CCCG 2013, Waterloo, Ontario, August 8-10, 2013

Cole’s Parametric Search Technique Made Practical

Michael T. Goodrich

Dept. of Computer Science
University of California, Irvine

Abstract

Parametric search has been widely used in geometric al-
gorithms. Cole’s improvement provides a way of saving
a logarithmic factor in the running time over what is
achievable using the standard method. Unfortunately,
this improvement comes at the expense of making an al-
ready complicated algorithm even more complex; hence,
this technique has been mostly of theoretical interest. In
this paper, we provide an algorithm engineering frame-
work that allows for the same asymptotic complexity
to be achieved probabilistically in a way that is both
simple and practical (i.e., suitable for actual implemen-
tation). The main idea of our approach is to show that
a variant of quicksort, known as bozsort, can be used to
drive comparisons, instead of using a sorting network,
like the complicated AKS network, or an EREW par-
allel sorting algorithm, like the fairly intricate parallel
mergesort algorithm. This results in a randomized opti-
mization algorithm with a running time matching that
of using Cole’s method, with high probability, while also
being practical. We show how this results in practical
implementations of some geometric algorithms utilizing
parametric searching and provide experimental results
that prove practicality of the method.

1 Introduction

Parametric search [24] has proven to be a useful tech-
nique in design of efficient algorithms for many geo-
metric and combinatorial optimization problems (e.g.,
see [2, 3, 28]). Example applications include ray shoot-
ing [1], slope selection [13], computing the Fréchet dis-
tance between two polygonal curves [6, 8], matching
drawings of planar graphs [5], labeling planar maps with
rectangles [22], and various other matching and approx-
imation problems (e.g., see [15, 16, 17]).

Although it has been superseded in some applications
by Chan’s randomized optimization technique [9, 10],
for many problems asymptotically best known results
still depend on parametric searching.

The technique is applied to a decision problem, B,
whose solution depends on a real parameter, A, in a
monotonic way, so that B is true on some interval
(=00, A*). The goal is to determine the value of A*,

Pawel Pszona

Dept. of Computer Science
University of California, Irvine

the maximum for which B is true. To achieve this goal,
the parametric search approach utilizes two algorithms.
The first algorithm, C, is a sequential decision algorithm
for B that can determine if a given A is less than, equal
to, or greater than A*. The second algorithm, A, is
a generic parallel algorithm whose inner workings are
driven by “comparisons,” which are either independent
of A or depend on the signs of low-degree polynomi-
als in X\. Because A works in parallel, its comparisons
come in batches, so there are several independent such
comparisons that occur at the same time. The idea,
then, is to run A on the input that depends on the un-
known value A*, which will result in actually finding
that value as a kind of by-product (even though we do
not know A*, C can be used to resolve comparisons that
appear during the execution of A4). The next step is
to simulate an execution of A sequentially. To resolve
comparisons that occur in a single step of this simu-
lation, we can use the algorithm C to perform binary
search among the (ordered) roots of the polynomials
in A for these comparisons, which allows us to deter-
mine signs of all these polynomials, hence, allows us
to continue the simulation. When the simulation com-
pletes, we will have determined the value of *. More-
over, the running time for performing this simulation is
O(P(n)T(n) + C(n)T(n)log P(n)), where C(n) is the
(sequential) running time of C, T'(n) is the (parallel)
running time of A, and P(n) is the number of proces-
sors used by A.

Cole [11] shows how to improve the asymptotic per-
formance of the parametric search technique when sort-
ing is the problem solved by A. His improvement
comes from an observation that performing a separate
binary search for each step of the algorithm A will often
“waste” calls to C to resolve a relatively small number of
comparisons. Rather than resolve all the comparisons
of a single step of A, he instead assumes that A is im-
plemented as the AKS sorting network [4] or an optimal
EREW parallel sorting algorithm [12, 18], which allows
for comparisons on multiple steps of A to be considered
at the same time (so long as their preceding compar-
isons have been resolved). This improvement results
in a running time for the optimization problem that is
O(P(n)T(n) + C(n)(T(n) + log P(n))).

From an algorithm engineering perspective, the “clas-

25" Canadian Conference on Computational Geometry, 2013

sical” parametric search technique (utilizing a paral-
lel algorithm) is admittedly difficult to implement, al-
though some implementations do exist [29, 30, 31].
Cole’s improvement is even more complex, however, and
we are not familiar with any implementations of his
parametric search optimization.

