CCCG 2009, Vancouver, BC, August 17-19, 2009

Minimizing Slope Change in Imprecise 1.5D terrains *

Chris Gray'

Abstract

A 1.5D terrain is an z-monotone polyline with n ver-
tices. An imprecise 1.5D terrain is a 1.5D terrain
with a y-interval at each vertex, rather than a fixed
y-coordinate. A realization of an imprecise terrain is
a sequence of n y-coordinates—one for each interval—
such that each y-coordinate is within its corresponding
interval. For certain applications in terrain analysis, it
is important to be able to find a realization of an im-
precise terrain that is smooth. In this paper we model
smoothness by considering the change in slope between
consecutive edges of the terrain. The goal is to find
a realization of the terrain where the maximum slope
change is minimized. We present an exact algorithm
that runs in O(n?) time.

1 Introduction

A common way to model a terrain is by using a trian-
gulated irregular network (TIN): a planar triangulation
with height information on the vertices. This defines
a bivariate and continuous function, defining a surface
that is often called a 2.5-dimensional (or 2.5D) terrain.

Even though in computational geometry it is usually
assumed that the input data is exact, in practice, ter-
rain data is often imprecise. The sources of imprecision
are many, starting from the methods used to acquire
the data. Elevation data is often collected using remote
sensing techniques, for example by airplanes flying over
the terrain and sampling the distance to the ground,
such as in LIDAR (Light Detection and Ranging), or
it can be obtained by optically scanning contour maps
and then fitting an approximating surface. Such meth-
ods often produce heights with a known error bound or
return a height interval rather than a fixed height value.
For example, in high-resolution terrains distributed by
the United States Geological Survey, it is not unusual
to have vertical errors of up to 15 meters [5].

In order to model the imprecision in the terrain, we
follow the model used in [1-3], where the height of each

*This research was partially supported by the Netherlands Or-
ganisation for Scientific Research (NWO) through the project
GOGO and project no. 639.023.301.

fDepartment of Computer Science, TU Braunschweig, Ger-
many, gray@ibr.cs.tu-bs.de

tDepartment of Information and Computing Sciences, Utrecht
University, the Netherlands, {loffler,rodrigo}@cs.uu.nl

Maarten Lofert

Rodrigo I. Silveirat

terrain vertex is not precisely known, but only an inter-
val of possible heights is available. This creates some
freedom in the terrain: the real terrain is unknown, and
any choice of a height for each vertex, as long as it is
within its height interval, leads to a realization of the
imprecise terrain.

The large number of different realizations of an impre-
cise terrain leads naturally to the problem of finding one
that is best according to some criterion. In this paper
we are concerned with smoothness. Obtaining a realiza-
tion of an imprecise terrain that is smooth is interesting
for several uses of terrains, including terrain analysis,
visualization, compression, and noise reduction.

In this paper, however, we study smoothing for impre-
cise 1.5D terrains, that is 1.5D terrains with a y-interval
at each vertex, rather than a fixed y-coordinate. Even
though the 2.5D version is clearly more interesting, a
simpler model is easier to handle and gives insight into
the difficulties of 2.5D terrains.

This work is a continuation of [2]. In that paper, we
investigated smoothness criteria related to turning an-
gles, such as minimizing the maximum turning angle
and minimizing the total turning angle. For the for-
mer criterion we gave a polynomial-time approximation
scheme, whereas for the latter we presented an exact
linear-time algorithm.

In this paper we look at the smoothness criterion of
minimizing the maximum slope change. The main mo-
tivation for considering another criterion, after having
studied turning angles, is that the minimization of the
largest turning angle presents algebraic difficulties that
prevent the design of exact algorithms under the real-
RAM computation model. However, as we show in this
paper, when the goal is the minimization of the maxi-
mum slope change, an optimal realization can be found
in quadratic time.

It must be noted that the minimization of the maxi-
mum slope change yields different results than the mini-
mization of the maximum turning angle in general. This
is particularly clear in terrains with very steep edges,
where a small change in the angle of the edge leads to
a large change in slope. However, for terrains where no
edges have extreme slopes, the slope change is a reason-
able and intuitive measure of smoothness.

