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Abstract

We present a large scale benchmark for the evaluation of local feature detectors.

Our key innovation is the introduction of a new evaluation protocol which extends and

improves the standard detection repeatability measure. The new protocol is better for

assessment on a large number of images and reduces the dependency of the results on

unwanted distractors such as the number of detected features and the feature magnifica-

tion factor. Additionally, our protocol provides a comprehensive assessment of the ex-

pected performance of detectors under several practical scenarios. Using images from the

recently-introduced HPatches dataset, we evaluate a range of state-of-the-art local feature

detectors on two main tasks: viewpoint and illumination invariant detection. Contrary to

previous detector evaluations, our study contains an order of magnitude more image se-

quences, resulting in a quantitative evaluation significantly more robust to over-fitting.

We also show that traditional detectors are still very competitive when compared to re-

cent deep-learning alternatives.

1 Introduction

Despite advances in distributed representations such as deep convolutional networks, local

viewpoint invariant features still play an important role in tasks such as structure from motion

and image retrieval. In these applications, deep learning has often been used to improve

rather than to replace local features. While most of this work focused on learning feature

descriptors, recently there has been progress in learning detectors as well. For example,

in [36] use deep networks to learn a local feature detector robust to illumination changes,

[38] for orientation assignment, [15] for learning detectors without supervision, and [37] for

learning local feature detectors, orientation assignment and descriptors.

An obstacle to further progress in learning local feature detectors is the lack of a modern,

large-scale evaluation benchmark for this task. Advances in tasks such as image classifi-

cation were driven by the introduction of benchmarks such as ImageNet. For local feature

descriptors, recent contributions such as HPATCHES [3] may play a similar role, but there is

still no good solution for detection. Several works for testing performance of both detector

and descriptors emerged, [23, 31], however we believe that being able to test and compare

algorithms separately provides invaluable insight into where the progress is made.
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In order to address this shortcoming, in this paper we propose a modern evaluation of

feature detectors. We do so by augmenting the evaluation protocol (section 3) of feature

benchmarks which come with ground truth homographies for image sequences representa-

tive of various difficult imaging scenarios, such as illumination and viewpoint changes. We

build especially on the recently-introduced HPATCHES dataset; however, while the latter

contains pre-detected image patches for descriptor evaluation, we discard such patches and

use the images as a whole to assess feature detectors instead. We further refer to this dataset

as HPSequences.

For the evaluation protocol, we start from the detector repeatability evaluation protocol

introduced in the classic paper of [22], as it is an accepted standard, and we improve it in

various ways. Specifically, compared to earlier benchmarks such as VGG Affine, which are

nowadays heavily over-fitted due to their small size and due to having been used by the com-

munity for many years, HPSequences is much larger and less prone to over-fitting. Further-

more, we improve the evaluation protocol by addressing issues in the invariance to feature

magnification factor found in the reference implementation of repeatability (section 3.1). We

also propose to modify the protocol to explicitly control for the number of detected features

per image (section 3.2), yielding fairer detector comparisons. Due to the significantly in-

creased number of images compared to VGG Affine (696 vs 48), we also change the way

results are aggregated, reported, and analysed, comparing detectors quantitatively using a

single plot (section 3.3). Additionally, we include trivial baselines based on random fea-

tures which provide lower bounds of the expected performance. The new benchmarking

code for automatic evaluation of detectors is released in the open source domain, simplify-

ing reproducibility of the future research. We aim to provide a robust, easy-to-reproduce

and easy-to-use evaluation platform for comparison of local feature detector performance on

planar scenes. Both source code and pre-computed scores used for this manuscript are freely

available1.

Having designed a suitable benchmark, our second contribution is to analyse classic fea-

ture detector against modern ones based on deep learning (section 5). We find that learning

detectors significantly improves robustness to illumination changes, but that, for viewpoint

invariance, traditional detectors using scale selection and affine adaptation are still nearly as

good and sometimes better than learned ones.

2 Related work

In this section we introduce evaluated local feature detectors (section 2.1) and existing bench-

marks for their evaluation (section 2.2).

2.1 Local detectors

Local image feature detectors differ by the type of features that they extract, e.g. points [13,

28], circles [17, 19], or ellipses [5, 18, 20]. In turn, the type of feature determines which

class of transformations that they can handle: Euclidean transformations, similarities, and

affinities respectively. Additionally, we can divide detectors as follows:

Hand-crafted detectors. Standard, hand-crafted local feature detectors vary based on the

visual structures used as anchors for the features, e.g. corners or other operators of the image

1https://github.com/lenck/vlb-deteval

https://github.com/lenck/vlb-deteval
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intensity such as the Hessian of Gaussian [7] or the structure tensor [12, 13, 42]. Going

beyond roto/translation, scale selection methods using the Laplacian/Difference of Gaussian

operator (L/DoG) or Hessian of Gaussian were introduced in [17, 19] and further extended

with affine adaptation [5, 20] to handle full affine transformations.

