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Abstract

We study the Art Gallery Problem for face guards in
polyhedral environments. The problem can be infor-
mally stated as: how many (not necessarily convex)
windows should we place on the external walls of a dark
building, in order to completely illuminate it?

We consider both closed and open face guards (i.e.,
faces with or without their boundary), and we give some
upper and lower bounds on the minimum number of
faces required to guard a given polyhedron, in terms
of the total number of its faces, f. In some notable
cases, our bounds are tight: | f/6] open face guards for
orthogonal polyhedra, and | f/4] open face guards for
4-oriented polyhedra (i.e., polyhedra whose faces have
only four different orientations).

Then we show that it is NP-hard to approximate
the minimum number of (closed or open) face guards
within a factor of Q(log f), even for polyhedra that are
orthogonal and simply connected.

Along the way we discuss some applications, arguing
that face guards are not a reasonable model for guards
patrolling on the surface of a polyhedron.

1 Introduction

Previous work. Art Gallery Problems have been stud-
ied in computational geometry for decades: given an
enclosure, place a (preferably small) set of guards such
that every location in the enclosure is seen by some
guard. Most of the early research on the Art Gallery
Problem focused on guarding 2-dimensional polygons
with either point guards or segment guards [9] [10] 12].

Gradually, some of the attention started shifting to
3-dimensional settings, as well. Several authors have
considered edge guards in 3-dimensional polyhedra, ei-
ther in relation to the classical Art Gallery Problem or
to its variations [2| [3] 4 13| [14].

Recently, Souvaine et al. [II] introduced the model
with face guards in 3-dimensional polyhedra. Ideally,
each guard is free to roam over an entire face of a poly-
hedron, including the face’s boundary. They gave lower
and upper bounds on g, the number of face guards that
are required to guard a given polyhedron, in terms of
f, the total number of its faces. For general polyhe-
dra, they showed that |f/5] < g < [f/2] and, for
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the special case of orthogonal polyhedra (i.e., polyhe-
dra whose faces meet at right angles), they showed that
Lf/7] < g < |f/6]. They also suggested several open
problems, such as studying open face guards (i.e., face
guards whose boundary is omitted), and the compu-
tational complexity of minimizing the number of face
guards.

Subsequently, face guards have been studied to some
extent also in the case of polyhedral terrains. In [§],
a lower bound is obtained, and in [7] it is proved that
minimizing face guards in terrains is NP-hard.

Our contribution. In this paper we solve some of the
problems left open in [II], and we also expand our re-
search in some new directions.

In Section [2] we discuss the face guard model, arguing
that a face guard fails to meaningfully represent a guard
“patrolling” on a face of a polyhedron. Essentially, there
are cases in which the path that such a patrolling guard
ought to follow is so complex (in terms of the number
of turns, if it is a polygonal chain) that a much sim-
pler path, striving from the face, would guard not only
the region visible from that face, but the entire polyhe-
dron. However, face guards are still a good model for
illumination-related problems, such as placing (possibly
non-convex) windows in a dark building.

In Section[3|we obtain some new bounds on g, for both
closed and open face guards. Namely, we generalize
the upper bounds given in [II] by showing that, for
c-oriented polyhedra (i.e., whose faces have ¢ distinct
orientations), g < | f/2 — f/c|. We also provide some
new lower bound constructions, which meet our upper
bounds in two notable cases: orthogonal polyhedra with
open face guards (g = | f/6]), and 4-oriented polyhedra
with open face guards (¢ = | f/4]).

In Section [ we provide an approximation-preserving
reduction from SET COVER to the problem of minimiz-
ing the number of (closed or open) face guards in sim-
ply connected orthogonal polyhedra. It follows that the
minimum number of face guards is NP-hard to approx-
imate within a factor of Q(log f). We also discuss the
membership in NP of the minimization problem.

