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Some Properties of Higher Order Delaunay and Gabriel Graphs
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Abstract

We consider two classes of higher order proximity graphs
defined on a set of points in the plane, namely, the
k-Delaunay graph and the k-Gabriel graph. We give
bounds on the following combinatorial and geometric
properties of these graphs: spanning ratio, diameter,
chromatic number, and minimum number of layers nec-
essary to partition the edges of the graphs so that no
two edges of the same layer cross.

1 Introduction and basic notation

Let S be a set of n points in the plane in general posi-
tion (no three are collinear and no four are concyclic).
A proximity graph on S is a geometric graph where two
points are adjacent if they satisfy some specific proxim-
ity criterion. Proximity graphs have been widely studied
due to their theoretical interest and to their applications
in situations where it is necessary to extract the “shape”
of a set of points (see [10] for a survey).

Adjacency in many proximity graphs is defined in
terms of an empty region associated to any pair of
points. To provide more flexibility the definition of the
graphs can be relaxed to allow up to k points to lie in
the neighborhood region. This gives rise to higher order
proximity graphs. In this paper we deal with two such
graphs.

We consider the k-Delaunay graph of S (denoted
k-DG(S)), where a straight-line segment connects points
pi,pj € S if there exists a circle C'(p;, p;) through p; and
p; with at most £ points of S in its interior. The stan-
dard Delaunay triangulation corresponds to 0-DG(S)
and will be denoted by DT(S).

We also study the k-Gabriel graph of S (denoted by
k-GG(S)), where a straight-line segment connects points
pi,pj € S if the closed disk centered at the midpoint of
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the segment p;p; with both p; and p; on its boundary
contains at most k points from S different from p;, p;.
The standard Gabriel graph corresponds to 0-GG(S)
and will be denoted by GG(S).

The combinatorial and geometric properties of these
graphs have been widely studied for the case £k = 0
(see [10]). However, not so much is known for higher
values of k. Some results are given in [1, 16], but the
topic has still not been explored in full depth; a system-
atic study is being developed in [15].

The first property considered in this paper is the
spanning ratio, a parameter capturing to what extent
traveling along a graph is much longer than traveling
along the plane (the formal definition is given below).
For £k = 0, the spanning ratio of several proximity
graphs has been studied in the literature [5, 6, 9, 11],
and determining the exact value of the spanning ratio of
the Delaunay triangulation remains a challenging open
problem. Our main goal here is to study the relationship
between k and the spanning ratio.

We also study the diameter of k-DG(S) and k-GG(S),
which can be seen as a combinatorial counterpart to the
spanning ratio.

Finally, we give bounds on the minimum number of
layers necessary to partition the edges of k-DG(S) or
k-GG(S) so that no two edges of the same layer cross.
From a theoretical point of view, this is related to a
more general problem that remains unsolved (see, for
example, [4, 12]): for every geometric graph G with at
most A pairwise crossing edges, can the edges of G can
be colored with f(\) colors such that crossing edges
receive distinct colors? In our particular case, the an-
swer is affirmative, as it can be shown that the graphs
k-GG(S) and k-DG(S) contain at most 2k + 1 pairwise
crossing edges. In Section 6 we give a quadratic upper
bound on the number of colors required.

From a more practical point of view, DT(S) and
GG(9) satisfy some properties that make them interest-
ing in the context of routing in wireless networks [7, 13].
Finding ways to extract plane layers from k-DG(S) or
k-GG(S) may have applications in this setting.

