
CCCG 2009, Vancouver, BC, August 17–19, 2009

Data Structures for Range Aggregation by Categories

Saladi Rahul∗ Prosenjit Gupta† K. S. Rajan∗

Abstract

We solve instances of a general class of problems de-

fined as follows: Preprocess a set S of possibly weighted

colored geometric objects (e.g. points/orthogonal seg-

ments/rectangles) in Rd, d ≥ 1 such that given a query

orthogonal range q, we can report efficiently for each dis-

tinct color c of the points in S∩q, the tuple < c,F(c) >

where F(c) is a function (e.g. weighted sum, bounding

box etc.) of the objects of color c in q.

1 Introduction

In many applications like on-line analytical processing
(OLAP), geographic information systems (GIS) and in-
formation retrieval (IR), aggregation plays an impor-
tant role in summarizing information [9] and hence large
number of algorithms and storage schemes have been
proposed to support such queries. In range-aggregate
query problems [9] many composite queries involving
range searching are considered, wherein one needs to
compute the aggregate function of the objects in S ∩ q
rather than report all of them as in a range reporting
query.

In this work, we consider instances of a general class
of problems defined as follows: Preprocess a set S of
possibly weighted colored geometric objects in Rd, d ≥
1, such that given a query orthogonal range q, we can
report efficiently for each distinct color c of the points
in S ∩ q, the tuple < c,F(c) > where F(c) is a function
of the objects of color c in q. If S is a set of colored
points and F(c) =NULL, the unweighted variant of the
problem is the generalized orthogonal range reporting
problem [5].

Lai et al. [6] studied this class of problems for approx-
imate queries for functions like min, max, sum, count,
report and heavy. Special cases were studied in [3, 1].
These problems have been studied in the database com-
munity as “GROUP -BY ” queries, a class of common

∗Lab for Spatial Informatics, International Institute of
Information Technology, Gachibowli, Hyderabad, Andhra
Pradesh 500 032, India. Email: saladi.rahul@gmail.com,

rajan@iiit.ac.in.
†Mentor Graphics, Hyderabad, Andhra Pradesh 500 082,

India. Email: prosenjit gupta@acm.org.

basic operations in databases applied to the categorical
attributes [8].

2 The colored weighted sum problem

Problem: Preprocess a set S of n colored points in IRd,
where the points additionally come with a real-valued
weight w(p) ≥ 0, into a data structure such that given
a query box q in IRd, we can report efficiently for each
distinct color c of the points in q, the tuple < c, sc >
where sc is the sum of the weights of the points of color
c in q.

The generalized type-2 range counting problem is a
special case of the above problem where each point has
unit weight. For the 1-dimensional static type-2 range
counting problem, a solution that takes O(n logn) space
and supports queries in time O(logn + C), C being
the number of colors reported, was given in [3]. The
space bound was improved to O(n) in [1]. For the
2-dimensional static type-2 range counting problem, a
solution that takes O(n logn) space and O(log2 n +
C logn) query time was given in [1]. For the 1-
dimensional static type-2 point enclosure counting prob-
lem, a solution that takes O(n) space and O(logn+C)
query time was given in [3]. To the best of our knowl-
edge, no other results are known for these problems.

2.1 The solution for d = 1

Consider the semi-infinite problem. For each color c, we
sort the points in S by nondecreasing order of their x co-
ordinates. For each point p ∈ S of color c, let pred(p) be
its predecessor in the sorted order, with pred(p) = −∞
for the leftmost point. We then map the point p to the
point p′ = (p, pred(p)) in IR2 and associate with it the
color c and weight w(p′) set to the cumulative weight
of all the points of color c in S whose x-coordinate is
greater than or equal to p. Let S′ be the set of such
points in IR2. We preprocess the points in S′ into a
priority search tree [7] PST to support the query of re-
porting points in a quadrant. Given a query q = [a,∞),
we map it to the quadrant q′ = [a,∞)× (−∞, a) in IR2

and query PST with q′. For each point p′ retrieved, we
report (c′, w(p′)) where c′ is the color of p′.



21st Canadian Conference on Computational Geometry, 2009

Theorem 1 A set, S, of n colored weighted points in
IR1 can be preprocessed into a data structure of size
O(n) such that for any query range q = [a,∞), pairs
(c, sc) where sc is the sum of the weights of the points
of color c in q, can be reported in O(logn + C) time,
where C is the number of distinct colors of points in q.

To extend the solution to finite ranges, we store the
points of S at the leaves of a balanced binary search tree
T in non-decreasing order of their x coordinates. At
each internal node v, we store an instance DL(v) of the
data structure of Theorem 1 built on S(Left(v)), the set
of points stored in the leaves of of the left subtree of v.
Similarly we store another data structure DR(v) built
on S(Right(v)), the set of points stored in the leaves
of the right subtree of v supporting queries of the form
(−∞, b]. To answer a query q = [a, b] we search with
a and b in T . This generates paths ` and r in T that
possibly diverge at some non-leaf node u of T . We query
DL(v) (respectively DR(v)) with [a,∞) (respectively
(−∞, b]) to retrieve the partial results, which are then
composed.