Even without Cole’s improvement, a challenge for im-
plementing the parametric search technique is the sim-
ulation of a parallel algorithm on a sequential machine.
This difficulty has motivated some researchers to aban-
don the use of parametric searching entirely and instead
use other paradigms, such as expander graphs [21], ge-
ometric random sampling [23], and e-cuttings [7] (see
also [2]).

Interestingly, van Oostrum and Veltkamp [31] show
that, for sorting-based parametric search applications,
one can use the well-known quicksort algorithm to
drive comparisons instead of a parallel sorting algo-
rithm. Unfortunately, as van Oostrum and Veltkamp
note in their paper, Cole’s improvement cannot be ap-
plied in this case. The main difficulty is that, when
viewed as a kind of parallel algorithm, comparisons to
be done at one level of quicksort become known only
after all the comparisons on the level above have been
resolved. Thus, comparisons cannot be pipelined in the
way required by Cole’s optimization when using this ap-
proach. The result, of course, is that this sets up an un-
fortunate tension between theory and practice, forcing
algorithm designers to choose between a practical, but
asymptotically inferior, implementation or an imprac-
tical algorithm whose running time is asymptotically
better by a logarithmic factor.

1.1 Our Results

We show that it is, in fact, possible to implement Cole’s
parametric search technique in a manner that is effi-
cient and practical (i.e., fast and easy to implement).
The main idea is to use a variant of quicksort, known
as boxsort [26], to drive comparisons (instead of sort-
ing networks, like the complicated AKS network or an
EREW parallel sorting algorithm). We apply a po-
tential function to comparisons in the boxsort algo-
rithm, which, together with a weighted-median-finding
algorithm, allows us to schedule these comparisons in
a pipelined fashion and achieve, with high probability,
the same asymptotic running time as Cole’s method,
while also being practical. Moreover, we provide exper-
imental results that give empirical evidence supporting
these claims for the “median-of-lines” problem [24] and
the geometric optimization problems of matching pla-
nar drawings [5] and labeling planar maps with rectan-
gles [22].

2 Parametric Search Explained

In this section, we provide a more in-depth description
of the parametric search technique. Recall that B is a
problem that we want to solve. Furthermore, we restrict
ourselves to the case where the generic algorithm A is
a sorting algorithm. We require of B the following.

1. There is a decision algorithm, C, which, for any
value A, resolves a comparison A < A* in time C(n)
without actually knowing A* (note that C'(n) is a
function of the size of input to B). Typically, C(n)
is at least 2(n), as opposed to O(1) comparison
time which is usual for classical sorting algorithms.

2. There is an efficient way of generating values x;
(with each z; being either a real value or a real-
valued function of A) from an input to problem B.
Ideally, it produces O(n) such values.

3. For each z; < z; comparison, the answer is deter-
mined by the sign of a low-degree polynomial in A
at A = A* (polynomials for different comparisons
may differ).

4. Critical values (values A that, based on combina-
torial properties of B, have the potential of being
equal to A*) form a subset of the set of roots of the
polynomials determining answers to every possible
comparison x; < ;.

Then, as a by-product of sorting values z;, we get
(directly or indirectly) the answers to all comparisons
A < A*, where \’s are roots of all comparisons z; < x;.
Therefore, we are able to find *.

We can solve B in the following way: generate x;’s,
sort them using algorithm A and recover A* from the
answer. If A sorts n items in 7T'(n) comparisons and
each comparison is resolved in time O (C(n)) (it requires
determining whether A < A* for a constant number of
roots A), solving B this way takes time T(n)C(n).

It is important to note that if there are & comparisons
x; < xj, we can avoid calling C on every single root of
their polynomials, and still resolve them all. This is
because resolving A < A* automatically resolves com-
parisons for values A < A (if the result was YES) or
A > X* (if the result was NO). Therefore, we can solve
k comparisons in only O(logk) calls to C, if in every
iteration we use a standard median-finding algorithm
(e.g., see [14]) to find the median root A, and then re-
solve it by a call to C (each iteration halves the number
of unresolved comparisons).

