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Fault Tolerant Clustering Revisited
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Abstract

In discrete k-center and k-median clustering, we are
given a set of points P in a metric space M , and the
task is to output a set C ⊆ P, |C| = k, such that the
cost of clustering P using C is as small as possible. For
k-center, the cost is the furthest a point has to travel
to its nearest center, whereas for k-median, the cost is
the sum of all point to nearest center distances. In the
fault-tolerant versions of these problems, we are given
an additional parameter 1 ≤ ` ≤ k, such that when
computing the cost of clustering, points are assigned to
their `th nearest-neighbor in C, instead of their near-
est neighbor. We provide constant factor approximation
algorithms for these problems that are both conceptu-
ally simple and highly practical from an implementation
stand-point.

1 Introduction

Two of the most common clustering problems are k-
center and k-median clustering. In both these prob-
lems, the goal is to find the minimum cost partition of
a given point set P into k clusters. Each cluster is de-
fined by a point in the set of cluster centers, C ⊆ P,
where |C| = k. In k-center clustering, the cost is the
maximum distance of a point to its assigned cluster cen-
ter, and in k-median clustering, the cost is the sum of
distances of points to their assigned cluster center. In
both cases, given a set of cluster centers C, a point is
assigned to its closest center in C. Both these prob-
lems are NP-hard for most metric spaces. Hochbaum
and Shmoys showed that k-center clustering has a 2-
approximation algorithm, but for every ε > 0 it cannot
be approximated to better than (2 − ε) unless P=NP
[8]. A 2-approximation was also provided by Gonzalez
[5], and by Feder and Greene [4]. For k-median, the
best known approximation factor is 1 +

√
3 + ε. This

is a recent result of Li and Svensson [13], but the ap-
proximation version of the k-median problem has a long
history, and before the result of Li and Svensson, the
best known result was by Arya et al. [2], that achieved
an approximation factor of (3 + ε) for any ε > 0, us-
ing local search. In general metric spaces, k-median is
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also APX hard. Jain et al. showed that k-median is
hard to approximate within a factor of 1 + 2/e ≈ 1.736
[9]. In Euclidean spaces, the k-center problem remains
APX-hard [4], while k-median admits a PTAS [1, 11, 7].

Fault-Tolerance. As mentioned earlier, in both the k-
center and k-median problems, each point is assigned
to its closest center. Consider a realistic scenario where
k-center clustering is used to decide in which k of n
cities, certain facilities (say Sprawlmarts or hospitals)
are opened, so that for clients in the n cities, their max-
imum distance to a facility is minimized. Once the k
cities are decided upon, clearly each client goes to its
nearest such facility when it requires service. Due to fa-
cility downtimes however, sometimes clients may need
to go to their second closest, or third closest facility.
Thus, in the fault-tolerant version of the k-center prob-
lem, we say that the cost of a client is the distance to
its `th nearest facility for some fixed 1 ≤ ` ≤ k. The
problem now is to find a set of k centers so that the
worst case cost is minimized, where in the worst case
each client actually goes to its `th nearest facility, and
the cost of clustering is the maximum distance traveled
by any client.

The fault-tolerant k-center problem was first stud-
ied by Krumke [12], who gave a 4-approximation algo-
rithm for this problem. Chaudhuri et al. provided a
2-approximation algorithm for this problem [3], which
is the best possible under standard complexity theo-
retic assumptions. In both these papers, the version
considered, differs slightly from ours in that one only
considers points which are not centers when comput-
ing the point that has the furthest distance to its `th
closest center. Khuller et al. [10] later considered both
versions of the k-center problem. Their first version is
the same as ours, i.e. the cost is the maximum distance
of any point (including centers) to its `th nearest cen-
ter. They gave a 2-approximation when ` < 4 and a
3-approximation otherwise. Their second version is the
same as that of Krumke [12]. For this version, they pro-
vided a 2-approximation algorithm matching the result
of Chaudhuri et al. [3].