21st Canadian Conference on Computational Geometry, 2009

L LI L L LI

(a) (b)

Figure 1: An example with four intervals, and a possible

solution for § = i.

2 Preliminaries

In this section we introduce imprecise 1.5D terrains
more formally, together with a number of definitions
and concepts, most of them rather intuitive, which will
be used throughout the remainder of the paper.

As mentioned in the introduction, a 1.5D terrain is
an xz-monotone polyline with n vertices. An imprecise
1.5D terrain is a 1.5D terrain with a y-interval at each
vertex rather than a fixed y-coordinate. More formally,
an (imprecise) terrain T is given by a sequence of n
intervals {I1, I, -, I,}. Each interval I; has an z co-
ordinate x; (with z; < z; if ¢ < j), and a closed interval
of possible y coordinates, with the maximum y coor-
dinate denoted by %; and the minimum y coordinate
denoted by y.. When, in addition to an imprecise ter-
rain, we are given a sequence of n y-coordinates, one for
each interval, we have a realization of the terrain. Each
y-coordinate must be within its corresponding interval.

A realization of a terrain induces an z-monotone poly-
line with n vertices, with one vertex per interval. The
vertex corresponding to interval I; is denoted wv;, and
has coordinates (x;,y;). See Figure 1.

3 Minimizing the maximum slope change

We describe an exact algorithm based on parametric
search—a technique introduced by Megiddo [?]. This
technique requires a subroutine that tests the feasibility
of finding a solution to the overall problem with a given
parameter. In our case, we must decide whether a real-
ization of a terrain exists with a maximum slope change
that is less than some fixed value §. First, we present
a naive decision algorithm that displays the main ideas
and observations we use, but runs in O(n?) time. Then
we show how to improve the running time to O(n).

3.1 A naive decision algorithm

To determine whether a terrain can have a maximum
slope change of § while respecting the height constraints,
we study the problem in feature space. This means
that we add a dimension, A, to each interval. This
dimension represents the slope of the terrain. We de-
fine a set of rules for a path in feature space. A path

Figure 2: A path with maximum slope change shown
in the (a) (z,y) plane and (b) (z,A) plane.

moves from point p1 = (21,y1, A1) to p2 = (T2,y2, A1)
at a slope of A\;. It is then allowed to move to p3 =
(z2,y2, A2), where |A2 — A1| < J. From there it contin-
ues in the same manner until it reaches I,, or can no
longer intersect an interval. As an example, the path
(0,0),(1,2),(3,1) in an imprecise terrain becomes the
path (0,0,2),(1,2,2),(1,2,-0.5),(3,1,—0.5) in feature
space. See Figure 2.

For every interval, except for the first and last, we
consider two regions, called the entrance region and the
exit region. They represent all the possible paths with
maximum slope change at most § that can go through
the interval. The entrance region defines possible en-
try slopes (for the edge entering from the left), whereas
the exit region represents the possible exit slopes (for
the edge leaving on the right). For interval I;, the en-
trance region is defined to be the set of points (z;,y, A)
where (x;,y) € I; and where there exists a path con-
sistent with Iy, I, ..., I; with maximum slope change ¢
that enters I; at (z;,y) via an edge with slope A. The
exit region of I; is defined analogously: it is the set
of points (z;,y, A2) where (z;,y, A1) is in the entrance
region for I; for some A satisfying [A2 — A1| < 4. The
exit region for the interval I; is defined to be the infinite
strip (x1,y, A) where y is between the top and bottom
y-values of interval I; and A can take any value.

Clearly, the decision question is now equivalent to the
question of whether the entrance region of I,, is empty
or not. We proceed to describe how the entrance and
exit regions can be computed recursively.

We recursively define some functions for each inter-
val, which we later show bound the entrance and exit
regions. For the first interval I;, we define two constant
functions f"(A\) = g, and fi (A) = y,. In fact, these
two functions bound the exit region of I;. Now, for any
j > 1, we define six functions as follows.

e We first define intermediate functions hj'()\) =
)X (@ —aj-1) and b (N) = f7 (A)+X (25—
"Ejfl).

e Next, we compute the highest and lowest feasible
points y = max{y | hf(y) > hj(y)} and y; =
min{y |k} (y) > h; (y)}.