Accelerated detectors. Machine learning can be used to imitate and accelerate an off-the-

shelf detector defined a-priori [10, 14, 29, 32]. Rosten et al. [28] use simulated annealing to

optimise the parameters of their FAST detector for repeatability. For the SURF detector [6],

the authors use integral images to approximate the Hessian feature response.

Learned detectors. Learning detectors attempts to discover or improve the visual anchors

used for detection, a task much harder than using hand-crafted anchors. Early attempts used

genetic programming [25, 33]. More recently, Yi et al. [38] learn to estimate the orientation

of feature points using deep learning. A related approach is the TILDE detector [36] for

illumination invariance. The LIFT framework [37] aims at learning detector, descriptor and

orientation estimation jointly using patches, while SuperPoint [9] uses full images. Another

approach to unsupervised learning of keypoint detectors is DNET [15], which is trained using

the covariance constraint and no supervision. A version of this detector is TCDET [39],

combined geometry and appearance losses. The covariant constraint is extended for affine

adaptation in [24].

2.2 Evaluation of local detectors

The standard protocols for the evaluation of local feature detectors and descriptors was es-

tablished by [21, 22] using the VGG Affine dataset, which contains 8 sequences of 6 images

related by a known homography. Detectors are assessed in terms of their repeatability, which

measures their robustness to nuisance effects such as a change in viewpoint or illumination.

The standard definition of repeatability has some shortcomings. First, features are compared

by the overlap of their support, generally elliptical, which may not encode all relevant ge-

ometric information (e.g. it disregards the feature orientation) and depends on the size of

regions, which is arbitrary and requires normalisation. Second, computing repeatability is

somewhat slow and uses in practice a number of approximations, which we show in this

paper are not innocuous.

Many datasets followed the introduction of VGG Affine. In the Hanover dataset [8],

the number of sequences is extended while improving the precision of the homography.

While the traditional and most commonly used VGG Affine dataset contains images that are

all captured by a camera, the Generated Matching dataset [11] is obtained by generating

images using synthetic transformations. The Edge Foci dataset [40] consists of sequences

with very strong changes in viewing conditions, making the evaluation somewhat special-

ized to extreme cases; furthermore, the ground truth for non-planar scenes does not uniquely

identify the correspondences since the transformations cannot be well approximated by ho-

mographies. In the Webcam dataset [36], new sequences for testing illumination changes are

presented. The DTU robots dataset [1] goes beyond homographies and uses scenes with a

known 3D model, obtained using structured lighting. In [23], the authors introduce a new

dataset for generalised wide baseline stereo matching across geometry (homography and

epipolar), illumination, appearance over time and capturing modes.

Instead of introducing new evaluation protocols, our main goal is to provide a large scale

evaluation baselines over multiple datasets. Additionally we improve the repeatability score

and quantitatively analyse results across different tasks.
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3 Evaluation protocol: repeatability revisited

In this section we refresh the traditional repeatability evaluation method proposed by Miko-

lajczyk et al. [22], addressing some of its shortcomings and improving its applicability to

large datasets.

Given an image I, a detector extracts a set D = {R1, . . . ,Rn} of n regions Ri ⊂ R
2,

generally ellipses. Given a second image I′ related to the first by an homography, the same

detector extracts another list D′ = {R′
1, . . . ,R′

n} of m regions. Following Mikolajczyk et al.

[22], the repeatability score rep(D,D′,H) for the detected features is the fraction of features

that match between images with sufficient geometric overlap up to the homography H. While

the concept is simple, there are many important implementation details that strongly affect

the outcome.2 These details are discussed next.

The degree of geometric match between two regions R,Q⊂R
2 is given by their overlap

o(R,Q) = |R∩Q|/|R∪Q|. If H is the homography transformation that reprojects pixels

from image I′ back to image I, the overlap measure can be changed to o(R,HR′) to com-

pensate for this transformation. However, as noted by Mikolajczyk et al. [22], overlap can

generally be increased just by scaling (magnifying) the detected features by a constant mag-

nification factor s ∈R+, which can be trivially incorporated in the definition of any detector.