For all & > 0, the following relations hold:
(i) k-DG(S) < (k+1)-DG(S), (ii)) k-GG(S) C

(k + 1)-GG(S), (iii) k-GG(S) C k-DG(S).
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2 Spanning ratio

Let G be a geometric graph on S and P = {p1p2---p;}
be a path in G. We define the geometric length of P as
Zi: |pipi+1|, where |p;p;| is the Euclidean distance be-
tween p; and p;. The geometric distance between points
pi,p; € S, denoted by dg(p;,p;), is the minimum over
the geometric length of all paths in G connecting p; and
p;. The spanning ratio of G is defined as

SR(G) = max L(pi’pj).
pi#p; €S |pipj|
The number of edges of k-Delaunay graphs grows
with k. Consequently, it would be reasonable to believe
that the spanning ratio of these graphs decreases as k
increases. Surprisingly, the next theorem shows that in
the worst case the spanning ratio of k-DG is not smaller
than the spanning ratio of the Delaunay triangulation.

Theorem 1 For any set S of n points in the plane, any
constant value of k, and any e > 0, there exists a set of
points S" such that SR(k-DG(S’)) > SR(DT(S)) —e.

Proof. Consider the Delaunay triangulation of S.
Since S is in general position, the combinatorial struc-
ture of the graph does not change when moving each
point in S at most €, for sufficiently small values of
¢ > 0. The supremum of the values of € satisfying this
property is called the tolerance of DT(S) and is denoted
by tol (DT(S)) [2].
Let us suppose that

SR(DT(S)) = W'

Given € > 0, for each p; € S, define p; o = p; and place
k new points p; 1, pr,2, ..., D,k at distance from p; o less
than min{tol (DT(S5)), %}. Let S’ be the resulting
set of points. By construction, if p; and p,, are not
adjacent in DT(S), then p;, and p,,,, are not adjacent
in k-DG(S’) for any v,. € {0,1,...,k}. Therefore, in
k-DG(S7),

5(Pi0:P30) + g ppT(S)) — .
|pi,ors,ol

O

For k-Gabriel graphs we provide the following
bounds:

Theorem 2 For any set S of n points in the plane and
k < n — 2, the spanning ratio of k-GG(S) is O(v/n).
There exist sets of n points in the plane whose k-Gabriel
graphs have spanning ratio 9(\/%)

Proof. The first part follows from a result in [5] stating
that the spanning ratio of the 0-Gabriel graph of any n-
point set is at most 4%\/271 —4.

As for the second part, consider the Gabriel graph

tower construction in [5] with [7%7] points, which has

spanning ratio ©(,/%). For sufficiently small values of
¢ > 0, each point can be moved at most € with-
out changing the combinatorial structure of the graph.
Now, proceeding as in the proof of Theorem 1, we ob-
tain a point set whose k-Gabriel graph has spanning

ratio ©(,/%). O

3 Diameter

We define the combinatorial length of a path P on a ge-
ometric graph G as the number of its edges. The combi-
natorial distance between points p;,p; € S, denoted by
dc(p;, p;), is the minimum over the combinatorial length
of all paths in G connecting p; and p;. The diameter of
G, denoted by D(G), is defined as the maximum over
the combinatorial distance of all pairs of points in S.

The proofs of this section have been omitted due to
lack of space.

Theorem 3 Let S be a set of n points in the plane and
k < [n/2] —1. Leti be the integer such that [n/21] —
1 <k < [n/21] — 1. Then D(k-DG(S)) < 2¢. There
exist sets of n points in the plane whose k-Delaunay
graphs have diameter LWJ

In general, the k-Gabriel graph has fewer edges than
the k-Delaunay graph, so its diameter is usually greater:

Theorem 4 For any set S of n points in the plane and
kE < n—2, D(k-GG(S)) < [3n/k]. There exist sets
of n points in the plane whose k-Gabriel graphs have

diameter fﬁﬂ .

4 Chromatic number

A j-coloring of a graph G = (V, E) is a mapping f :
V —{1,2,...,7} such that f(v) # f(w) for every edge
(v,w) of G. The chromatic number of G, denoted by
X(@), is the minimum j such that G is j-colorable.

Since the main result in Section 6 is given in terms of
the chromatic number of k-DG(.S), we provide an upper
bound on this parameter:

Theorem 5 For any set S of n points in the plane and

k< [n/2] =1, x(k-GG(S5)) < x(k-DG(S)) < 6(k +1).