For k-median clustering, a fault-tolerant version has
been considered by Swamy and Shmoys [14]. However,
our version is different from theirs.
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Our Contribution. Our main contribution is in pro-
viding and proving the correctness of a natural tech-
nique for fault-tolerant clustering. In particular, letting
m = bk/`c, we show that given a set of centers which
is a constant factor approximation to the optimal m-
center (resp. m-median) clustering, one can easily com-
pute a set of k centers whose cost is a constant fac-
tor approximation to the optimal fault-tolerant k-center
(resp. k-median) clustering. Specifically, in order to
turn the non-fault-tolerant solution into a fault-tolerant
one, simply add for each point of the m center set, its `
nearest neighbors in P. In other words, our main con-
tribution is in proving a relationship between the fault-
tolerant and non-fault-tolerant cases, specifically that
the non-fault-tolerant solution for m centers is already
a near optimal fault-tolerant solution in that, up to a
constant factor, it is enough to “reinforce” the current
center locations rather than looking for new ones.

For fault-tolerant k-center we prove that if one applies
this post-processing technique to any c-approximate so-
lution to the non-fault-tolerant problem with m centers,
then one is guaranteed a (1 + 2c)-approximation to the
optimal fault-tolerant clustering. Similarly, for fault-
tolerant k-median we show this post processing tech-
nique leads to a (1 + 4c)-approximation.

Our second main result is that using the algorithm
of Gonzalez [5] for the initial m-center solution, gives a
tighter approximation ratio guarantee. Specifically, we
get a 3-approximation when `|k, and a 4-approximation
otherwise, for fault-tolerant k-center. Additionally, on
the median side, to the best of our knowledge, we are the
first to consider this particular variant of fault-tolerant
k-median clustering.

The approximation ratios of our algorithms are rea-
sonable but not optimal. However, the authors feel that
the algorithms more than make up for this in their con-
ceptual simplicity and practicality from an implemen-
tation stand-point. Notably, if one has an existing im-
plementation of an m-center or an m-median clustering
approximation algorithm, one can immediately turn it
into a fault-tolerant clustering algorithm for k centers
with this technique.

Organization. In Section 2 we set up notation and for-
mally define our variants for the fault-tolerant k-center
and k-median problems. In Section 3 we review the al-
gorithm of Gonzalez [5], and present our algorithms for
the fault-tolerant k-center and k-median problems. In
Section 4 we analyze the approximation ratios of our
algorithm. We conclude in Section 5.

2 Preliminaries

We are given a set of n points P = {p1, . . . , pn} in a
metric space M . Let d(p, p′) denote the distance be-

tween the points p and p′ in M . For a point p ∈ M ,
and a number x ≥ 0, let ball (p, x) denote the closed
ball of radius x with center p. For a point p ∈ M , a
subset S ⊆ P, and an integer 1 ≤ i ≤ |S|, let di(p, S)
denote the radius of the smallest (closed) ball with cen-
ter p that contains at least i points in the set S. Let
nni(p, S) denote the ith nearest neighbor of p in S, i.e.
the point in S such that d(p, nni(p, S)) = di(p, S).1 Let
NNi(p, S) = ∪ij=1{nnj(p, S)} be the set of i nearest
neighbors of p in S. By definition, for 1 ≤ i ≤ |S|,
|NNi(p, S)| = i. The following is an easy observation.

Observation 2.1 For any fixed Q ⊆ P and integer
1 ≤ i ≤ |Q|, the function di(·, Q) is a 1-Lipschitz func-
tion of its argument, i.e., for any p, q ∈ M , di(p, Q) ≤
di(q, Q) + d(p, q).

2.1 Problem Definitions

Problem 2.2 (Fault-tolerant k-center) Let P be a
set of n points in M , and let k and ` be two given integer
parameters such that 1 ≤ ` ≤ k ≤ n. For a subset
C ⊆ P, we define the cost function µ(P, C) as,

µ(P, C) = max
p∈P

d`(p, C) .

The fault-tolerant k-center problem, denoted
FTC(P, k, `), is to compute a set C∗ with |C∗| = k
such that,

µ(P, C∗) = min
C⊆P,|C|=k

µ(P, C) .

For a given instance of FTC(P, k, `), we call C∗ the
optimum solution and we let ropt denote its cost, i.e.
ropt = µ(P, C∗). The classical k-center clustering
problem on a point set P is FTC(P, k, 1), and is referred
to as the non-fault-tolerant k-center problem.