For example, if sR denotes the effect of scaling the region R by a factor s around its center

of mass, and if R and R′ differ only by a shift, then lims→∞ o(sR,HsR′) = 1. Mikolajczyk

et al. [22] address this issue by rescaling features so that the first one has an area of 302,

resulting in the (asymmetric) normalised overlap score o(R,R′|H) = o(s(R)R,Hs(R)R′),
where s(R) = 302/|R|. Please note that this does not fully remove the influence of the

detected scale, as the relative scale between the compared regions is still important (as the

normalisation constant for both regions is s(R)).
Next, in order to compute repeatability in two feature sets, features must be matched

based on ellipse overlap 3. In order to do so, features that do not belong to the common part

of I and I′ are dropped as they cannot be matched. This is done by sending the center of each

region R′ to I using H and testing for inclusion in the domain of I; the same operation is re-

peated for regions R in the other direction. Let Dc and D′
c be the remaining features. Pairs of

such regions are associated with score s(Ri,R′
j) = o(Ri,R′

j|H) if their normalised overlap

is at least 1−εO and s(Ri,R′
j) =−∞ otherwise. The matches M∗ ⊂Dc×D′

c are determined

as the bipartite graph that maximises4 the overall score ∑(R,R′)∈M s(R,R′). Note that this

maximization retains only pairs with overlap above the threshold and matches each region at

most once. Finally, repeatability is defined as rep(D,D′,H) = |M∗|/min{|Dc|, |D′
c|}.

3.1 Magnification factor invariance

While in principle the use of a normalised overlap measure should make repeatability in-

variant to the detector magnification factor, the reference implementation of this measure

still has a strong empirical dependency on this parameter, as can be seen in fig. 1-left. We

have identified that the cause of this issue is in the heuristic used for accelerating the ellipse

overlap computation. This heuristic filters out ellipse pairs whose enclosing circles cannot

2The actual implementation slightly differs from the definition in the paper Mikolajczyk et al. [22] which also

lacks some details; our description follows the authoritative implementation by the same authors.
3Several works [26, 28] use only distance of the keypoint centres, however it is only applicable for joint detector

and descriptor evaluation.
4In practice, bipartite matching is approximated greedily.
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Figure 1: Average detector repeatability on VGG Affine for three detectors and increasing

magnification factor (log scale). Due to normalisation, the lines should be approximately

constant (right) but this is not the case in the original implementation (left) due to approxi-

mations.

overlap, a test which can be calculated quickly. However, in the original implementation of

the test, this heuristic was applied before the ellipse normalisation step. This leads to ellipses

with area smaller than 302 pixels being mistakenly skipped as unable to overlap, reducing

the repeatability score. After fixing this relatively minor issue (by normalising the excircles),

in fig. 1-right we show that the repeatability becomes invariant to the magnification factor.

3.2 Detection threshold

Many local feature detectors have a single parameter that controls selectivity, which we

generically call detection threshold τ . In hand-crafted detectors, τ is usually the minimum

value of the cornerness measure, such as DoG, Hessian or structure tensor etc., for which a

feature is retained.

One would expect a detector to provide stable performance across all its detection thresh-

olds. In practice, however, this might not be reflected by repeatability. In fact, with an in-

creased number of features, it becomes easier to match features by accident, making repeata-

bility biased for settings that produce more features. That is why, for a fair comparison, local

feature detectors need to return a similar number of features and we test random detectors to

obtain a baseline performance.

Since each detection algorithm anchors features to different visual primitives in an image,

the number of detected features cannot be equalized by choosing a constant τ per detector

for the whole dataset. Instead, similarly to [23, 36], we run each detector to extract as many

features as possible (by lowering τ) and then consider only the top-n detections from each

image ranked by detection score, where n ∈ N = {100,200,500,1000}.5 Testing different

values of n is useful because the number of detections per image may differ based on the

application and shows whether the detection score is predictive of the detected regions re-

peatability. As far as we are aware, testing the detector performance over various operational

point is not a standard practice in local feature evaluation.

3.3 Aggregated metrics and their analysis

So far, we have explained how to compute repeatability for a pair of images. Here we look

at how a large dataset of image pairs can be used for assessment.

5The upper limit 1000 was selected empirically, as some detectors produce fewer features even at the lowest τ

than others.



6 LENC, VEDALDI: LARGE SCALE EVALUATION OF LOCAL FEATURE DETECTORS

Dataset # Seq. #Ims. #Im. pairs

VGG Affine [22] 8 48 40

Webcam [36] 6 250 125

HPSequences [4] 116 696 580

Table 1: Basic statistics of the se-

lected datasets for local feature de-

tector evaluation.