Proof. The number of edges of k-DG(S) does not ex-
ceed 3(k + 1)n — 3(k 4+ 1)(k + 2) [1]. Consequently, the
graph contains a vertex of degree at most 6k+5. Observe
that, if (p;,p;) is an edge of k-DG(S), this edge is also
present in k-DG(S ~\ {p;}) for any p; € S (pi # pi, ;).
Thus, if k-DG(S)~\.S" is an induced subgraph of k-DG(.S)
on n' vertices, then it is a subgraph of k-DG(S~\ S’) and
it has no more than 3(k + 1)n’ — 3(k + 1)(k + 2) edges.
Hence we can color k-DG(S) with 6k +6 colors applying
the minimum degree greedy algorithm [8]. g
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Next we describe a point set for which these graphs
have high chromatic number:

Proposition 6 For any n > 3 and k < %737 there
exists a set S of n points in the plane whose k-Gabriel
and k-Delaunay graphs have chromatic number at least

2k + 3.

Proof. Let S = {p1,p2,...,p2k+3} denote the set of
vertices of a slightly perturbed regular (2k + 3)-gon.
These points form a (2k + 3)-clique in k-GG(S). There-
fore the chromatic number of the graph is at least 2k+3.
If n > 2k + 3, it suffices to add to S additional points
far from p1,...,pak+3, so that the adjacencies are pre-
served. g

5 Constrained geometric thickness of 1-DG(S) and
1-GG(S)

Suppose that we want to partition the edges of a ge-
ometric graph G into layers in such a way that no
two edges of the same layer cross. We define the con-
strained geometric thickness of G, denoted by 0.(G), as
the smallest number of necessary layers. Observe that,
in contrast to the notion of geometric thickness of a
combinatorial graph, when it comes to the constrained
geometric thickness the embedding of the graph is fixed.
In this section we give bounds on the constrained geo-
metric thickness of 1-DG(S) and 1-GG(S).

Let us first introduce some definitions and recall some
properties of 1-DG(S5).

Edges of DT(S) are said to have order 0. The edges
of order k > 1 are those belonging to k-DG(.S), but not

o (k—1)-DG(S).

Let (p;,p;) be an edge of order 1. Then (p;, p;) is an
edge in DT(S \ p;) for a certain p; € S. We will say that
(pi,pj) is generated by p;. Observe that: (i) (p;,p;) is
generated by p; if and only if there exists a circle through
p; and p; whose interior contains p; and no other point
in S; (ii) every edge of order 1 is generated by at most
one point on each side of the line determined by the
edge; (iii) if (p;, p;) is generated by p;, then (p;, p;) and
(p1,pj) are edges in DT(S). (See [1].)

Lemma 7 [3] Let (pi,p;), (p1,pm) be two crossing
edges in 1-DG(S). If both edges have order 1, then one
of them can only be generated by the endpoints of the
other. If (p1,pm) has order 0 and (p;,p;) has order 1,
then (pi,pj) can only be generated by p; and py,.

We now prove the main result of this section:

Theorem 8 For any set S of n points in the plane,
2 < 0.(1-DG(S5)) < x(DT(S)) < 4.

Proof. The graph DT(S) is maximal planar, hence
each edge of order 1 crosses at least one edge in DT(S).

Since the number of edges of order 1 is strictly greater
than zero [1], at least two layers are needed.

We now prove the upper bound. Let f be a x(DT(S))-
coloring of the vertices of DT(S). We define a x(DT(S))-
coloring of the edges of 1-DG(S) as follows. Let (p;, p;)
be an edge of 1-DG(S). If (p;,p;) has order 1 and is
generated by p;, we assign it the color f(p;) (if (ps,p;)
is generated by two points, we arbitrarily assign one of
the two colors). If (p;,p;) belongs to DT(S), we assign
it an arbitrary color different from f(p;) and f(p;).