The above observation lies at the heart of the original
parametric search, as introduced by Megiddo [24]. Note
that we can group the comparisons in such a way only if
they are independent of each other. To assure this, one
chooses A to be a parallel sorting algorithm, running in

CCCG 2013, Waterloo, Ontario, August 8-10, 2013

time T'(n) on P(n) processors. At every step of A, there
are O(P(n)) independent comparisons, and they can be
resolved in time O(P(n) + log(P(n)) - C(n)) according
to the previous observation. Resolving comparisons at
all T(n) steps of A takes time O(T'(n) - P(n) + T'(n) -
log(P(n))-C(n)). Simulating A on a sequential machine
takes time O(T'(n)P(n)). Therefore, parametric search,
as originally introduced, helps solve B in time O(T(n) :
P(n) +T(n) -log(P(n)) - C(n)).

2.1 Cole’s Improvement

Cole [11] was able to improve on Megiddo’s result by
using a sorting network or an EREW parallel sorting
algorithm as A, and changing the order of comparison
resolution by assigning weights to comparisons and re-
solving the median weighted comparison at each step.

In the case of a sorting network, a straightforward
notion of active comparisons and active wires was in-
troduced. Initially, all input wires (and no others) are
active. A comparison is said to be active if it is not re-
solved and both its input wires are active. When active
comparison gets resolved, its output wires now become
active, possibly activating subsequent comparisons. In-
formally, active comparisons have not been resolved yet,
but both of their inputs are already determined.

Weight is assigned to every comparison, being equal
to 477 for a comparison at depth j. The active weight
is defined as the weight of all active comparisons. The
weighted median comparison can be found in O(n)
time [27], and resolving it automatically resolves a
weighted half of the comparisons.

It is shown that for a sorting network of width
P(n) and depth T'(n), or an EREW sorting algorithm
with P(n) processors and time T'(n), the method of
resolving weighted median comparison requires only
O(T(n) + log(P(n))) direct calls to C. Including sim-
ulation overhead, we solve B in time O(P(n) - T'(n) +
(T(n) + log(P(n))) - C(n)).

This is completely impractical, however, as the
bounds for the AKS network have huge constant fac-
tors. In a subsequent work [12], Cole shows that one
can substitute an EREW parallel sorting algorithm for
the AKS network, which makes using his optimization
more implementable, but arguably still not practical,
since the existing optimal EREW parallel sorting algo-
rithms [12, 18] are still fairly intricate.

2.2 Applying quicksort to Parametric Search

Van Oostrum and Veltkamp [31] have shown that the
quicksort algorithm [20] can be used as A. Recall
that in the randomized version of this algorithm we
sort a set of elements by picking one of them (called
the pivot) at random, and recursively sorting elements
smaller than the pivot and greater than the pivot. A

key observation here is that all the comparisons with
the pivot(s) at a given level of recursion are indepen-
dent of each other. It leads to a practical algorithm,
running in O(nlogn + log?n - C(n)) expected-time, for
solving B (it becomes O(nlogn + logn - C(n)) under
additional assumption about distribution of the roots
of polynomials). Comparisons are resolved by resolving
the median comparison among unresolved comparisons
at the current level. As quicksort is expected to have
O(logn) levels of recursion, and O(n) comparisons at
each level can be resolved in time O(n + logn - C(n)),
time bound follows.

Cole’s improvement cannot be applied in this case,
because all comparisons at one level have to be re-
solved before we even know what comparisons have to
be done at the next level (that is, we don’t know the
splits around pivots until the very last comparison is
resolved).

3 Our Practical Version of Cole’s Technique

In this section, we describe our algorithm engineering
framework for making Cole’s parametric search tech-
nique practical. Our approach results in a random-
ized parametric search algorithm with a running time
of O(nlogn+logn-C(n)), with high probability, which
makes no assumptions about the input. Our framework
involves resolving median-weight comparison, according
to a potential function based on Cole-style weights as-
signed to comparisons of a fairly obscure sorting algo-
rithm, which we review next.

3.1 The boxsort Algorithm

We use the boxsort algorithm due to Reischuk [26] (see
also [25]) as A. This algorithm is based on an extension
of the main idea behind randomized quicksort, namely
splitting elements around pivots and recursing into sub-
problems. While quicksort randomly selects a single
pivot and recurses into two subproblems, boxsort ran-
domly selects y/n pivots and recurses into v/n + 1 sub-
problems in a single stage. We think of it as a parallel
algorithm, in the sense that the recursive calls on the
same level are independent of each other. The pseu-
docode is shown in Algorithm 1.

Sorting in lines 3 and 6 is done in a brute-force man-
ner, by comparing all pairs of items, in time O(n?) in
line 3, and O(n) in line 6 (note that since all these com-
parisons are independent, they can all be realized in a
single parallel step).