The benchmark of Mikolajczyk et al. [22] contains a number of image sequences (It)
T
t=0

and their evaluation reports repeatability for each sequence, fixing I0 as reference image and

varying It , t = 1, . . . ,T . Each sequence tests a particular aspect of feature detection, such

as invariance to viewpoint, illumination, or noise changes. Furthermore, images in each

sequence are sorted by the size of the nuisance variation, so plotting repeatability against t

normally shows a progressive reduction in repeatability.

Such an approach is suitable for VGG Affine, which contains just 8 sequences with 6

images each. Clearly, however, it does not scale well to larger datasets. Furthermore, it does

not provide a single performance metric per detector, nor corresponding confidence margins,

which makes it difficult to compare detectors’ performance and to know how significant the

differences are. Another issue is that in datasets such as Webcam [36] and HPSequences [4]

images cannot be easily sorted by the size of the nuisance variation, thus plotting repeatabil-

ity against t is meaningless.

We approach this issue by computing aggregated statistics over multiple images and

factors of variation, similar to [36, 38, 41]. As repeatability is very sensitive to the number

of features extracted, we also compute an average over different detection thresholds and

analyse the distributions of repeatability scores so obtained to extract confidence margins.

In more detail, we are given a dataset which consists of a set of image pairs and ho-

mographies T = {(I1,J1|H1), . . . ,(IT ,JT |HT )} (table 1). We will denote rep(d, t,n) as the

repeatability of a detector d, task t ∈ T and number of detections per image n ∈N . To score

a detector s, we average repeatability across tasks and number of detections:

rep(d,n) = |T |−1 ∑
t∈T

rep(d, t,n), rep(d) = |N |−1 ∑
n∈N

rep(d,n). (1)

An ideal detector in our evaluation has a high average repeatability. Additionally, we con-

sider also the variance of the repeatability score, as a low variance means that the detector

performance is consistent across different cases. We visualise both average and variance us-

ing box-and-whisker diagrams, plotting repeatability on the x axis and detectors on the y axis

(fig. 2). These diagrams summarise at a glance the statistics rep(d, t,n) for each detector d.

The box percentiles are 25% and 75% (first and third quartile) and the whisker percentiles

are 10% and 90%. The length of the whiskers correspond to the length of the distribution

tail. Additionally, we show the median (solid line) and the mean (red cross) of each distri-

bution. We vary the line style of the whiskers to group detectors by type, generally based on

their purported invariance (dotted for translation, dash-dot for scale, and dashed for affine

invariant detectors). Finally, for each detector, we show rep(d,n) using box markers: .1k

for rep(d,100), .5k for rep(d,500), and 1k for rep(d,1000).

Stability error across detection thresholds. To quantify the stability of the detector per-

formance across detection thresholds, we calculate the detector instability as the standard

deviation of the detector repeatability across different numbers of features, normalised by

the average repeatability:

stb(d) = rep(d)−1 ·
√

|M|−1∑n[rep(d,n)− rep(d)]2. (2)
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Table 2: Tested local feature detectors and their speed (in seconds) on four test images from

HPSequences (CPU: single thread Intel Xeon E5-2650 v4; GPU: NVIDIA Tesla M40).
Sequence AJUNTAMENT MELON WAR CONSTRUCTION

# Pixels 0.3M 0.5M 1.0M 3.1M

Detector Impl. CPU GPU CPU GPU CPU GPU CPU GPU

FAST-T [28] MATLAB 0.10 - 0.01 - 0.01 - 0.03 -

SURF-S [6] MATLAB 0.14 - 0.12 - 0.42 - 1.20 -

BRISK-S [16] MATLAB 0.26 - 0.26 - 0.37 - 0.52 -

DoG-S [17] VLFeat [35] 0.14 - 0.17 - 0.53 - 2.80 -

Hes-A [20] VLFeat [35] 0.55 - 0.56 - 2.67 - 11.91 -

TILDE-T [36] [36] 3.42 - 5.42 - 9.38 - 34.99 -

LIFT-S [37] [37] - 149.94 - 155.41 - 163.28 - 223.52

DNET-T [15] [15] 7.64 0.13 12.22 0.18 25.01 0.35 83.92 1.24

DNET-S [15] [15] 15.24 0.35 24.06 0.49 49.64 0.90 465.42 3.00

TCDET-S [39] [39] 3.67 1.42 7.04 1.67 13.24 2.25 40.47 5.35

4 Selected local feature detectors

Reference detectors. Due to large number of existing detectors, we select a sample rep-

resentative of the breadth of possible approaches. Furthermore, we restrict our attention

to detectors that associate a detection strength τ to each feature (possibly after modifying

the implementation of the detector to expose such a value), as needed for selection in the

evaluation protocol. That is why we exclude MSER [18]6 and Edge Based Regions [34].