Next we prove that each color class is plane.

Suppose that (p;,p;) and (p;,pm) are two crossing
edges of order 1. By Lemma 7, one of them can only be
generated by the endpoints of the other. Let us assume
that this is the case of edge (p;,p;). Then (p;,p;) has
color f(p;) or f(pm ). Since the points generating (p;, pr,)
are connected to both p; and p,, in DT(S), their color is
different from f(p;) and f(p.m,). Consequently, (pi, pm)
is assigned a color different from f(p;) and f(p.).

Suppose that (p;,p;) and (p;,pm) are two crossing
edges, where (p;, p;) has order 1 and (p;, p.,) has order 0.
The color of (p;, pm,) is different from f(p;) and f(p.m).
By Lemma 7, (p;,p;) can only be generated by p; and
Pm.- Hence its color is f(p;) or f(pm). O

Corollary 9 For any set S of n points in the plane,
0:(1-GG(S)) < x(DT(S9)).

We now give a worst-case lower bound on the con-
strained geometric thickness of 1-DG(.S) and 1-GG(S):

Proposition 10 For any n > 6, there exists a set
S of n points in the plane such that 0.(1-DG(S)) >
0.(1-GG(S)) > 3.

Proof. Figure 1 shows a set of 6 points whose 1-Gabriel
graph contains three pairwise intersecting edges. Thus
its constrained geometric thickness is at least three. For
larger values of n it suffices to add n — 6 points outside
the disks. O

Figure 1: Example of a set of 6 points whose 1-Gabriel
graph has constrained geometric thickness at least 3.
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6 Constrained geometric thickness of k-DG(S) and
kE-GG(S)

The arguments in the preceding section are generalized
in Theorem 11. First we make some observations on the
structure of k-DG(S).

Let (p;,p;) be an edge of order k. Then (p;, p;) is an
edge in DT(S~{p},p?,...,pF}) for some {p},...,pk} €
S. We will say that (p;, p;) is generated by {p},...,p}}.
It holds that: (i) (p;,p;) is generated by {p},...,p}} if
and only if there exists a circle through p; and p; whose
interior contains p},...,p} and no other point in S; (ii)
if (p;,p;) is generated by {p},...,pf}, then (pY,p;) and
(p{,p;) are edges in (k — 1)-DG(S) forall v € {1,...,k}.

Theorem 11 For any set S of n points in the plane
2
and k < [n/2] — 1, 0,(k-DG(S)) < Xk =D-DCS),

Proof. We define a w—coloring of the
edges of k-DG(S) such that within each color class no
two edges cross.

Consider a x((k — 1)-DG(S5))-vertex coloring f of
(k—1)-DG(S). If (ps,p;) is an edge of k-DG(S), the
color assigned to (p;,p;) is the tuple {f(p;), f(p;)}

Let us prove that no two edges of the same color cross.
Suppose that (p;, p;) and (p;, pm) are two crossing edges
in k-DG(S), where (p;,p;) has order s and (p;, p,,) has
order t, with 0 < s,t < k. Without loss of generality,
let us assume that s > 1 and that the circle C(p;, p;)
contains p; in its interior. Then p; is connected to p;
and p; in the graph (s —1)-DG(S) C (k —1)-DG(S).
Therefore f(pi) # f(pi), f(p))- O

Corollary 12 For any set S of n points in the plane
and k < [n/2] -1, 0.(k-GG(S)) < 0.(k-DG(S)) < 18k>.

Unfortunately, in this case our worst-case upper and
lower bounds do not have the same order of magnitude:

Proposition 13 For any n > 3 and k < ”7_37 there
erists a set S of n points in the plane whose k-Gabriel

and k-Delaunay graphs have thickness at least k + 1.