Theorem 2 A set, S, of n colored weighted points in
IR1 can be preprocessed into a data structure of size
O(n logn) such that for any query range q = [a, b], pairs
(c, sc) where sc is the sum of the weights of the points
of color c in q, can be reported in O(logn + C) time,
where C is the number of distinct colors of points in q.

2.2 Adding range Restrictions

In [4] a general technique was proposed to add range
restrictions to generalized reporting problems. Here we
adapt the technique to add range restrictions to colored
range-aggregate. The idea is similar, except that when
we combine solutions to two subproblems, instead of
taking a union of colors reported, we need to add up the
weights. Note that this is only possible if we decompose
the problem in a way that the subproblems are defined
on disjoint partitions of points. To keep our solution
output-sensitive, we also need to make sure that we try
to add non-zero weights only, since we must report only
non-zero weights in the answer.

Similar to [4], let PR(q, S) denote the answer to a gen-
eralized weighted sum problem PR with query object q
and object set S. Let TPR be the generalized weighted
sum problem that is obtained by adding a half-infinite
range restriction to PR.

Theorem 3 Let DS be a data structure that stores a
set S of n colored objects, such that generalized weighted
sum queries PR(q, S) can be solved in O(logn + C)
time. Let the size of DS be bounded by O(n1+ε), where
ε is an arbitrarily small positive constant. Let TDS

be a data structure for the set S, such that generalized
weighted sum queries TPR(q, [a : ∞), S) can be solved
in O(logn + C) time. Let the size of TDS be bounded
by O(nw) for some constant w > 1.

There exists a data structure that solves general-
ized queries TPR(q, [a : ∞), S), with a query time of
O(logn + C) using O(n1+ε) space, for an arbitrarily
small positive constant ε.

Corollary 2.1 Let DS and TDS be as defined in The-
orem 3. There exists a data structure that solves gen-
eralized weighted sum queries TPR(q, [a : b], S), with a
query time of O(logn+C), using O(n1+ε) space, for an
arbitrarily small positive constant ε.

To solve the problem for d = 2, let DS in Theo-
rem 3 be the data structure of Theorem 2. We need a
data structure TDS to solve generalized weighted sum
queries TPR(q, [a :∞), S).

Lemma 4 A set of n colored weighted points in IR2

can be preprocessed into a data structure of size O(n2)
such that a generalized weighted sum query TPR(q, [a :
∞), S) can be answered in O(logn + C) time where C
is the output size.

Theorem 5 A set of n colored weighted points in
IR2 can be preprocessed into a data structure of size
O(n1+ε), for an arbitrarily small positive constant ε,
such that given a query rectangle [a, b]× [c, d], a general-
ized weighted sum query can be answered in O(logn+C)
time where C is the output size.

To solve the problem in dimension d > 2, assume
that as DS, we have the data structure to solve the
problem PR in dimension d − 1, which takes O(n1+ε)
space and O(logn + C) time. As TDS, we create a
structure similar to the one for Lemma 4, by taking
O(n) instances of DS, which gives us a data structure
with O(n2+ε) space and O(logn+C) query time. Now
we apply Theorem 3, with w = 3 and Corollary 2.1.

Theorem 6 A set of n colored weighted points in
IRd can be preprocessed into a data structure of size
O(n1+ε), for an arbitrarily small positive constant ε,
such that given a query d-dimensional orthogonal box,
a generalized weighted sum query can be answered in
O(logn+ C) time where C is the output size.

3 Point enclosure counting for d = 1

Problem: Preprocess a set S of n colored intervals on
the x-axis, such that given a query point q, we can report
for each color c such that there is an interval of color c



CCCG 2009, Vancouver, BC, August 17–19, 2009

stabbed by q, the number of intervals of color c stabbed
by q.

Consider a color c and let Sc be the set of nc intervals
of color c. Let p1, p2, . . . , pm be the list of distinct inter-
val endpoints, sorted from left to right. These endpoints
induce partitions on the real line and the regions in this
partitioning are called ‘elementary intervals’. There-
fore, the elementary intervals, Ic, from left to right are:
(−∞, p1), [p1, p1], (p1, p2), [p2, p2], . . . , (pm−1, pm), [pm, pm],
(pm,∞). With each interval i ∈ Ic, we shall maintain
the count of the number of intervals in Sc which have
an overlap with i. With the elementary intervals in Ic,
for all colors c, we build an interval tree, IT . Given
a query point q, we search IT , and report the counts
associated with intervals stabbed by q.