Once the marked items are sorted in line 6, splitting
in line 7 is simply n — y/n independent binary searches
through the marked items (to determine, for each un-
marked element, the subproblem where it lands). It
takes O(nlog+/n) time (when realized in a sequential
way). Equivalently, we think of the sorted set of marked

25" Canadian Conference on Computational Geometry, 2013

// N — original number of items
proc boxsort(Afi...j])
Lne (j—itl)
2: if n <log N then
3: sort Afi...J]
4: else
5. randomly mark \/n items
6: sort the marked items
7. use the marked items to split Afi..
problems Ay, As, ..., A 544
8 foralli—1..../n+1do

// base case

. 7] into sub-

9: boxsort (A4;)
10: end for
11: end if

Algorithm 1: boxsort

items as forming a perfectly balanced binary search tree.
Locating a destination subproblem for an item is then
done by routing the item through this tree. The tree
has log v/n levels, and all routing comparisons are inde-
pendent between different unmarked items. Therefore,
routing can be realized in log \/n parallel steps.

3.2 Weighting Scheme

Motivated by Cole’s approach, we assign weight to ev-
ery active comparison, and resolve the weighted median
comparison in a single step. For simplicity, we iden-
tify each comparison z; < x; with a single comparison
against the optimum value, i.e., A;; < A* for real \;; (in
essence, we assume that comparison polynomials have
degree 1). It is straightforward to extend the scheme for
the case of higher degrees of comparison polynomials.
It makes sense here to think of boxsort in a network-
like fashion, in order to understand how the weights are
assigned to comparisons. Here, nodes represent compar-
isons, and directed edges represent dependence on pre-
vious comparisons. Furthermore, we imagine the net-
work with edges directed downward, and refer to edge
sources as parents, and destinations as children. Com-
parison becomes active as soon as all its dependencies
become resolved (and stops when it gets resolved).
Our “network” also contains nodes for virtual com-
parisons. These are not real comparisons, and don’t
appear during actual execution of the algorithm. Their
sole purpose is to make it easy to assign weights to real
comparisons once they become active (we will later see
that, in fact, they are not necessary even for that; but
they make it easy to understand how the weights are
computed). When a virtual comparison becomes ac-
tive, it is automatically resolved (reflecting the fact that
there is no real work assigned to a virtual comparison).
Contrary to Cole’s weighting scheme for sorting net-
works, our scheme does not rely only on comparison’s
depth when assigning weights. In fact, different compar-

isons at the same level of the network may have different
weights. Weights are assigned to comparisons (virtual
or not) according to the following weight rule:

When comparison C' of weight w gets resolved
and causes m comparisons C1,...,C,, to be-
come active, each of these comparisons gets
weight w/2m.

Informally, resolved comparison distributes half of its
weight among its newly activated children. Each com-
parison gets its weight only once, from its last resolved
parent (the scheme guarantees that all parents of a com-
parison have equal weight).

3.3 The Algorithm

Simulating a single recursive call of boxsort (including
the wvirtual parts) consists of the following steps.

1. Randomly mark /n items.

2. Create v/n - (v/n —1)/2 = O(n) comparisons for
sorting marked items.

3. Construct a complete binary tree of virtual com-
parisons (comparisons from Step 2 are leaves).

4. Create routing trees from section 3.1 for routing
unmarked elements; make the root of each such tree
depend on the root of the tree from Step 3.

5. Route items through the tree of marked items;

6. Construct a binary tree of virtual comparisons
(leaves are last comparisons from routing trees).

7. Split items into boxes

8. Assign weights for comparisons in the next level of
recursion (after the items are split into boxes) by
making them children of the root from Step 6.

9. Recurse into subproblems (simultaneously).

Blue steps (3, 6) deal with trees of virtual compar-
isons, while red steps (4, 8) represent relationships that
make real comparisons depend on virtual ones. The idea
behind blue steps is to ensure synchronization (that is,
guarantee that all real comparisons on the levels above
have been resolved), and red steps are there to ensure
proper assignment of weights. For simplicity, we present
heights/weights as if there were exactly n (instead of
vn - (y/n —1)/2) comparisons between marked items,
and exactly n (instead of n —/n) unmarked items to be
routed. This assumption also applies to the following.

