
CCCG 2010, Winnipeg MB, August 9–11, 2010

Finding Monochromatic L-Shapes in Bichromatic Point Sets

Farnaz Sheikhi∗ Mark de Berg† Ali Mohades∗ Mansoor Davoodi∗

Abstract

Given a set R of red points and a set B of blue points in
the plane of total size n, we study the problem of deter-
mining all angles for which there exists an L-shape con-
taining all points from B without containing any points
from R. We propose an algorithm to solve the problem
in O(n2 log n) time and O(n) storage. We also describe
an output-sensitive algorithm that reports all angles in
O(n5/3+ε + k log k) time and O(n5/3+ε) storage, where
k is the number of reported angular intervals.

1 Introduction

In a separability problem one is given two colored
point sets R and B—the red and the blue point set,
respectively—of total size n, and a geometric shape
called a separator. The goal is to decide whether one
can place the separator such that it separates sets R
and B completely. If such a placement is possible, one
often also wants to compute all such placements or the
placement minimizing some cost function. Geometric
separability arises in applications where classification is
required, such as machine learning and image process-
ing. There has been a fair amount of work on different
kinds of separators, both in the plane and in higher
dimensions. For separability in the plane, which is the
topic of our paper, the following results are known. The
problem of deciding whether the two point sets can be
separated by a single line was solved by Megiddo [9]
in linear time. O’Rourke et al. [11] presented a linear-
time algorithm for deciding whether the two point sets
can be separated by a circle. The problem of finding
a convex polygon with minimum number of edges sep-
arating the two point sets, if it exists, was solved by
Edelsbrunner and Preparata [5]. Fekete [6] showed that
the problem of determining a simple polygon with min-
imum number of edges separating the two point sets
is NP-complete, and a polynomial-time approximation
algorithm was provided by Mitchell [10]. Separability
problems have also been studied for separators in the
form of strips and wedges [7]. A thorough study is pre-

∗Laboratory of Algorithms and Computational
Geometry, Department of Mathematics and Com-
puter Science, Amirkabir University of Technology,
{f.sheikhi,Mohades,mdmonfared}@aut.ac.ir

†Department of Computer Science, TU Eindhoven, PO Box
513, 5600 MB, Eindhoven, the Netherlands. mdberg@win.tue.nl

sented by Seara [12].
Motivated by geometric model reconstruction from

LIDAR data, Van Kreveld et al. [8] recently studied the
separability problem in the plane for the case where the
separator is a (not necessarily axis-aligned) rectangle.
They proposed an O(n log n) time algorithm to compute
all angles for which a rectangular separator exists. They
mentioned the case of a non-convex separator, namely
an L-shape, as an open problem; this is the topic of our
paper. Next we define the problem more precisely and
we state our results.

We define an axis-aligned L-shape to be the set-
theoretic difference r1 \r2 of two axis-aligned rectangles
r1 and r2 such that r2 ⊂ r1 and the top-right corners
of r1 and r2 coincide. An L-shape with orientation θ is
then defined as an axis-aligned L-shape that has been
rotated in counterclockwise direction over an angle of θ.
Thus, given the point sets B and R, we wish to find
all angles θ ∈ [0, 2π) for which there exists an L-shape
L with orientation θ such that B ⊂ L and R ∩ L = ∅.
From now on, we call such an L-shape a blue L-shape.
The orientations for which a blue L-shape exists form
a collection of subintervals of [0, 2π). We present two
algorithms for computing this collection of intervals.

The first algorithm is a simple algorithm running in
O(n2 log n) time and using only O(n) storage. The sec-
ond algorithm is a more complicated output-sensitive
algorithm which uses O(n5/3+ε + k log k) time and
O(n5/3+ε) storage, where k is the number of reported
intervals and ε > 0 is any fixed constant.

2 The algorithms

Terminology and notation. We start by defining some
terminology and notation.