Problem 2.3 (Fault-tolerant k-median) Let P be
set of n points in M , and let k and ` be two given inte-
ger parameters such that 1 ≤ ` ≤ k ≤ n. For a subset
C ⊆ P, we define the cost function µ(P, C) as,

µ(P, C) =
∑
p∈P

d`(p, C) .

The fault-tolerant k-median problem, denoted
FTM(P, k, `), is to compute a set C∗ with |C∗| = k
such that,

µ(P, C∗) = min
C⊆P,|C|=k

µ(P, C) .

For a given instance of FTM(P, k, `), we call C∗ the
optimum solution and we let σopt denote its cost, i.e.
σopt = µ(P, C∗). The classical k-median clustering
problem on a point set P is FTM(P, k, 1), and is referred
to as the non-fault-tolerant k-median problem.

1In case of non unique distances, we use the standard technique
of lexicographic ordering of the pairs (d(p, pj) , j) to ensure that
the 1st, 2nd, . . . , |S|th, nearest-neighbors of p are all unique.
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3 Algorithms

Our algorithms for both problems, FTC(P, k, `) and
FTM(P, k, `), have the same structure. In the first
step they run an approximation algorithm for the non-
fault-tolerant version of the respective problem, for
m = bk/`c centers, and in the second step, the solution
output by the first step is added to in a straightforward
manner described below. Notice that for either fault-
tolerant problem, any approximation algorithm for the
non-fault-tolerant version can be used in the first step.
In particular, we prove that if the chosen algorithm for
this first step is a c-approximation algorithm for the
non-fault-tolerant problem for m centers, then the set
we output at the end of step two will be a (1 + 2c)-
approximation (resp. (1 + 4c)-approximation) for the
fault-tolerant k-center (resp. k-median) problem with k
centers.

Natural choices to use for our non-fault-tolerant m-
median algorithm include the local search algorithm of
Arya et al. [2], which is favored for its combinatorial
nature, and simplicity of implementation, or the recent
algorithm by Li and Svensson [13], which facilitates a
slight improvement in the approximation factor. For the
algorithms of Arya et al. and that of Li and Svennson
we refer the reader to the respective papers, as knowl-
edge of these algorithms is not required for understand-
ing our algorithm. We let Am(P,m) denote the chosen
approximation algorithm for m-median.

Similarly, we let Ac(P,m) denote the chosen approx-
imation algorithm for non-fault-tolerant m-center. Per-
haps the most natural choice for our m-center algorithm
is the 2-approximation algorithm by Gonzalez [5]. In
fact, in Section 4.2.1 we show that this particular choice
leads to a simpler analysis than the general case, and
produces a much tighter approximation ratio guarantee.
Since knowledge of the algorithm of Gonzalez is needed
for this analysis, we briefly review this algorithm below
in Section 3.2.

3.1 Fault-tolerant algorithms

We now describe the algorithms for fault-tolerant k-
center and fault-tolerant k-median, that is FTC(P, k, `)
and FTM(P, k, `).

For the problem FTC(P, k, `) (resp. FTM(P, k, `))
first run the algorithm Ac(P,m) (resp. Am(P,m)). Let
Q ⊆ P denote the set of m centers output, and let Q =
{q1, . . . , qm}. Then the set of centers we output for our
fault-tolerant solution is, C =

⋃m
i=1 NN`(qi,P). That is,

we take the ` nearest neighbors of each point qi in P,
for i = 1, . . . ,m. We only use this set C in the analysis.
If however C has less than k points, we can throw in
k − |C| additional points chosen arbitrarily from P \C,
since adding additional centers can only decrease the
cost of our solution.

Let Afc(P, k, `) and Afm(P, k, `) denote these algo-
rithms for FTC(P, k, `) and FTM(P, k, `), respectively.

3.2 The algorithm of Gonzalez

We now describe the 2-approximation algorithm for the
m-center problem, due to Gonzalez [5]. Gonzalez’s algo-
rithm builds a solution set C iteratively. To kick-start
the iteration, we let C = {p} where p ∈ P is an arbi-
trary point. Until m points have been accumulated, the
algorithm repeatedly looks for the furthest point in P to
the current set C, and adds the found point to C. More
formally, at each step we compute arg maxq∈P d(q, C),
and add it to C.