Steps 1 and 7 do not involve any comparisons, and
they do not affect weights. Comparisons from Step 2
start with weight w. The tree from Step 3 has height

CCCG 2013, Waterloo, Ontario, August 8-10, 2013

logn, so its root, according to the weight rule gets
weight w/(2'°6™) = w/n. Dependencies introduced
in Step 4 between that root and roots of the routing
trees cause their weight to be w/2n? (weight w/n di-
vided among n comparisons). Routing trees have height
log v/n, so the comparisons at their bottom have weight
w/2n%5 (w/2n? divided by 2!°8 V™ because, as the rout-
ing progresses, the routing trees get whittled down to
paths, and resolving a routing comparison activates at
most one new routing comparison. Step 6 is essentially
the same as Step 3, so the root of the second wvirtual
tree gets weight w/2n3®. All initial comparisons in the
subsequent recursive calls (sorting of new marked items
and/or sorting in the base case) depend on this root
(Step 8), and they are given weight w/4n*® (much like
in Step 4). The height of the dependence network is
O(logn), and at any given moment the number of cur-
rently active comparisons does not exceed n.

From now on, comparisons are independent across
different subproblems. For subsequent subproblems, n
from the above discussion gets substituted by 7, the size
of the subproblem. Since subproblem sizes may differ,
comparisons on the same level of the network (general
level, for the entire algorithm) are no longer guaranteed
to have same weights (weights of comparisons belonging
to the same subproblem are however equal).

The above discussion shows that, as advertised, we
don’t really need wvirtual comparisons in order to assign
weights to real comparisons, as these depend only on
n, the size of the subproblem. Therefore, the actual
algorithm only consists of steps 1, 2, 5, 7, and 9 and is
the following.

1. Randomly mark /n items

2. Sort marked items by comparing every pair in O(n)
comparisons, each of weight w.

3. When the last comparison finishes, activate com-
parisons for routing through the tree of marked
items, each of weight w/2n2.

4. Route items through the trees, following the weight
rule when a comparison gets resolved.

5. When the destination for the last item is deter-
mined, split items into boxes (no additional com-
parisons resolved here).

6. Assign weight w/4n**® to initial comparisons in new
subproblems.

7. Recurse into subproblems (simultaneously).

3.4 Analysis

Assume that initially all comparisons at the highest level
were given weight 1. Here, we also include virtual com-

parisons. Motivatad by Cole’s analysis [11], we get the
following (for details, refer to the full version [19]).

Lemma 1 O(f(n) + logn) rounds of resolving the
median-weight comparison suffice to resolve every com-
parison, where f(n) is the height of boxsort’s network.

We also have the following fact about boxsort.

Lemma 2 (Theorem 12.2 of [25]) There is a constant
b > 0 such that boxsort terminates in O(logn) parallel
steps with probability at least 1 — exp(— log® n).

Originally, boxsort requires O(logn) parallel steps
to execute a single recursive call for a problem of size
n. We noted that the dependence network for a single
recursive call in our simulation has height O(logn) for
a problem of size n as well. This means that Lemma 2
applies here and proves that, with high probability, the
dependence network for the entire simulation has height
O(logn).

Combining that with Lemma 1 and the observation
that any level in the dependence network contains O(n)
comparisons, we get the following.

Theorem 3 With high probability, the presented al-
gorithm requires O(logn) calls to C, vyielding an
O(nlogn + logn - C(n)) time parametric search solu-
tion to problem B.

4 Conclusion

We have introduced a practical version of Cole’s op-
timization of the parametric search technique. Our
method results in a randomized algorithm whose run-
ning time matches that of using Cole’s technique, with
high probability, while being easily implementable. We
have implemented it and, based on experimentation per-
formed on some geometric problems (details in the full
paper [19]), showed that our approach is competitive
with the previous practical parametric search technique
of van Qostrum and Veltkamp [31], while having supe-
rior asymptotic performance guarantees.

References

[1] P. K. Agarwal and J. Matousek. Ray shooting and
parametric search. SIAM Journal on Computing,
22(4):794-806, 1993.

[2] P. K. Agarwal and M. Sharir. Efficient algorithms
for geometric optimization. ACM Comput. Surv.,
30(4):412-458, 1998.

[3] P. K. Agarwal, M. Sharir, and S. Toledo. Appli-
cations of parametric searching in geometric opti-

mization. J. Algorithms, 17(3):292-318, 1994.

25" Canadian Conference on Computational Geometry, 2013

[4]

[14]

[15]

[17]

M. Ajtai, J. Komlés, and E. Szemerédi. Sorting
in ¢ log n parallel steps. Combinatorica, 3:1-19,
January 1983.

H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching
planar maps. Journal of Algorithms, 49(2):262—
283, 2003.