Our global strategy will be to do a rotational sweep:
we increase θ from 0 to 2π and we report the angu-
lar intervals for which there is a blue L-shape while we
sweep. It will be convenient to think about the sweep
as rotating the coordinate frame. Thus, we define the
xθ-axis and the yθ-axis as the coordinate axes after the
coordinate frame has been rotated over an angle θ in
counterclockwise direction. We denote the coordinates
of a point p in the rotated coordinate frame by xθ(p)
and yθ(p). Whenever we talk about the top-right cor-
ner of a rectangle, we mean the top-right corner with
respect to the current coordinate frame.

22nd Canadian Conference on Computational Geometry, 2010

For an angle θ, we denote the minimum bounding
rectangle of the blue point set B with orientation θ by
Mb(θ); we call Mb(θ) the blue rectangle. Let Rθ :=
R∩Mb(θ), and define Mr(θ) to be the smallest rectangle
with orientation θ that contains Rθ and shares its top-
right corner with Mb(θ); we call Mr(θ) the red rectangle.
Note that Lθ := Mb(θ)\Mr(θ) is an L-shape. Moreover,
B ∪ R admits a blue L-shape with orientation θ if and
only if Lθ is a blue L-shape. The L-shape Lθ excludes
all points from R by definition. Hence, Lθ is blue if and
only if it contains all points from B.

To determine whether Lθ contains all points from B,
we will define a so-called blue step-shape. We say that
a point q dominates another point p (at orientation θ)
if xθ(q) > xθ(p) and yθ(q) > yθ(p), and we say that
a point p ∈ B is maximal (at orientation θ) if there
is no point q ∈ B that dominates p. Connecting the
maximal points in B, we can get a blue staircase, and
we define the blue step-shape as the region left of the
blue staircase and bounded by the boundary of Mb(θ).

Using the blue step-shape, we can characterize when
Lθ contains all blue points. To this end, we define the
red witness as the lower-left corner of Mr(θ); note that
the red witness is the reflex corner of Lθ. See Fig. 1.

Figure 1: Points p1, p2 and p3 are maximal points. The
blue staircase is shown dashed and the blue region shows
the blue step-shape. The red witness is shown by a
cross.

Observation 1 The L-shape Lθ is blue if and only if
the red witness lies outside the blue step-shape.

The global strategy. As remarked earlier, our global
strategy is to perform a rotational sweep. While we
sweep, we will maintain the following information:

• The blue rectangle, Mb(θ). More precisely, we
maintain the set of blue points on the boundary
of Mb(θ). (Except at events, there are at most four
such points.)

• The blue step-shape or, more precisely, the blue
staircase bounding the blue step-shape from the
right. (The other part of the boundary of the blue
step-shape is formed by parts of the boundary of
Mb(θ).)

• The red witness or, more precisely, the two red
points defining the red witness.

While we do the sweep, we are interested in the angles
where the red witness crosses the blue staircase; these
angles define the angular intervals we have to report.
Next we discuss the various events that arise during the
sweep.

Blue-rect event : this event occurs when the set of points
defining Mb(θ) changes. This happens when the
blue point with the maximum or minimum xθ-
coordinate (or the maximum or minimum yθ-
coordinate) changes.

Blue-sc event : this event occurs when the blue stair-
case changes, that is, when the set of maximal blue
points changes.

Red-set event : this event occurs when Rθ, the set of red
points inside Mb(θ), changes.

Witness event : this event occurs when the points defin-
ing the red witness change. This happens when the
red point in Rθ with the minimum xθ-coordinate
changes, and when the red point in Rθ with the
minimum yθ-coordinate changes. It can be trig-
gered by a red-set event, or by two red points that
were already in Rθ swapping order along the xθ-
axis or yθ-axis.

Crossing event : this event occurs when the red witness
crosses the blue staircase.

Note that all these events take place at angles defined
by pairs of points (more precisely, a pair p, q defines two
angles, one given by the line `(p, q) through p and q, the
other given by a line orthogonal to `(p, q)): blue-rect
events and blue-sc events take place at angles defined
by two blue points, red-set events take place at angles
defined by a red and a blue point, witness events occur
at angles defined by a red and a blue or two red points,
and crossing events occur at angles defined by a red and
a blue point.