This algorithm is not only simple from a conceptual
stand-point, but also in regards to implementation and
running time. Indeed, by just maintaining for each point
in P, its current nearest center among C, the above al-
gorithm can be implemented in O(n) time per iteration,
for a total time of O(nm). As mentioned earlier, the re-
sult of Hochbaum and Shmoys [8] implies that the ap-
proximation factor for this algorithm for general metric
spaces, is the best possible.

4 Results and Analysis

We now present our results and their proofs. Our
first result, is that using a factor c-approximation algo-
rithm for Am(P,m) in the algorithm Afm(P, k, `) gives
a (1 + 4c)-approximation algorithm for the problem
FTM(P, k, `). The structure of the k-center prob-
lem allows us to use a nearly identical analysis except
with one simplification, yielding an improved (1 + 2c)-
approximation algorithm for the problem FTC(P, k, `).
Our second result, shows that if one uses the algorithm
of Gonzalez [5] for the subroutine Ac(P,m), then one
can guarantee a tighter approximation ratio of 4 (or 3 if
l|k), as opposed to the 5 guaranteed by our first result.

4.1 Analysis for fault-tolerant k-median

Theorem 4.1 For a given point set P in a metric space
M with |P| = n, the algorithm Afm(P, k, `) achieves
a (1 + 4c)-approximation to the optimal solution of
FTM(P, k, `), where c is the approximation guarantee
of the subroutine Am(P,m), where m = bk/`c.

As a corollary we have,

Corollary 4.2 There is a 12-approximation algorithm
for the problem FTM(P, k, `).

Proof. We use the (1 +
√

3 + ε)-approximation algo-
rithm of Li and Svennson [13] with a small enough ε,
for the subroutine Am(P,m). The result follows by ap-
pealing to Theorem 4.1. �
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Proof of Theorem 4.1

We refer the reader to Section 2 for notation already
introduced. We need some more notation. For a given
instance of FTM(P, k, `), let C∗ = {w1, w2, . . . , wk} be
an optimal set of centers, and let σopt be its cost, i.e,
σopt =

∑
p∈P d`(p, C

∗). Let C = {c1, . . . , ck} be the set
of centers returned by Afm(P, k, `), and σalg its cost.

Let m = bk/`c, and let σmed denote the cost of
the optimum m-median clustering on P, i.e., the opti-
mum for the problem FTM(P,m, 1). When Afm(P, k, `)
is run, it makes a subroutine call to Am(P,m). Let
Q = {q1, . . . , qm} be the set of centers returned by this
subroutine call. We know that Q is a c-approximation
to the optimal solution to FTC(P,m, 1).

Notice that, C includes
⋃m

i=1 NN`(qi,P). We assume
that the set C has exactly k points. As mentioned ear-
lier, we only require that C includes

⋃m
i=1 NN`(qi,P) in

our analysis, and if |
⋃m

i=1 NN`(qi,P)| < k, we can al-
ways add additional points. This can only decrease the
cost of clustering.

Proving the following two claims will immediately im-
ply σalg ≤ (1 + 4c)σopt.

Claim 4.3 We have that, σalg ≤ σopt + 2cσmed.

Claim 4.4 We have that, σmed ≤ 2σopt.

Proof of Claim 4.3: Let p ∈ P, and let q = nn1(p, Q).
By Observation 2.1, d`(p, C) ≤ d(p, q) + d`(q, C). As
NN`(q,P) ⊆ C, we have that d`(q,P) = d`(q, C). Again
by Observation 2.1, d`(q,P) ≤ d(q, p) + d`(p,P). Com-
bining the two inequalities gives, d`(p, C) ≤ 2d(p, q) +
d`(p,P) = 2d1(p, Q) + d`(p,P). Thus,

σalg =
∑
p∈P

d`(p, C) ≤
∑
p∈P

(2d1(p, Q) + d`(p,P))

≤ 2cσmed + σopt,

(1)

as Q is a c-approximate m-median solution, d`(p,P) ≤
d`(p, C

∗), and σopt =
∑

p∈P d`(p, C
∗).