H. Alt and M. Godau. Computing the Fréchet dis-
tance between two polygonal curves. Int. J. Com-
put. Geometry Appl., 5:75-91, 1995.

H. Bronnimann and B. Chazelle. Optimal slope
selection via cuttings. Computational Geometry:
Theory and Applications, 10(1):23-29, 1998.

E. W. Chambers, E. Colin de Verdiere, J. Erick-
son, S. Lazard, F. Lazarus, and S. Thite. Walking
your dog in the woods in polynomial time. In 2/th
ACM Symp. on Computational Geometry, pages
101-109, 2008.

T. M. Chan. Geometric applications of a random-
ized optimization technique. Discrete & Computa-
tional Geometry, 22(4):547-567, 1999.

T. M. Chan. An optimal randomized algorithm
for maximum tukey depth. In J. I. Munro, editor,
SODA, pages 430-436. STAM, 2004.

R. Cole. Slowing down sorting networks to obtain
faster sorting algorithms. J. ACM, 34(1):200-208,
1987.

R. Cole. Parallel merge sort. SIAM J. Comput.,
17:770-785, August 1988.

R. Cole, J. S. Salowe, W. L. Steiger, and E. Sze-
merédi. An optimal-time algorithm for slope selec-
tion. SIAM Journal on Computing, 18(4):792-810,
1989.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to Algorithms. The MIT
Press, 3rd edition, 2009.

C. A. Duncan, M. T. Goodrich, and E. A. Ramos.
Efficient approximation and optimization algo-
rithms for computational metrology. In 8th ACM-
SIAM Symp. on Discrete algorithms (SODA),
pages 121-130, 1997.

H. Fournier and A. Vigneron. A deterministic al-
gorithm for fitting a step function to a weighted
point-set. CoRR (arXiv ePrint), abs/1109.1152,
2011.

M. Goodrich. Efficient piecewise-linear function ap-
proximation using the uniform metric. Discrete &
Computational Geometry, 14:445-462, 1995.

[18]

23]

[24]

[25]

[26]

[31]

M. T. Goodrich and S. R. Kosaraju. Sorting on
a parallel pointer machine with applications to set
expression evaluation. J. ACM, 43:331-361, March
1996.

M. T. Goodrich and P. Pszona. Cole’s paramet-
ric search technique made practical. CoRR (arXiv
ePrint), abs/1306.3000, 2013.

C. A. R. Hoare. Algorithm 64: Quicksort. Com-
mun. ACM, 4:321—, July 1961.

M. J. Katz and M. Sharir. Optimal slope selec-
tion via expanders. Information Processing Letters,
47(3):115-122, 1993.

A. Koike, S.-I. Nakano, T. Nishizeki, T. Tokuyama,
and S. Watanabe. Labeling points with rectangles
of various shapes. International Journal of Com-
putational Geometry and Applications, 12(6):511—
528, 2002.

J. Matousek. Randomized optimal algorithm for
slope selection. Information Processing Letters,
39(4):183-187, 1991.

N. Megiddo. Applying parallel computation algo-
rithms in the design of serial algorithms. J. ACM,
30(4):852-865, 1983.

R. Motwani and P. Raghavan. Randomized algo-
rithms. Cambridge University Press, New York,
NY, USA, 1995.

R. Reischuk.
for sorting and selection.
14(2):396-409, 1985.

Probabilistic parallel algorithms
SIAM J. Comput.,

A. Reiser. A linear selection algorithm for sets of el-
ements with weights. Inf. Process. Lett., 7(3):159—
162, 1978.

J. S. Salowe. Parametric search. In J. E. Good-
man and J. O’Rourke, editors, Handbook of Dis-
crete and Computational Geometry, Second Edi-
tion, pages 969-982. Chapman & Hall/CRC Press,
Inc., 2004.

J. Schwerdt, M. H. M. Smid, and S. Schirra. Com-
puting the minimum diameter for moving points:
An exact implementation using parametric search.
In ACM Symp. on Computational Geometry, pages
466-468, 1997.

S. Toledo. Ezxtremal Polygon Containment Prob-
lems and Other Issues in Parametric Searching.
MS Thesis, Dept. Comput. Sci., Tel Aviv Univ.,
Tel Aviv, 1991.

R. van Oostrum and R. C. Veltkamp. Parametric
search made practical. Computational Geometry:
Theory and Applications, 28(2-3):75-88, 2004.