A simple algorithm. Our first algorithm considers
all angles defined by a pair of points in B ∪ R (even
though not all such angles actually define an event).
The simplest way of doing this is as follows.

1. Set θ := 0, and initialize Mb(θ), and the blue stair-
case, and Mr(θ). The most time consuming part
of the initialization is the computation of the max-
imal blue points (which define the blue staircase),
which takes O(n log n) time.

2. Compute all Θ(n2) angles defined by a pair of
points in B ∪R, and sort these angles.

3. Go through the angles in order. At each angle,
check whether the points defining the angle induce
a (blue-rect, blue-sc, red-set, witness, or crossing)

CCCG 2010, Winnipeg MB, August 9–11, 2010

event. With the information available, this can be
done in O(1) time. If a blue-rect (or blue-sc, or
witness) event occurs then update Mb(θ) (or the
blue staircase, or the red witness). If a crossing
event occurs, then check whether the red witness
enters the blue step-shape or leaves the blue step-
shape. In the first case, Lθ stops being blue, and an
angular interval ending at the event angle must be
reported. In the second case, a new angular interval
must be started; this interval will be reported later,
when its endpoint is found.

The algorithm above clearly runs in O(n2 log n) time.
However, it uses O(n2) space to store all the angles de-
fined by pairs of points in B ∪ R. We can reduce the
storage as follows. We dualize [4] the points in B ∪ R,
obtaining a set (B ∪R)∗ of n lines. Generating the an-
gles defined by pairs of points in B ∪ R in order now
translates to generating the x-coordinates of the inter-
section points of the lines in (B∪R)∗ in order. This can
be done using only O(n) storage by using a standard1

line-segment intersection algorithm [4].

Theorem 1 Let B be a set of blue points and let R be
a set of red points in the plane, with n := |B| + |R|.
Then, we can compute all angles for which there is a
blue L-shape in O(n2 log n) time and using O(n) space.

An output-sensitive algorithm. We now describe our
main result, which is an output-sensitive algorithm to
compute all angular intervals for which there is a blue
L-shape. The main idea is to use the fact that the num-
ber of blue-rect, blue-sc, red-set, and witness events is
small, and that the number of crossing events is pro-
portional to the output size. Thus, we will pre-compute
the blue-rect, blue-sc, red-set, and witness events, and
then compute all crossing events by using some data-
structuring techniques. Next we explain how to do this.
We start by showing how to pre-compute the blue-rect,
blue-sc, red-set, and witness events.

Blue-rect events. The blue-rect events are easy: after
computing the convex hull of the blue points, we can
find the blue-rect events by using rotating calipers [14].
Thus, there are O(n) events in total, and computing
them takes O(n log n) time and O(n) storage.

Blue-sc events. Recall that these events are events
1In fact, we are sweeping some details under the rug here.

One is that the vertical direction needs a special treatment, since
points with the same x-coordinate dualize to parallel lines. A
slightly more cumbersome issue is that we do not only need the
angles defined by the lines through pairs of points, but also the
angles defined by the lines orthogonal to them. This can be han-
dled by performing two sweeps “in parallel”: one starting at x = 0
in the dual plane, and the other starting at x = π/2. Also note
that both sweeps should “wrap around at infinity”.

where the set of maximal blue points changes, as we
rotate the coordinate frame. Bae et al. [3] have proved
that the set of maximal points changes at most O(n)
times during a full rotation from θ = 0 to θ = 2π;
they also presented an algorithm to compute all these
changes in O(n2) time, using O(n) space. However, we
can also use an algorithm by Avis et al. [2], who essen-
tially studied the same problem; their algorithm runs in
O(n log n) time and O(n) storage. In summary, there
are O(n) blue-sc events, and they can be computed in
O(n log n) time and O(n) storage.