The selected detectors are listed in Table 2. Detectors are suffixed with -T, -S, -A to em-

phasise their theoretical viewpoint invariance class (translation, translation+scale and affine

respectively). We test a number of detectors representative of traditional techniques such

as Harris/Laplace/Hessian cornerness/scale selection and affine adaptation (DoG-S — aka

SIFT-S, SURF-S, Hes-A). We also test FAST-T and BRISK-S, which uses learning to ac-

celerate a standard corner detector. Finally, we test several last-generation detectors that

use deep learning: TILDE-T, TCDET-S, LIFT-S, DNET-T, DNET-S. DNET-S is a version

of DNET [15] which is evaluated on scaled images, similarly as TCDET-S [39]. The table

also reports their evaluation speed, as this is often a key parameter in applications. Unfor-

tunately, for more recent works [9, 26, 30], the source code was not available at the time of

publication.

Random baseline detectors. Detectors are also contrasted against a baseline obtained

by sampling n features at random [36]. We consider: random points (RAND-T), circles

(RAND-S) and ellipses (RAND-A). Given a scale s and a H ×W image, the feature center

(u,v) is obtained by sampling uniformly at random the set [s,W − s]× [s,H − s]. The scale

is sampled as s ∼ min{‖N (smin,(smax − smin)
2/4)‖,smax} where smin = 0.1 and smax = 50

are the minimum and maximum scales. The normal distribution captures the fact that, for

most detectors, less features are detected at larger scales. Finally, ellipses are generated by

sampling the affine transformation A =
( cos(θ) −sin(θ)

sin(θ) cos(θ)

)

·
(

s·2−a/2 0

0 s·2a/2

)

where θ ∼ U(−π,π)

and a ∼ U(0,2) (note that
√

detA = s can still be interpreted as scale).

5 Experiments

Datasets. While we use several datasets in our evaluation (table 1), we mainly focus on

HPSequences which builds on the images of HPATCHES [3]. This contains image sequences

6We have experimented using region stability as a detection score surrogate, as defined in VLFeat [35], but we

did not obtain any consistent results.
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Figure 2: Repeatability of selected detectors on VGG Affine, Webcam, and HPSequences

viewpoint/illumination sequences (HP-V vs HP-I). See section 3.3 for the notation.

Table 3: Complete results - average repeatability of the selected detectors on all presented

homography datasets.

Det
HP-I [3] HP-V [3] HP-I+V [3] VGG [22] WEBC [36] EFOCI [40] HANN [8] Avg. rnk

stb rep rnk stb rep rnk stb rep rnk stb rep rnk stb rep rnk stb rep rnk stb rep rnk

TCDET-S 0.1 64.91 2 0.1 58.71 2 0.1 61.76 1 0.1 65.85 1 0.2 61.92 2 0.2 58.25 1 0.1 51.55 5 2.00

DNET-S 0.2 56.20 5 0.2 56.12 4 0.2 56.16 2 0.1 64.56 2 0.3 46.70 5 0.2 53.05 2 0.1 54.72 2 3.14

TILDE-T 0.2 67.52 1 0.1 41.67 7 0.1 54.37 4 0.1 58.58 6 0.2 67.03 1 0.2 50.53 4 0.1 40.37 8 4.43

Hes-A 0.1 49.60 9 0.1 59.94 1 0.1 54.86 3 0.1 63.84 3 0.3 37.72 10 0.2 47.30 6 0.0 58.73 1 4.71

DoG-S 0.1 52.04 7 0.0 56.29 3 0.1 54.20 5 0.1 62.53 4 0.4 39.56 9 0.2 51.12 3 0.0 54.71 3 4.86