CCCG 2009, Vancouver, BC, August 17-19, 2009

I
£
S

— i

Figure 3: The regions as they are computed in the process for § =

1y
95/ fi /AR
e s

1

7, for the same example as shown in Figure 1.

The figures are drawn in the (A, y)-plane. The dotted lines correspond to A = 0. For each interval (except the first),
three regions are shown: the first one is an intermediate region used to construct the entrance region (it is a sheared
copy of the previous exit region). The second region is the entrance region. The third one is the exit region: the
entrance region expanded by having the bounding functions moved apart a distance of 24.

e We truncate hj()\) and h; (\) so that their y-
values do not go above the top or below the bot-
tom y-value of I; or above or below the just com-
puted extreme feasible values. The resulting func-
tions are g;-r()\) = min(h;r()\),y;-r,yj) and g; (A) =
max(h; (M), yj_,gj). We show in Lemma 1 that the

region enclosed by g;f (A) and g; (A) is the entrance
region.

e Finally, we expand the area between these func-
tions by moving the functions horizontally § away
from each other in opposite directions. We define
f;r()\) = g;L(A—M) and f; () = g; (A\—6). We show
in Lemma 1 that the region enclosed by f;r (M) and
f; (A) is the exit region.

From this construction, we can immediately observe
that all the functions involved are monotonically in-
creasing. Also, we can see that the functions Iis 95
and hj_ are convex, while the functions fj+ , g;', and hj
are concave.

Lemma 1 The entrance region for interval I; is the set
of points bounded by the functions g;-r and g; , that is,
those points (A,y) for which g; (A) <y < gj(/\). Sim-
ilarly, the exit region of I; is bounded by the functions
f;‘ and f; .

Proof. First note that for any point (z,y, A) in the en-
trance region, (x,y, A+ u) is in the exit region for every
—6 < p <.

Now assume that the region bounded by g;' and g; is
non-empty and that p; = (z;,y;, ;) is a point inside it.
We describe a procedure for finding a path through the
intervals that has a maximum slope change of §, which
shows that p; is in the entrance region of I;.

We begin at interval I;. We then construct a line seg-
ment from p; to the interval /;_; that has slope A;. Let
the point where the line segment intersects the interval
Ii_1 be p’ = (z;-1,yj—1, ;). Note that y,;_; is easy to

compute: it is y; —A;(z; —x;_1). Because of the proce-
dure for propagating the regions, the point p’ is inside
the region bounded by fjtl and f;_;.

If p’ is outside the region bounded by gjtl and
9i—1s then we find -6 < p < § such that p” =
(€j—1,Yj—1,A; + p) is inside that region, and set \;_;
to be A\j + . We can then recursively apply this pro-
cedure until we have found a path from I; to I; whose
maximum slope change is 6. This path is formed by
the sequence of points (z1,y1), (z2,y2), ..., (x;,y;). See
Figure 2.

The proof that no valid path exists to p; if p; is out-
side the region bounded by g;-r and g; is similar, and
we omit it in the interest of space. O

To compute the running time of the algorithm above,
we must bound the running time taken when propagat-
ing a region from one interval to another. From this
information, finding the total running time is simple.

We begin with a lemma that characterizes the shape
and complexity of an entrance region.

Lemma 2 The entrance and exit regions of interval I;
are convex polygons with complexity at most 2.

This result, proved in the full version of the paper,
almost immediately implies that this algorithm takes
quadratic time.

3.2 A faster decision algorithm

In the previous subsection, we described how the regions
in the (A, y)-plane for each interval propagate, and how
to compute them incrementally. Since the complexity
of one region can be linear, we spent quadratic time in
total. However, in the end we are only interested in
whether the last entrance region is empty or not. It is
possible to save a linear factor by keeping track of the
region boundaries implicitly.

Consider the vertices of the polyline that describes
the top boundary of the exit region of I;, that is, fj+.