Red-set events. These are the events where a red point q
enters or exists the blue rectangle Mb(θ). These angles
are determined by the tangent lines from q to the convex
hull of the blue points (denoted by CHB) [8]. After
computing CHB , we can find the tangent lines from q
in O(log n) time. (Note that if q lies inside CHB , it will
always be in Rθ.) Hence, there are O(n) red-set events,
and they can be computed in O(n log n) time and O(n)
storage.

Witness events. The red witness point is defined by the
red point in Rθ with the minimum xθ-coordinate and
the red point in Rθ with the minimum yθ-coordinate.
To find witness events we proceed as follows. For each
red point q, define the function fq(θ) as follows:

fq(θ) =
{

xθ(q) if q ∈ Rθ

undefined otherwise

Recall that the angles at which a red point q may en-
ter or leave the blue rectangle (and, hence, become
or cease to be a point of Rθ) correspond to the tan-
gents from q to CHB . Hence, fq(θ) has at most two
pieces. So, over all points q ∈ R we have O(n) pieces
of functions. The point of Rθ with the minimum xθ-
coordinate is given by the lower envelope of these func-
tions. Note that any two pieces intersect in at most
one point. Namely, we can only have fq(θ) = fq′(θ)
if θ is the orientation orthogonal to the line through q
and q′.2 It is known that the complexity of the lower
envelope of O(n) curves such that any two curves in-
tersect in at most one point is O(nα(n)) [13]. Hence,
the minimum xθ-coordinate changes O(nα(n)) times.
We can find these events by computing the lower en-
velope in O(nα(n) log n) time. Similarly, the minimum
yθ-coordinate changes O(nα(n)) times, and we can find
the changes in O(nα(n) log n) time.

The algorithm. Our output-sensitive algorithm now
works as follows. After pre-computing all blue-rect,

2In fact, there are two opposite orientations orthogonal to this
line. Thus the pieces can intersect twice. However, by treating
the angles [0, π) and [π, 2π) separately, we can reduce this to the
case of a single intersection.

22nd Canadian Conference on Computational Geometry, 2010

blue-sc, red-set, and witness events, as explained above,
we start our rotational sweep. During the rotational
sweep, we handle each of the blue-rect, blue-sc, red-set,
and witness events in the normal way. However, we also
need to detect the crossing events, as follows.

Consider two consecutive (non-crossing) events, and
let θi and θi+1 denote the angles at which these events
take place. Then we need to report all the crossing
events taking place at angles θ with θi 6 θ < θi+1. To
this end, we store the blue staircase in a suitable data
structure, as explained next. The blue staircase consists
of horizontal edges (parallel to the xθ-axis) and verti-
cal edges (parallel to the yθ-axis). We explain how to
store the horizontal edges; the vertical edges can be han-
dled similarly. Let p and p′ be two consecutive points
along the staircase, where p′ has larger yθ-coordinate,
and consider the horizontal staircase edge e incident
to p. Thus, the right endpoint of e is p, and the left
endpoint has the same yθ-coordinate as p and the same
xθ-coordinate as p′.

Now suppose the red witness is defined by red points
q and q′, with q′ having larger yθ-coordinate. Thus, the
red witness is the point (xθ(q′), yθ(q)).

This witness point crosses e for some θ ∈ [θi, θi+1) if
and only if the following conditions are met: (i) the
angle that `(p, q), the line through p and q, makes
with the (original) positive x-axis lies in the range
[θi, θi+1), and (ii) xθ(p′) 6 xθ(q′). We now map the
edge e to the point (x0(p), y0(p), x0(p′), y0(p′)) in R4.
Now, for any given red points q and q′ defining the
red witness and angles θi and θi+1, there is a region
Q(q, q′, θi, θi+1) in R4 with the property that the red
witness crosses a horizontal staircase edge e if and only
(x0(p), y0(p), x0(p′), y0(p′)) ∈ Q(q, q′, θi, θi+1). Thus,
we store the points of Q(q, q′, θi, θi+1) in a dynamic data
structure D so that we can perform a range query with
the range Q(q, q′, θi, θi+1). Note that D must be up-
dated at each blue sc-event.