SURF-S 0.1 54.05 6 0.1 54.25 5 0.1 54.16 6 0.1 60.45 5 0.3 45.76 6 0.2 49.10 5 0.0 51.76 4 5.29

DNET-T 0.1 64.79 3 0.2 40.65 8 0.1 52.51 7 0.1 54.15 7 0.2 58.47 3 0.2 46.84 7 0.1 40.82 7 6.00

LIFT-S 0.2 51.96 8 0.1 51.27 6 0.1 51.61 8 0.1 50.85 8 0.3 44.48 8 0.2 45.84 8 0.1 41.20 6 7.43

FAST-T 0.2 57.99 4 0.1 38.43 9 0.1 48.04 9 0.2 49.63 9 0.3 49.01 4 0.2 39.74 9 0.1 39.44 9 7.57

BRISK-S 0.5 40.43 10 0.7 17.25 10 0.5 28.64 10 0.6 23.14 11 0.5 45.03 7 0.6 29.11 10 0.7 12.58 10 9.71

RAND-T 0.6 33.81 11 0.8 12.78 11 0.7 23.11 11 0.7 24.11 10 0.8 32.10 11 0.6 28.09 11 0.8 12.03 11 10.86

RAND-S 0.8 12.78 12 0.9 6.27 12 0.9 9.47 12 0.9 10.41 12 0.8 15.14 12 0.8 17.11 12 0.9 5.61 12 12.00

RAND-A 0.9 5.82 13 0.9 2.59 13 0.9 4.17 13 1.0 4.50 13 0.9 6.74 13 0.9 8.09 13 0.8 2.61 13 13.00
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RAND-T RAND-S RAND-A FAST-T SURF-S DoG-S Hes-A TILDE-T TCDET-S LIFT-S DNET-T DNET-S
HP-V (Viewpoint invariance)

H
es
-A

HP-I (Illumination invariance)

T
IL
D
E
-T

Figure 3: Comparison of repeatability distributions of pair of detectors on different subsets

HPSequences (HP-V and HP-I), n = 1000. The x-axis is a repeatability of the reference

detector (specified by row) and y-axis is repeatability of the selected detector, specified by

column. Each point in a plot represents a repeatability of a single image pair.

in a similar format to the original VGG Affine dataset, but with an order of magnitude more

sequences, divided in viewpoint (HP-V) and illumination (HP-I) changes.

Aggregated evaluation. We first evaluate the average repeatability of the detectors (fig. 2

and table 3) as defined in eq. (1). For the older VGG Affine, translation invariant detectors

such as TILDE-T are competitive in median/average with more invariant detectors (-S, -

A), but in 10% of the cases fail catastrophically (see the whiskers). The latter problem

is solved by scale invariance and the best detectors use Hessian or Laplacian-based scale

selection (-S). On the Webcam dataset, which contains only illumination changes, RAND-T

is surprisingly competitive (mostly due to the fact that scale is always selected consistently),

on part with more complex -S and -A detectors. TILDE-S, which is learned on this dataset,

is unsurprisingly the winner.

Next, we look at HPSequences, starting from the viewpoint sequences (HP-V). Com-

pared to the previous datasets, the RAND-T,S,A baselines perform much worse, confirming

that this data is significantly harder. The best detectors are variants of the Hessian one, which

is popular in instance retrieval [2, 27], and scale selection (-S) brings in general an advan-

tage; however, the benefits of Baumberg [5] affine adaptation (-A) is small. In general, the

top six detectors perform similarly. For the illumination sequences (HP-I, Webcam), since

scale does not change, -T detectors are advantaged. The best performance is again achieved

with the TILDE-T, which therefore generalises beyond the Webcam dataset.

From the relatively high performance of the RAND-T detector, we can see that it is

crucial to compare detectors of similar classes. This also justifies the use of ellipse overlap

over the simpler distance of keypoint centres for detector evaluation.

For the stability across detection thresholds (2), we see in table 3 that the majority of

the best performing detectors have their stability errors under 10%. However, the stability

is much lower for the BRISK and RANDOM detectors, which indicates that the BRISK

detection scores are not predictive of the detector performance.

Non-modal performance. A limitation of the analysis above is that it relies on aggregated

measures that may hide particular example cases where a given detector has a significant

advantage, such as an extreme viewpoint change. To analyse this possibility, in fig. 3 we

plot the repeatability of each detector (y-axis) against the one of the best reference detector

(Hes-A and TILDE-T) for all images in the viewpoint (HP-V) and illumination (HP-I) se-

quences. Points above the diagonal mean that the tested detector (column) obtained higher

repeatability on a specific image pair than the reference detector (row). Please note that

the distribution of the visualised points across y-axis would give us fig. 2. We can se that

TILDE-T tends to uniformly dominate other detectors in HP-I, but for HP-V the best overall
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Figure 4: Example of an image pair where a trained detector (rep(TCDET-S) = 69.8)

achieves better performance compared to a traditional detector (rep(HES-A) = 28.57).

detector Hes-A is occasionally outperformed by other detectors such as DNET or TCDET-S,

which can therefore be complementary (qualitative example in fig. 4).