2 Model and motivations

Definitions. Given a polyhedron in R?, we say that a
point z is wvisible to a point y if no point in the straight
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line segment xy lies in the exterior of the polyhedron.
For any point x, we denote by V(z) the wvisible region
of z, i.e., the set of points that are visible to . In gen-
eral, for any set S C R3, we let V(S) = J,cq V().
A set is said to guard a polyhedron if its visible re-
gion coincides with the entire polyhedron (including its
boundary). The Art Gallery Problem for face guards in
polyhedra consists in finding a (preferably small) set of
faces whose union guards a given polyhedron. If such
faces include their relative boundary, they are called
closed face guards; if their boundary is omitted, they
are called open face guards.

A polyhedron is c-oriented if there exist ¢ unit vectors
such that each face is orthogonal to one of the vectors.
If these unit vectors form an orthonormal basis of R3,
the polyhedron is said to be orthogonal. Hence, a cube
is orthogonal, a tetrahedron and a regular octahedron
are both 4-oriented, etc.

Motivations. There is a straightforward analogy be-
tween guarding problems and illumination problems:
placing guards in a polyhedron corresponds to placing
light sources in a dark building, in order to illuminate
it completely. For instance, a point guard would model
a light bulb and a segment guard could be a fluorescent
tube. Because face guards are 2-dimensional and lie on
the boundary of the polyhedron, we may think of them
as windows. A window may have any shape, but should
be flat, and hence it should lie on a single face. It fol-
lows that, if our purpose is to illuminate as big a region
as possible, we may assume without loss of generality
that a window always coincides with some face.

Face guards were introduced in [II] to represent
guards roaming over a face. This is in accordance with
the traditional usage of segment guards as a model for
guards that patrol on a line [9]. While this is perfectly
sound in the case of segment guards, face guards pose
additional problems, as explained next.

(a) (b)
Figure 1: Constructing the polyhedron in Figure

We begin by observing that, even in 2-dimensional

polygons, there may be edge guards that cannot be lo-
cally “replaced” by finitely many point guards. Fig-
ure shows an example: if a subset G of the top
edge ¢ is such that V(G) = V({), then the right end-
point of £ must be a limit point of G.

We can exploit this fact to construct the class of poly-
hedra sketched in Figure [2} We cut long parallel dents
on opposite faces of a cuboid, in such a way that the re-
sulting polyhedron looks like an extruded “iteration” of
the polygon in Figure Then we stab this construc-
tion with a row of girders running orthogonally with
respect to the dents.

Figure 2: A guard patrolling on the top face must follow
a path of quadratic complexity

Suppose that a guard has to patrol the top face of
this construction, eventually seeing every point that is
visible from that face. The situation is represented in
Figure where the light-shaded region is the top
face, and the dashed lines mark the underlying girders.
By the above observation and by the presence of the
girders, each thick vertical segment must be approached
by the patrolling guard from the interior of the face.

Suppose that the polyhedron has n dents and n gird-
ers. Then, the number of its vertices, edges, or faces
is ©(n). Now, if the guard moves along a polygonal
chain lying on the top face, such a chain must have at
least a vertex on each thick segment, which amounts
to Q(n?) vertices. Similarly, if the face guard has to be
substituted with segment guards lying on it, quadrati-
cally many guards are needed.

On the other hand, it is easy to show that a path of
linear complexity is sufficient to guard any polyhedron:
triangulate every face (thus adding linearly many new
“edges”) and traverse the resulting 1-skeleton in depth-
first order starting from any vertex, thus covering all
edges. Because the set of edges is a guarding set for any
polyhedron [I3], the claim follows.

This defeats the purpose of having faces model guards
patrolling on segments, as it makes little sense for a
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face of “unit weight” to represent quadratically many
guards. Analogously, a roaming guard represented by a
face may have to follow a path that is overly complex
compared to the guarding problem’s optimal solution.