The conditions (i) and (ii) above can be expressed
as a Boolean formula whose terms are polynomials
in the coordinates (x0(p), y0(p), x0(p′), y0(p′)). Hence,
Q(q, q′, θi, θi+1) is a semi-algebraic set of constant com-
plexity. Thus, the data structure D is a data structure
for range searching with semi-algebraic sets in Rd for
d = 4, and we can get the following performance [1]:
For any n 6 m 6 nb and any fixed ε > 0, we can
obtain O(n1+ε/m1/b + t) query time (where t is the
number of answers) with a structure using O(m1+ε)
storage and with O(m1+ε/n) update time, where b =
2d − 3 = 5. The number of queries we have to do
is equal to the total number of blue-rect, blue-sc, red-
set, and witness events, and so the number of queries is
O(nα(n)). We therefore set m := n5/3. This way each
query takes O(n2/3+ε + t) time and each update takes
O(n2/3+ε) time. After performing a query and report-

ing t crossing events, we need to sort the crossing events
in O(t log t) time to find the angular intervals we have to
report. This gives an overall time for our algorithm of
O(n5/3+ε + k log k), where k is the number of reported
angular intervals. We obtain the following theorem.

Theorem 2 Let B be a set of blue points and let R be
a set of red points in the plane, with n := |B| + |R|.
Then, for any fixed ε > 0, we can compute all k angular
intervals for which there is a blue L-shape in O(n5/3+ε+
k log k) time and O(n5/3+ε) storage.

References

[1] P.K. Agarwal and J. Matoušek. On range search-
ing with semi-algebraic sets. Discr. Comput. Geom.,
11:393–418, 1994.

[2] D. Avis, B. Beresford-Smith, L. Devroye, H. Elgindy,
E. Guévremont, F. Hurtado, and B. Zhu. Unoriented
Θ-maxima in the plane: complexity and algorithms.
SIAM J. Comput., 28:278–296, 1999.

[3] S.W. Bae, C. Lee, H.-K. Ahn, S. Choi, and K.-Y. Chwa.
Maintaining extremal points and its applications to de-
ciding optimal orientations. In Proc. 18th Int. Sympos.
Alg. Comput. (ISAAC), 788–799, 2007.

[4] M. de Berg, O. Cheong, M. van Kreveld, and M. Over-
mars. Computational Geometry: Algorithms and Ap-
plications (3rd edition). Springer-Verlag, 2008.

[5] H. Edelsbrunner and F. P. Preparata. Minimum polyg-
onal separation. Inform. Comput., 77:218-232, 1988.

[6] S. Fekete. On the complexity of min-link red-blue sep-
aration. Manuscript, 1992.

[7] F. Hurtado, M. Noy, P. A. Ramos, and C. Seara. Sep-
arating objects in the plane with wedges and strips.
Discr. Appl. Math., 109:109-138, 2001.

[8] M. van Kreveld, T. van Lankveld, and R. Veltkamp.
Identifying well-covered minimal bounding rectangles in
2D point data. In 25th European Workshop on Com-
putational Geometry, 277–280, 2009.

[9] N. Megiddo. Linear-time algorithms for linear program-
ming in R3 and related problems. SIAM J. Comput.,
12(4):759-776, 1983.

[10] J. S. B. Mitchell. Approximation Algorithms for Geo-
metric Separation Problems. Technical Report, State
University of New York at Stony Brook, 1993.

[11] J. O’Rourke, S. R. Kosaraju, and N. Megiddo. Com-
puting circular separability. Discr. Comput. Geom.,
1(1):105-113, 1986.

[12] C. Seara. On Geometric Separability. Ph.D. Thesis,
Univ. Politècnica de Catalunya, June 2002.

[13] M. Sharir and P.K. Agarwal. Davenport-Schinzel Se-
quences and their Geometric Applications. Cambridge
University Press, 1995.

[14] G. Toussaint. Solving geometric problems with the
rotating calipers. In Proc. of the IEEE MELECON,
A10.02/1–4, 1983.