Finally, in table 3 we test the consistency of the results across several more datasets (HP-

I, -V, -I+V, VGG, Webcam, Edge Foci, Hannover), reporting repeatability, stability and the

rank of each detector together with its average rank. Remarkably, detectors learned using the

covariance constraint with scale invariance lead the performance across the selected datasets.

However traditional detectors generally outperform the trained detectors on tasks where a

viewpoint invariance is important. Nonetheless, for learnt detectors this might be mitigated

with additional data augmentation or training on datasets with more viewpoint variations.

Similarly, the random detectors set a baseline performance for both repeatability and stability

across detector’s selectivity.

6 Discussion

While learning is poised to change local feature detection, developing a new generation

of algorithms almost invariably requires the introduction of improved benchmark datasets.

Object detection had PASCAL VOC, deep learning had ImageNet, and handcrafted detectors

had VGG Affine. In this paper, we have proposed to improve and extend VGG Affine’s

protocol to large scale evaluation. While performance of the whole local feature pipeline is

important, ability to compare detection performance of different algorithms, without undue

influence of the selected description and matching algorithm, is crucial. It not only allows

to assess geometric precision of a detector, but in combination with descriptor evaluation it

allows to pinpoint the main source of improvement. We are hoping that this detailed analysis

will catalyse further progress and advance our understanding of machine learning applied to

local feature detection.

Using this benchmark, we have assessed several traditional and deep detectors. We have

showed that, while machine learning clearly helps for illumination invariance, for viewpoint

invariance traditional methods are still surprisingly competitive. This suggests that there is

still significant potential for progress in this area.
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[2] Relja Arandjelović and Andrew Zisserman. Three things everyone should know to

improve object retrieval. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2911–2918. IEEE, 2012.

[3] V. Balntas, K. Lenc, A. Vedaldi, and K. Mikolajczyk. HPatch: A benchmark and

evaluation of handcrafted and learned local descriptors. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2017.

[4] Vassileios Balntas, Edgar Riba, Daniel Ponsa, and Krystian Mikolajczyk. Learning

local feature descriptors with triplets and shallow convolutional neural networks. In

Proceedings of the British Machine Vision Conference, 2016.

[5] A. M. Baumberg. Reliable feature matching across widely separated views. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

774–781, 2000.

[6] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. SURF: Speeded up robust features.

Proceedings of the European Conference on Computer Vision, pages 404–417, 2006.

[7] Paul R Beaudet. Rotationally invariant image operators. In International Joint Confer-

ence on Pattern Recognition, volume 579, page 583, 1978.

[8] Kai Cordes, Bodo Rosenhahn, and Jörn Ostermann. High-resolution feature evaluation

benchmark. In International Conference on Computer Analysis of Images and Patterns,

pages 327–334. Springer, 2013.

[9] Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-

supervised interest point detection and description. In CVPR Deep Learning for Visual

SLAM Workshop, 2017.

[10] PGT Dias, AA Kassim, and V Srinivasan. A neural network based corner detection

method. In IEEE Int. Conf. on Neural Networks, 1995.

[11] Philipp Fischer, Alexey Dosovitskiy, and Thomas Brox. Descriptor matching with

convolutional neural networks: a comparison to SIFT. CoRR, 2014.

[12] Wolfgang Förstner. A feature based correspondence algorithm for image matching.

International Archives of Photogrammetry and Remote Sensing, 26(3):150–166, 1986.

[13] C. Harris and M. Stephens. A combined corner and edge detector. In Proc. of The

Fourth Alvey Vision Conference, pages 147–151, 1988.

[14] S. Holzer, J. Shotton, and P. Kohli. Learning to efficiently detect repeatable interest

points in depth data. In Proceedings of the European Conference on Computer Vision,

2012.

[15] K. Lenc and A. Vedaldi. Learning covariant feature detectors. In ECCV Workshop on

Geometry Meets Deep Learning, 2016.



12 LENC, VEDALDI: LARGE SCALE EVALUATION OF LOCAL FEATURE DETECTORS

[16] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart. BRISK: Binary robust

invariant scalable keypoints. In Proceedings of the International Conference on Com-

puter Vision, pages 2548–2555. IEEE Computer Society, 2011.

[17] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International

Journal of Computer Vision, 2(60):91–110, 2004.

[18] J. Matas, S. Obdrzálek, and O. Chum. Local affine frames for wide-baseline stereo. In

Proceedings of the International Conference on Pattern Recognition, 2002.