21st Canadian Conference on Computational Geometry, 2009

When computing the exit region for I;;, these vertices
undergo two transformations: a shear and a transla-
tion. In the clipping step, vertices may be thrown away
and/or new vertices may be added, but the existing ver-
tices do not move. In this subsection, we describe a
scheme where we do not explicitly perform the shears
and translations on the vertices. Rather, we compute
one transformation 7" that is the composition of the
sequence of the shears and translations. We can then
apply 7" to the original locations of the vertices to get
their actual locations. Note that 7t can be represented
in constant space. It follows from the theory of affine
transformations that a sequence of shear and transla-
tion operations can be represented as a single shear and
a single translation.

Now we can describe the new algorithm. Suppose
that we have processed I; and we have computed two
lists of vertices L;’ and L;, together with two trans-
formations T j"’ and T i such that applying Tj+ to Lj
gives a representation of f;r and applying T} to L
gives a representation of f;. Then we proceed to ;11
as follows.

First, we need to apply the shear operation (y,) —
(y,y + AMzj41 — x;)) to the exit region; we do this by
composing Tj+ and 7" with this transformation. This
step takes constant time.

Next, we need to clip the region between two hori-
zontal lines y;“ and y; . We walk over the lists L; and
L; starting from the first vertex, and for each vertex v
we apply TjJr (resp. ij) to it, and check whether the
resulting v’ lies below y; - If it does, we throw v away
and proceed to the next vertex. If it does not, we keep
v. We create a new vertex where y;” intersects the two
lists, we compute those vertices and then apply the in-
verse of TfL (resp. T;") to make sure they are in the
same space as the remaining vertices. In the same way,
we walk over Lj and L starting from the last vertex
to clip against y;r This step takes constant time per
vertex that is thrown away.

Finally, we expand the entrance region by translating
its vertices outward by J§ (in the A-dimension) to get
the exit region. Since fj+ and f; are monotonically
increasing, this means all vertices in L;r move J to the
left, and all vertices in L move § to the right. We

apply these translations to TjJr and 1. This step also
takes constant time.

Lemma 3 The time complexity of the feasibility-testing
algorithm is O(n).

Proof. The second step takes constant time per ver-
tex that is thrown away. Since each vertex can be
thrown away at most once, this is linear in total. For the
rest, each step takes constant time, so we spend linear
time overall. g

This feasibility-testing algorithm, together with para-
metric search, gives us an algorithm that runs in time
quadratic in the number of input intervals.

Theorem 1 Given an imprecise 1.5D terrain with n
intervals, a realization that minimizes the maximum
slope change can be computed in O(n?) time.

Proof. By Lemma 3, the feasibility-testing algorithm
takes O(n) time. We apply parametric search with
this algorithm. Since the feasibility test is sequential,
the parametric search squares the running time of the
feasibility-testing algorithm, giving us O(n?) time. [

4 Conclusions

We presented an O(n?)-time algorithm to find a real-
ization of an imprecise 1.5D terrain that minimizes the
maximum slope change. This constitutes an interest-
ing result, given that a similar criterion like minimizing
the maximum turning angle presents algebraic difficul-
ties that prevent exact algorithms under the real-RAM
computation model [2]. The main question left open is
whether the feasibility-testing algorithm can be made
parallel. If that would be the case, then together with
parametric search, it could lead to an improvement in
the running time to O(nlogn).

Acknowledgments

The authors would like to thank several anonymous referees
for their useful comments.

References

[1] C. Gray and W. Evans. Optimistic shortest paths on
uncertain terrains. In Proc. 16th Canadian Conference
on Comput. Geom., pages 6871, 2004.

[2] C. Gray, M. Loffler, and R. I. Silveira. Smoothing impre-
cise 1.5D terrains. In Proc. Sizth International Workshop
on Approzimation and Online Algorithms, pages 214—
226, 2009.

[3] Y. Kholondyrev and W. Evans. Optimistic and pes-
simistic shortest paths on uncertain terrains. In Proc.
19th Canadian Conference on Comput. Geom., pages
197-200, 2007.

[4] J. S. Salowe. Parametric search, pages 683-695. CRC
Press, Inc., 1997.

[5] T. Tasdizen and R. T. Whitaker. Feature preserving
variational smoothing of terrain data. In Proceedings of
the 2nd International IEEE Workshop on Variational,
Geometric and Level Set Methods in Computer Vision,
2003.

