S78] R. Sibson. Locally equiangular triangulations. The
Computer Journal, 21(3) 243–245, 1978.

http://en.wikipedia.org/wiki/B%C3%A9zout%27s_theorem
http://en.wikipedia.org/wiki/B%C3%A9zout%27s_theorem

	Introduction
	The Algorithm
	Realistic inputs
	Conclusions and open problems