Even if we are allowed to replace a face guard with
guards patrolling any segment in the polyhedron (i.e,
not necessarily constrained to live on that face), a lin-
ear number of them may be required. Indeed, consider
a cuboid with very small height, and arrange n thin and
long chimneys on its top, in such a way that no straight
line intersects more than two chimneys. The complexity
of the polyhedron is ©(n), and a face guard lying on the
bottom face must be replaced by Q(n) segment guards.
On the other hand, we know that a linear amount of seg-
ment guards is enough not only to “dominate” a single
face, but to entirely guard any polyhedron.

Summarizing, a face guard appropriately models an
entity that is naturally constrained to live on a single
face, like a flat window, and unlike a team of patrolling
guards. In the case of a single roaming guard, the model
is insensitive to the complexity of the guard’s path.

3 Bounds on face guard numbers

Upper bounds. By generalizing the approach used
in [11, Lemmas 2.1, 3.1], we provide an upper bound on
face guard numbers, which becomes tight for open face
guards in orthogonal polyhedra and open face guards
in 4-oriented polyhedra. We emphasize that our upper
bound holds for both closed and open face guards, and
for polyhedra of any genus.

Theorem 1 Any c-oriented polyhedron with f faces is
guardable by
£t
2 ¢

closed or open face guards.

Proof. Let P be a polyhedron whose faces are orthog-
onal to ¢ > 3 distinct vectors. Let f; be the number of
faces orthogonal to the i-th vector v;. We may assume
that ¢ < j implies f; > f;. Then,

fi+foz VfJ
c

Let us stipulate that the direction of the cross product
v1 X vg is vertical. Thus, there are at most

-1

non-vertical faces. Some of these are facing up, the oth-
ers are facing down. Without loss of generality, at most
half of them are facing down, and we assign a face guard
to each of them. Therefore, at most

£

face guards have been assigned.

Let = be any point in P. If x belongs to a face with
a guard, z is guarded. Otherwise, consider an infinite
circular cone C with apex x and axis directed upward.
Let G be the intersection of V(x), C, and the boundary
of P. If the aperture of C is small enough, the relative
interior of G belongs entirely to faces containing guards
and to at most two vertical faces containing z. Because
these vertical faces obstruct at most one dihedral an-
gle from «’s view, the portion of G not belonging to
them has non-empty interior. If we remove from this
portion the (finitely many) edges of P, we still have a
non-empty region. By construction, this region belongs
to the interiors of faces containing a guard; hence x is
guarded. O

Our guarding strategy becomes less efficient as ¢
grows. In general, if no two faces are parallel (i.e.,
¢ = f), we get an upper bound of | f/2] — 1 face guards,
which improves on the one in [I1] by just one unit.

Lower bounds. In [II], Souvaine et al. construct a
class of orthogonal polyhedra with f faces that need
| f/7] closed face guards. In Figure [3| we give an al-
ternative construction, with the additional property of
having a 3-regular 1-skeleton. Indeed, each small L-
shaped polyhedron that is attached to the big cuboid
adds seven faces to the construction, of which at least
one must be selected.

Figure 3: Orthogonal polyhedron that needs |f/7]
closed face guards

For open face guards, we modify our previous con-
struction by moving all the L-shaped pieces to the
boundary of the top face, as in Figure Thus, each
piece adds just six faces to the construction (one face is
shared by all of them), of which at least one must be
selected. Moreover, no matter how these faces are se-
lected, some portion of the big cuboid below remains un-
guarded, and needs one more face guard. This amounts
to | f/6] open face guards in total.

Plugging ¢ = 3 in Theorem [I| reveals that our lower
bound is also tight.
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Figure 4: Orthogonal polyhedron that needs | f/6] open
face guards

Theorem 2 To guard an orthogonal polyhedron having
f faces, | f/6] open face guards are always sufficient and
occasionally necessary. O

Moving on to closed face guards in 4-oriented poly-
hedra, we propose the construction in Figure Each
closed face sees the tip of at most one of the k tetrahe-
dral spikes, hence k guards are needed. Because there
are bk + 2 faces in total, a lower bound of | f/5] closed
face guards follows.