[19] K. Mikolajczyk and C. Schmid. Indexing based on scale invariant interest points. In

Proceedings of the International Conference on Computer Vision, 2001.

[20] K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. In Proceed-

ings of the European Conference on Computer Vision, pages 128–142. Springer-Verlag,

2002.

[21] Krystian Mikolajczyk and Cordelia Schmid. A performance evaluation of local de-

scriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):

1615–1630, 2005.

[22] Krystian Mikolajczyk, Tinne Tuytelaars, Cordelia Schmid, Andrew Zisserman, Jiri

Matas, Frederik Schaffalitzky, Timor Kadir, and Luc Van Gool. A comparison of affine

region detectors. International Journal of Computer Vision, 65(1-2):43–72, 2005.

[23] Dmytro Mishkin, Jiri Matas, Michal Perdoch, and Karel Lenc. Wxbs: Wide baseline

stereo generalizations. In Proceedings of the British Machine Vision Conference, pages

12.1–12.12. BMVA Press, 2015.

[24] Dmytro Mishkin, Filip Radenovic, and Jiri Matas. Learning discriminative affine re-

gions via discriminability. CoRR, abs/1711.06704, 2017.

[25] G. Olague and L. Trujillo. Evolutionary-computer-assisted design of image operators

that detect interest points using genetic programming. Image and Vision Computing,

2011.

[26] Yuki Ono, Eduard Trulls, Pascal Fua, and Kwang Moo Yi. LF-Net: learning local

features from images. CoRR, abs/1805.09662, 2018.

[27] Michal Perd’och, Ondrej Chum, and Jiri Matas. Efficient representation of local geom-

etry for large scale object retrieval. In Computer Vision and Pattern Recognition, 2009.

CVPR 2009. IEEE Conference on, pages 9–16. IEEE, 2009.

[28] E. Rosten, R. Porter, and T. Drummond. Faster and better: a machine learning ap-

proach to corner detection. In IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2010.

[29] Edward Rosten and Tom Drummond. Machine learning for high-speed corner detec-

tion. In Proceedings of the European Conference on Computer Vision, 2006.

[30] Nikolay Savinov, Akihito Seki, Lubor Ladicky, Torsten Sattler, and Marc Pollefeys.

Quad-networks: unsupervised learning to rank for interest point detection. Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, 2017.



LENC, VEDALDI: LARGE SCALE EVALUATION OF LOCAL FEATURE DETECTORS 13

[31] Johannes Lutz Schönberger, Hans Hardmeier, Torsten Sattler, and Marc Pollefeys.

Comparative evaluation of hand-crafted and learned local features. In Conference on

Computer Vision and Pattern Recognition (CVPR), 2017.

[32] J. Sochman and J. Matas. Learning fast emulators of binary decision processes. Inter-

national Journal of Computer Vision, 2009.

[33] L. Trujillo and G. Olague. Synthesis of interest point detectors through genetic pro-

gramming. In Proc. of GECCO, 2006.

[34] Tinne Tuytelaars and Luc Van Gool. Matching widely separated views based on affine

invariant regions. International Journal of Computer Vision, 59(1):61–85, 2004.

[35] A. Vedaldi and B. Fulkerson. VLFeat – An open and portable library of computer

vision algorithms. In Proc. ACM Int. Conf. on Multimedia, 2010.

[36] Yannick Verdie, Kwang Moo Yi, Pascal Fua, and Vincent Lepetit. TILDE: A Tempo-

rally Invariant Learned DEtector. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2015.

[37] Kwang Moo Yi, Eduard Trulls, Vincent Lepetit, and Pascal Fua. LIFT: Learned In-

variant Feature Transform. In Proceedings of the European Conference on Computer

Vision, 2016.

[38] Kwang Moo Yi, Yannick Verdie, Pascal Fua, and Vincent Lepetit. Learning to Assign

Orientations to Feature Points. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2016.

[39] Xu Zhang, Felix X Yu, Svebor Karaman, and Shih-Fu Chang. Learning discrimina-

tive and transformation covariant local feature detectors. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 6818–6826, 2017.

[40] C Lawrence Zitnick and Krishnan Ramnath. Edge foci interest points. In Proceedings

of the International Conference on Computer Vision, pages 359–366. IEEE, 2011.

[41] Larry Zitnick and Piotr Dollar. Edge boxes: Locating object proposals from edges. In

Proceedings of the European Conference on Computer Vision, 2014.

[42] M. Zuliani, C. Kenney, and B. S. Manjunath. A mathematical comparison of point

detectors. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2005.