Theorem 7 A set of n colored intervals on the x-
axis can be preprocessed into a data structure of size
O(n), such that given a query point q, we can report in
O(logn+C) time, for every color c with at least one in-
terval of its color stabbed by q, the number of intervals
of color c which are stabbed by q.

4 Point enclosure counting for d = 2

Problem: Preprocess a set S of n colored rectangles
in the plane, such that given a query point q, we can
report for each color c such that there is a rectangle of
color c stabbed by q, the number of rectangles of color
c stabbed by q.

A segment tree T is created based on the distinct x-
coordinates of the vertical sides of the rectangles in S.
Consider a rectangle, r = [x1, x2] × [y1, y2], of S. Let
v be a node of T such that the range of v is contained
in [x1, x2], but the range of v’s parent is not. Then
the interval [y1, y2] is associated with node v. At each
node v, using the intervals associated with v we build
an instance of the data structure of Theorem 7. Given a
query point q = (a, b), we search in T for a and query the
auxillary structure of each node v visited, with b. For
each reported color c, the count obtained from each node
is added up. We can obtain an alternative solution by
reducing the point enclosure problem in IR2 to a range
search problem in IR4.

Theorem 8 A set of n colored rectangles in the plane
can be preprocessed into a data structure of size
O(n logn) (resp. O(n1+ε)) such that given a query point
q, for every color c with at least one rectangle of its color
stabbed by q, the number of rectangles of color c which
are stabbed by q can be reported in O(log2 n + C logn)
(resp. O(logn+ C)) time.

5 Segment Intersection Counting

Problem: Preprocess a set S of colored orthogonal seg-
ments in IR2 into a data structure such that given a
query orthogonal rectangle q , we can report for each
color c such that there is at least one line segment of
color c intersected by q, the number of such segments of
color c intersected by q.

Consider one of the vertical segments, say L. Its lower
end point is (x, yl) and the upper end point is (x, yu).
Given a query rectangle, q = [a, b] × [c, d], L will in-
tersect with q, if the following conditions are satisfied:
1) a ≤ x ≤ b, 2) yu ≥ c and 3) yl ≤ d. Each vertical
segment in IR2 is transformed into a point in IR3, such
that the segment L is mapped to (x, yl, yu). Using these
transformed points, we build an instance D of the data
structure of Theorem 6. Thus, for all colors having at
least one vertical segment intersecting q, D will report
the number of vertical segments of these colors inter-
secting q. We build a similar data structure to handle
horizontal segments.

Theorem 9 A set S of colored orthogonal line seg-
ments in IR2 can be preprocessed into a data structure of
size O(n1+ε) such that given a query orthogonal rectan-
gle q , we can report in O(logn+C) time, for every color
c such that there is a line segment of color c intersected
by q, the number of segments of color c intersected by q.

6 The Colored Bounding Box Problem

Problem: Preprocess a set S of n colored points in
IRd such that given an orthogonal query box q, for ev-
ery color c having at least one point in q, report the
bounding box of all points of color c inside q. If a color
has a single point p inside q, then the bounding box
of that color will be the point p which is reported as a
degenerate rectangle.

First let us consider the case d = 1. For each color c,
sort all the points in S by non-decreasing order of their
x-coordinates and build a balanced binary tree Tc. For
each point p ∈ S of color c, let pred(p) and succ(p) be
its predecessor and successor in the sorted order, with
pred(p) = -∞ for the leftmost point and succ(p) =∞ for
the rightmost point. Then each point p is mapped to a
new point p′ = (p, pred(p)) (resp. p′′ = (p, succ(p))) in
IR2, which is assigned the color of point p. Call these set
of new points in IR2, S′ (resp. S′′). We build a dynamic
priority search tree D1 (resp. D2) based on the points
in S′ (resp. S′′). Given a query q = [x, x′], we map it
to q′ = [x, x′]× (−∞, x) (resp. q′′ = [x, x′]× [x′,∞)) in
IR2 and query D1 (resp. D2) with q′ (resp. q′′).

Next we show how the solution can be made dynamic.
Let r be the new point having color c which is to be



21st Canadian Conference on Computational Geometry, 2009

inserted. First we insert r into Tc. Let rp and rs be the
points in the leaf nodes to the immediate left and to the
immediate right of r, respectively. We delete (rs, rp)
from D1 and delete (rp, rs) from D2. Then we insert
(r, rp) and (rs, r) into D1, and insert (rp, r) and (r, rs)
into D2. The deletion process is symmetric. The total
time taken for handling these operations is O(logn).

Lemma 10 A set S of n colored points in IR1 can be
preprocessed into a data structure of size O(n), such
that given a query q = [x, x′], a generalized bounding
box query can be answered in O(logn + C) time. Also,
insertion of a point into S or deletion of a point from S
can be handled in O(logn) time.