AAA

Figure 5: 4-oriented polyhedron that needs | /5] closed
face guards

For open face guards in 4-oriented polyhedra, we
modify the previous example by carefully placing ad-
ditional spikes on the other side of the construction, as
Figure [f] illustrates. Once again, since each open face
sees the tip of at most one of the k spikes and there are
4k + 2 faces in total, a lower bound of | f/4| open face
guards follows.

Figure 6: 4-oriented polyhedron that needs | f/4] open
face guards

This bound is also tight, as easily seen by plugging
¢ = 4 in Theorem [

Theorem 3 To guard a 4-oriented polyhedron having f
faces, | f/4] open face guards are always sufficient and
occasionally necessary. O

4 Minimizing face guards

Hardness of approximation. In [I1], Souvaine et al.
ask for the complexity of minimizing face guards in a
given polyhedron. We show that this problem is at least
as hard as SET COVER, and we infer that approximating
the minimum number of face guards within a factor of
Q(log f) is NP-hard.

Theorem 4 SET COVER is L-reducible to the problem
of minimizing (closed or open) face guards in a simply
connected orthogonal polyhedron.

Proof. Let an instance of SET COVER be given, i.e.,
a universe U = {1,--- ,n}, and a collection S C P(U)
of m > 1 subsets of U. We will construct a simply
connected orthogonal polyhedron with f = O(mn) faces
that can be guarded by k (closed or open) faces if and
only if U is the union of & — 1 elements of S.

Figure |z| shows our construction for U = {1,2,3,4}
and S = {{2,4},{1,3},{2}}. Figure [§ illustrates the
side view of a generic case in which m = 4.

Figure 7: SET COVER reduction, 3D view

Each of the thin cuboids on the far left is called a
fissure, and represents an element of U. In front of
the fissures there is a row of m mountains of increasing
height, separated by walleys of increasing depth. The
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2m +1

S

Figure 8: SET COVER reduction, side view

m vertical walls that are facing the fissures (drawn as
thick lines in Figure |8) are called set faces, and each of
them represents an element of S.

For each S; € S, we dig a narrow rectangular dent in
the i-th set face in front of the j-th fissure, if and only if
j ¢ S;. Each dent reaches the bottom of its set face, and
almost reaches the top, so that it does not separate the
set face into two distinct faces. Moreover, every dent
(except those in the rightmost set face) is so deep that
it connects two neighboring valleys. In Figure |8| dents
are depicted as darker regions; in Figure [7} the dashed
lines mark the areas where dents are not placed.

We want to fix the width of the fissures in such a
way that only a restricted number of faces can see their
bottom. Specifically, consider n distinguished points,
located in the middle of the lower-left edges of the fis-
sures (indicated by the thick dot in Figure . The j-th
distinguished point definitely sees some portions of the
i-th set face, provided that j € S;. If this is the case,
and 7 < m, it also sees portions of two other faces (one
horizontal, one vertical) surrounding the same valley.
Moreover, if j ¢ S, the j-th distinguished point also
sees the bottom of a dent in the rightmost set face. We
want no face to be able to see any distinguished point,
except the faces listed above (plus of course the faces be-
longing to fissures or surrounding their openings). To
this end, assuming that the dents have unit width, we
set the width of the fissures to be slightly less than 1/4.
Indeed, referring to Figure[§] the width of the visible re-
gion of a distinguished point, as it reaches the far right
of the construction, is strictly less than

(m)—|—(2m—|—1).111:( 1) 1<4 1

34— .= . ;
m * m 4 = 4
because m > 1.

Finally, a small niche is added in the lower part of
the construction. Its purpose is to enforce the selection
of a “dedicated” face guard, as no face can see both a

distinguished point and the bottom of the niche.

Let a guarding set for our polyhedron be given, con-
sisting of k face guards. We will show how to compute
in polynomial time a solution of size at most k—1 for the
given SET COVER instance, provided that it is solvable
at all.