The following is required to prove Claim 4.4, but is
interesting in its own right.

Lemma 4.5 Let M be any metric space. Let X ⊆ M
with |X| = t. Then for any integer 1 ≤ h ≤ t, and any
finite set Y ⊆M , there exists a subset S ⊆ Y, such that
(A) |S| ≤ t/h, and, (B) ∀y ∈ Y, d1(y, S) ≤ 2dh(y,X).

Proof. We give an algorithm to construct such a subset
S ⊆ Y. This subset is constructed by iteratively scoop-
ing out the points of the minimum radius ball containing
h points from X, adding the center to S, and repeating.
Formally, let W0 = ∅, and for i = 1, . . . , bt/hc, define it-

eratively, Xi = X\
(⋃i−1

j=0Wj

)
, yi = arg minv∈Y dh(v,Xi),

and, Wi = NNh(yi,Xi). We prove that S =
⋃bt/hc

i=1 {yi},
is the desired subset of points.

First, clearly |S| ≤ t/h. Let y ∈ Y, and let b =
ball (y, x), where x = dh(y,X). Let Wi be the first sub-
set, i.e. the one with smallest index i, such that there
exists some point w ∈ b ∩Wi. Such a point must ex-

ist, since fewer than h points are in X \
(⋃bt/hc

j=1 Wj

)
,

while |b ∩ X| ≥ h. Clearly b ∩ X ⊆ Xi, as i is the min-
imum index such that b ∩Wi 6= ∅. As such we have,
dh(y,X) = dh(y,Xi). Let ri = dh(yi,Xi), be the radius
of the ball that scooped out Wi. Clearly ri ≤ x, as

x = dh(y,X) = dh(y,Xi) ≥ ri = arg min
v∈Y

dh(v,Xi) .

Now, since w ∈ b ∩Wi, d(yi,w) ≤ ri = dh(yi,Xi). By
the triangle inequality,

d1(y, S) ≤ d(y, yi) ≤ d(y,w) + d(w, yi) ≤ x+ ri ≤ 2x

= 2dh(y,X) .

�

Proof of Claim 4.4: We use Lemma 4.5 with Y = P,
X = C∗, t = |C∗| = k and h = `. Let S be the subset
of P guaranteed by Lemma 4.5. Now |S| ≤ k/`, and as
such |S| ≤ m. We have,

σmed ≤
∑
p∈P

d1(p, S) ≤
∑
p∈P

2d`(p, C
∗) = 2σopt. (2)

The first inequality follows since σmed is the cost of the
optimum m-median clustering of P, while

∑
p∈P d1(p, S)

is the cost of a |S|-median clustering of P by the set of
centers S ⊆ P with |S| ≤ m. The second inequality
follows from Lemma 4.5.
This concludes the proof of Theorem 4.1.

4.2 Analysis for fault-tolerant k-center

We now present the analogues result to Theorem 4.1 for
fault-tolerant k-center. By following the proof nearly
verbatim from the previous section one sees that simi-
lar to Afm(P, k, `), Afc(P, k, `) also provides a (1 + 4c)-
approximation. However, in this case we will actually
get a (1 + 2c)-approximation, since now an improved
and simpler version of Claim 4.3 holds.

As a quick note on notation, here ralg, ropt, and rcen
will play the analogues role for center as σalg, σopt, and
σmed played for median.

Claim 4.6 We have that, ralg ≤ ropt + 2crcen.

Proof of Claim 4.6: Let p ∈ P, and let q =
nn1(p, Q). By Observation 2.1, d`(p, C) ≤ d(p, q) +
d`(q, C) = d(p, q) + d`(q,P), where the equality follows
since NN`(q,P) ⊆ C. Thus,

ralg = max
p∈P

d`(p, C) ≤ max
p∈P

(d1(p, Q) + d`(q,P))

≤ 2crcen + ropt,
(3)
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as Q is a c-approximate m-center solution, d`(q,P) ≤
d`(q, C

∗), and ropt = maxp∈P d`(p, C
∗).

Theorem 4.7 For a given point set P in a metric space
M with |P| = n, the algorithm Afc(P, k, `) achieves
a (1 + 2c)-approximation to the optimal solution of
FTC(P, k, `), where c is the approximation guarantee
of the subroutine Ac(P,m), where m = bk/`c.