Now consider d = 2. Given a query q, we denote
a color c as valid iff at least one point in q is of color
c. Given a query q, the reporting of the bounding box,
BBc, for each valid color c is done by first finding out
the x-projection of BBc and then the y-projection of
BBc.

First query region of the form q = [x, x′] × [y,∞)
is considered. Then the x-projection’s of all the valid
colors are found out as follows : Using the technique
of persistence described in [2], a partially persistent
version of the data structure of Lemma 10 is built,
by treating the y-coordinate as time and inserting the
points by non-increasing y-coordinate into an initially
empty data structure. In fact only D1 and D2 (and not
Tc) needs to be made persistent. To answer the query
q = [a, b] × [c,∞), we access the version corresponding
to the smallest y-coordinate greater than or equal to c
and query it with [a, b]. We can extend the solution to
query boxes q = [a, b] × [c, d] with a O(logn) overhead
on space. The y-projections can be similarly found.

Theorem 11 A set S of n colored points in IR2 can
be preprocessed into a data structure of size O(n log2 n),
such that given a query q = [a, b] × [c, d], a generalized
bounding box query can be answered in O(logn + C)
time.

Finally, let us extend the solution to d ≥ 3. Let DS
in Theorem 3 be a data structure of Theorem 11 for
solving the generalized bounding box query in the XY -
plane. A data structure TDS needs to be built for find-
ing the x-projection’s and the y-projection’s of all the
valid colours for queries of the form TPR(q, [z,∞), S).
Given n colored points in IR3, we sort the points by
their z-coordinates and store the z-coordinates in an
auxillary array AUX. Data structures DAi for 1 ≤
i ≤ n are created. Each such data structure is an in-
stance of the data structure of Theorem 11 for the 2-
dimensional static generalized bounding box problem
which takes O(n log2 n) space and answers queries in

timeO(logn+C). We build data structureDAi on the x
and y coordinates of the points in S whose z-coordinates
are at least AUX[i]. Given a query TPR(q, [z,∞), S),
we first binary search in AUX with z to determine
the index i of the leftmost point whose z-coordinate is
greater than or equal to z. Then DAi is simply queried
with q.

Lemma 12 A set of n colored points in IR3 can be pre-
processed into a data structure of size O(n2 log4 n) such
that given a query TPR(q, [z,∞), S) the x-projection’s
and the y-projection’s of all the valid colors can be found
in O(logn+ C) time.

Applying Theorem 3, with w = 3 and Corollary 2.1,
we can find the x-projection’s and the y-projection’s of
all the valid colors in O(logn+C) time, using O(n1+ε)
space. Similarly, we can find the x-projections and z-
projections of all valid colors to solve the problem for
d = 3. A similar technique can be applied for extending
the solution to d > 3.

Theorem 13 A set of n colored points in IRd can be
preprocessed into a data structure of size O(n1+ε), for
an arbitrarily small positive constant ε, such that given
a query d-dimensional orthogonal box, the generalized
bounding box query can be answered in O(logn + C)
time where C is the output size.

References

[1] P. Bozanis, N. Kitsios, C. Makris, and A. Tsakalidis.
New Upper Bounds for Generalized Intersection Search-
ing Problems. Proceedings 22nd ICALP, Lecture Notes in
Computer Science, Vol. 944, Springer-Verlag, Berlin, 1995,
pp. 464–475.

[2] J.R. Driscoll, N. Sarnak, D.D. Sleator, and R.E. Tarjan.
Making data structures persistent. Journal of Computer
and System Sciences, 38:86–124, 1989.

[3] P. Gupta, R. Janardan, and M. Smid. Further results
on generalized intersection searching problems: counting,
reporting, and dynamization. Journal of Algorithms 19
(1995), pp. 282–317.

[4] P. Gupta, R. Janardan, and M. Smid. A technique for
adding range restrictions to generalized searching prob-
lems. Information Processing Letters, 64 (1997), pp. 263–
269.

[5] R. Janardan and M. Lopez. Generalized intersection
searching problems. International Journal on Computa-
tional Geometry & Applications 3 (1993), pp. 39–69.

[6] Y.K. Lai, C.K. Poon, and B. Shi. Approximate colored
range queries Proceedings, 16th International Symposium
on Algorithms and Computation, (ISAAC 05), Springer
Verlag Lecture Notes on Computer Science, Vol. 3827, 2005,
360–369.

[7] E.M. McCreight. Priority search trees, SIAM Journal of
Computing, 14(2), 257–276, 1985.

[8] S. Shekhar and S. Chawla. Spatial Databases: A Tour,
Prentice Hall, (2002).

[9] Y. Tao and D. Papadias. Range aggregate processing in
spatial databases. IEEE Transactions on Knowledge and
Data Engineering, 16(12), 2004, 1555–1570.