We first discard every face guard that is not guarding
any distinguished point. Because at least one face must
guard the niche, we are left with at most &k — 1 guards.
Then, if any of the remaining face guards borders the
i-th valley, with ¢ < m, we replace it with the i-th set
face. Indeed, it is easy to observe that such set face can
see the same distinguished points, plus possibly some
more. By construction, all the remaining guards can see
exactly one distinguished point (they are either faces
belonging to some fissure, or surrounding its opening,
or bottom faces of the rightmost dents). We replace
each of these face guards with any set face that guards
the same distinguished point (which exists, otherwise
the SET COVER instance would be unsolvable). As a
result, we have at most k — 1 set faces guarding all the
distinguished points. These immediately determine a
solution of equal size to the given SET COVER instance.

Conversely, if the SET COVER instance has a solu-
tion of size k, it is easy to see that our polyhedron has
a guarding set of k + 1 guards: all the set faces corre-
sponding to the SET COVER’s solution, plus the bottom
face. O

Corollary 5 Given a simply connected orthogonal
polyhedron with f faces, it is NP-hard to approximate
the minimum number of (closed or open) face guards
within a factor of Q(log f).

Proof. The polyhedra constructed in the L-reduction
of Theorem[dhave f = O(mn) faces. It was proved in [1]
that SET COVER is NP-hard to approximate within a
ratio of Q(logn) and, by inspecting the reduction em-
ployed, it is apparent that all the hard SET COVER in-
stances generated are such that m = O(n°), for some
constant ¢ > 1. As a consequence, we may assume that
Qlogn) = Qlogntt) = Q(log(mn)) = Q(log f), and
our claim follows. O

Computing visible regions. The next natural question
is whether the minimum number of face guards can be
computed in NP, and possibly approximated within a
factor of O(log f). Usually, when finitely many possible
guard locations are allowed (such as with vertex guards
and edge guards), this is established by showing that
the visible region of any guard can be computed effi-
ciently, as well as the intersection of two visible regions,
etc. As a result, the environment is partitioned into
polynomially many regions such that, for every region
R and every guard g, either R C V(g) or RNV(g) = .
This immediately leads to a reduction to SET COVER,
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which implies an approximation algorithm with loga-
rithmic ratio, via a well-known greedy heuristic [6].

With face guards (and also with edge guards in poly-
hedra) the situation is complicated by the fact that the
visible region of a guard may not be a polyhedron, but
in general its boundary is a piecewise quadric surface.

For example, consider the orthogonal polyhedron in
Figure[d] It is easy to see that the visible region of the
bottom face (and also the visible region of edge a) is the
whole polyhedron, except for a small region bordered by
the thick dashed lines.

Figure 9: The visible region of the bottom face is
bounded by a hyperboloid of one sheet.

The surface separating the visible and invisible re-
gions consists of a right trapezoid plus a bundle of mu-
tually skew segments whose extensions pass through the
edges a, b, and c. These edges lie on three lines having
equations

y? 422 =0,
2+ (z—1)% =0,
(z=1)*+(y—1)* =0,
respectively. A straightforward computation reveals

that the bundle of lines passing through these three lines
has equation

zy —xz+yz—y =0,

which defines a hyperboloid of one sheet.

In general, the boundary of the visible area of a face
(or an edge) is determined by lines passing through pairs
or triplets of edges of the polyhedron. If three edges
are all parallel to a common plane, the surface they
determine is a hyperbolic paraboloid (degenerating into
a plane if two of the edges are parallel to each other),
otherwise they determine a hyperboloid of one sheet, as
in the above example.

There exists an extensive literature of purely alge-
braic methods to compute intersections of quadric sur-
faces (see for instance [5]), but the parameterizations
involved may yield coefficients containing radicals. At
this stage in our understanding, it is not clear whether
any of these methods can be effectively applied to re-
duce the minimization problem of face-guarding polyhe-
dra (or even edge-guarding polyhedra) to SET COVER.
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