Proof. As stated above, the proof of this theorem is
very similar to the proof of Theorem 4.1. In fact, we
can repeat the proof of Theorem 4.1 almost word for
word, except that we need to replace the sum function∑
p∈P

by the max function, max
p∈P

. More specifically, this

needs to be done for Eq. (2) in the proof of Claim 4.4,
and to replace Eq. (1) from Claim 4.3 we instead use
the improved Eq. (3) from Claim 4.6. As the proof can
be reconstructed step-by-step from the detailed proof of
Theorem 4.1 by making these modifications, we omit it
for the sake of brevity. �

4.2.1 A tighter analysis when using Gonzalez’s al-
gorithm as a subroutine

If we use a 2-approximation algorithm for the subrou-
tine Ac(P,m), Theorem 4.7 implies that Afc(P, k, `) is
a 9-approximation algorithm. Here we present a tighter
analysis for the case when we use the 2-approximation
algorithm of Gonzalez [5] (see also Section 3.2) for the
subroutine Ac(P,m).

See Section 2 for definitions and notation introduced
previously. Some more notation is needed. Let C∗ =
{w1, w2, . . . , wk} be an optimal set of centers. Its cost,
ropt, is maxp∈P d`(p, C

∗). Let C = {c1, . . . , ck} be the
set of centers returned by Afc(P, k, `), and let ralg be its
cost.

Let m = bk/`c, where for now we assume `|k, i.e, m =
k/`. As we show later, this assumption can be removed.
When Afc(P, k, `) is run, it makes a subroutine call to
Ac(P,m). As mentioned, in this section we require this
subroutine to be the algorithm of Gonzalez [5]. Let
Q = {q1, . . . , qm} be the set of centers returned by this
subroutine call. Additionally, let ri = d(qi, Qi−1) for
2 ≤ i ≤ m, where Qi−1 = {q1, . . . , qi−1}. We assume
m > 1, as the m = 1 case is easier.

The following is easy to see, and is used in the cor-
rectness proof for the algorithm of Gonzalez. See [6] for
an exposition.

Lemma 4.8 For i 6= j, d(qi, qj) ≥ rm.

Lemma 4.9 For any qi, NN`(qi, C
∗) ⊆ ball (qi, ropt)

and NN`(qi,P) ⊆ ball (qi, ropt).

Proof. The first claim follows since qi ∈ P and so
d`(qi, C

∗) ≤ ropt. As C∗ ⊆ P, the second claim fol-
lows. �

Lemma 4.10 We have that, ralg ≤ rm + ropt.

Proof. As in Gonzalez’s algorithm, we have rm =
maxp∈P d(p, Qm−1), and so d(p, Q) ≤ rm for any p ∈ P.
Consider any point p ∈ P, and let q = nn1(p, Q).
By how Afc(P, k, `) is defined, NN`(q,P) ⊆ C, and so
d`(q, C) = d`(q,P) ≤ d`(q, C

∗) ≤ ropt. By Obser-
vation 2.1 we have, d`(p, C) ≤ d(p, q) + d`(q, C) ≤
rm + ropt. �

Lemma 4.11 If ralg > 3ropt, then for any 1 ≤ i 6= j ≤
m, ball (qi, ropt) and ball (qj , ropt) are disjoint and each
contains at least ` centers from C∗.

Proof. Let qi and qj be any two distinct centers in
Q. By Lemma 4.8 and Lemma 4.10, d(qi, qj) ≥ rm ≥
ralg − ropt > 2ropt, which implies that, ball (qi, ropt) ∩
ball (qj , ropt) = ∅. Each ball contains ` centers from C∗

by Lemma 4.9. �

Lemma 4.12 We have that, ralg ≤ 3ropt.