Proof. Consider the point set in the proof of Proposi-
tion 6, with the points labelled in clockwise order. The
edges (p1,pk+2), (P2,Pk+3), - - -, (Pk+1,P2k+2) belong to
the k-Gabriel graph and are pairwise crossing. There-
fore the thickness of the graph is at least k + 1. O

7 Final remarks

We have studied several properties of two fundamental
higher order proximity graphs.

As for open problems, a natural one is to close
the gaps between the lower and upper bounds on
the spanning ratio of k-Gabriel graphs and on the
constrained geometric thickness of k-Gabriel and k-
Delaunay graphs. In both cases we are inclined to think
that the lower bounds are closer to the true values.

Acknowledgments

This research was initiated during the first UPC-ULB work-
shop on Computational Geometry. We thank all participants
Greg Aloupis, Victor A. Campos, Jean Cardinal, and Perouz
Taslakian. We also thank Jorge Urrutia and David R. Wood
for helpful comments and suggestions.

References

[1] M. Abellanas, P. Bose, J. Garcfa, F. Hurtado, C. M.
Nicolds, and P. A. Ramos. On structural and graph the-
oretic properties of higher order Delaunay graphs. In-
ternat. J. Comput. Geom. Appl., 19(6):595-615, 2009.

[2] M. Abellanas, F. Hurtado, and P. A. Ramos. Structural
tolerance and Delaunay triangulation. Inform. Process.
Lett., 71:221-227, 1999.

[3] B. Abrego, R. Fabila-Monroy, S. Ferndndez-Merchant,
D. Flores-Penialoza, F. Hurtado, V. Sacristdn, and
M. Saumell. On crossing numbers of geometric prox-
imity graphs. Manuscript, 2010. Abstract preliminary
version in Proc. EGC’09, 151-156, 2009.

[4] G. Araujo, A. Dumitrescu, F. Hurtado, M. Noy, and
J. Urrutia. On the chromatic number of some geomet-
ric type Kneser graphs. Comput. Geom., 32(1):59-69,
2005.

[5] P.Bose, L. Devroye, W. Evans, and D. Kirkpatrick. On
the spanning ratio of Gabriel graphs and S-skeletons.
SIAM J. Discrete Math., 20(2):412-427, 2006.

[6] P. Bose, L. Devroye, M. Loffler, J. Snoeyink, and
V. Verma. The spanning ratio of the Delaunay trian-
gulation is greater than 7/2. Proc. CCCG’09, 165-167,
2009.

[7] P.Bose, P. Morin, I. Stojmenovic, and J. Urrutia. Rout-
ing with guaranteed delivery in ad hoc wireless net-
works. Wireless Networks, 7(6):609-616, 2001.

[8] R. Diestel. Graph Theory. Springer-Verlag, 2005.

[9] D. P. Dobkin, S. J. Friedman, and K. J. Supowit. De-
launay graphs are almost as good as complete graphs.
Discrete Comput. Geom., 5:399-407, 1990.

[10] J. W. Jaromczyk and G. T. Toussaint. Relative
neighborhood graphs and their relatives. Proc. IEFE,
80(9):1502-1517, 1992.

[11] J. M. Keil and C. A. Gutwin. Classes of graphs which
approximate the complete Euclidean graph. Discrete
Comput. Geom., 7(1):13-28, 1992.

[12] A. V. Kostochka and J. Nesetiil. Coloring relatives of
intervals on the plane, I: chromatic number versus girth.
Europ. J. Combinatorics, 19:103-110, 1998.

[13] E. Kranakis, H. Singh, and J. Urrutia. Compass routing
on geometric networks. Proc. CCCG’99, 51-54, 1999.

[14] J. W. Moon. On the diameter of a graph. Mich. Math.
J., 12:349-351, 1965.

[15] M. Saumell. On geometric proximity. Ph.D. thesis, in
preparation.

[16] T.-H. Su and R.-Ch. Chang. The k-Gabriel graphs and
their applications. Proc. SIGAL’90, 66-75, 1990.