Proof. Suppose otherwise that ralg > 3ropt. By
Lemma 4.11, for i = 1, . . . ,m, |ball (qi, ropt) ∩ C∗| ≥ `,
and for 1 ≤ i < j ≤ m, ball (qi, ropt) ∩ ball (qj , ropt) = ∅.
Assign all points in C∗ ∩ ball (qi, ropt) to qi. Notice, qi
is the unique point from Q within distance ropt for any
point assigned to it. Now |Q| = m = k/`, and each
point in Q gets at least ` points of C∗ assigned to it
uniquely. As such, there are at least m` = k points of
C∗ assigned to some point of Q. Since |C∗| = k, it fol-
lows that each center in C∗ gets assigned to a center in
Q within distance ropt. For p ∈ P, let v be its closest cen-
ter in C∗. Let q be v’s center from Q in distance ≤ ropt.
We have d(p, q) ≤ d(p, v) + d(v, q) ≤ ropt + ropt = 2ropt,
by the triangle inequality. As NN`(q,P) ⊆ C, we have
that d`(q, C) = d`(q,P) ≤ d`(q, C

∗) ≤ ropt. By Obser-
vation 2.1, we have that, d`(p, C) ≤ d`(q, C) + d(p, q) ≤
ropt + 2ropt = 3ropt. This implies ralg ≤ 3ropt, a contra-
diction. �

Theorem 4.13 For a given instance of FTC(P, k, `),
when using the algorithm of Gonzalez [5] for the subrou-
tine Ac(P,m), the algorithm Afc(P, k, `) achieves a 4-
approximation to the optimal solution to FTC(P, k, `),
and a 3-approximation when `|k.

Proof. The `|k case follows from Lemma 4.12. If `
does not divide k, the proof of Lemma 4.12 needs to
be changed as follows. Suppose, k = ` ∗ m + r for
some integer 0 < r < `. Let k′ = ` ∗ m. As in the
proof of Lemma 4.12, it follows from Lemma 4.11, that
if ralg > 3ropt, then at least k′ centers from C∗ will be
within distance at most ropt to a center in Q. There-
fore, there are at most k− k′ = r centers from C∗, that
are not within ropt to some point in Q. However, each
such center needs ` > r centers from C∗, to be within
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distance ropt, and so each such center must be within
distance ropt from one of the centers of C∗ that is near
a center in Q, i.e. within distance ropt to some center
in Q. Hence, by the triangle inequality, each center in
C∗, has a center of Q within distance at most 2ropt. Re-
peating the argument of Lemma 4.12, with this different
upper bound, we get that ralg ≤ 4ropt. �

5 Conclusions

In this paper we investigated fault-tolerant variants of
the k-center and k-median clustering problems. Our al-
gorithm achieves a (1 + 2c)-approximation (resp. (1 +
4c)-approximation) factor, where c is the approxima-
tion factor for the non-fault-tolerant m-center (resp. m-
median) algorithm that we use as a subroutine. Using
a better analysis for the case of fault-tolerant k-center,
when we use Gonzalez’s algorithm as a subroutine, we
showed that our algorithm has a tighter approxima-
tion ratio of 4. For fault-tolerant k-median, we get a
(5 + 4

√
3 + ε) ≈ 12-approximation algorithm, by using

the recent algorithm of Li and Svensson as a subroutine
[13]. We can see several questions for future research.

• The best known approximation factor for the fault-
tolerant k-center problem is 2 by Chaudhuri et al.
[3] and Khuller et al. [10]. Their techniques are
based on the work of Hochbaum and Shmoys [8]
and Krumke [12]. Our algorithm, which leads to a
4-approximation for fault-tolerant k-center is based
on the 2-approximation to k-center by Gonzalez [5].
Can the algorithm or its analysis be improved to get
a factor 2-approximation? Also, can we deal with
the second variant of fault-tolerant k-center in the
work of Khuller et al.– which also happens to be
the version considered by Krumke and Chaudhuri
et al.?

• The fault-tolerant k-median variant that we inves-
tigate, is very different from the work of Swamy
and Shmoys [14], but their techniques are more
technically involved. As we show, we reduce the
fault-tolerant version to the non-fault-tolerant ver-
sion for a smaller number of centers. An important
question that arises is the following: Can the ver-
sion considered by Swamy and Shmoys be reduced
to the non-fault-tolerant version, or some variant
thereof, i.e., can we use some simpler problem as an
oracle to get a fault-tolerant k-median algorithm,
for the version of Swamy and Shmoys?
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