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Abstract

We propose a novel deep learning approach, called Deeplnsight, to quick diagnosis
of autism spectrum disorder (ASD) and major depressive disorder (MDD). Our approach
is motivated by recent advances in artificial intelligence (Al) for healthcare. In particu-
lar, researchers have found distinct differences between facial characteristics of children
with ASD and those of typically developing children. Based upon these findings, we
choose to explore deep learning in extracting discriminative facial features. However,
for ASD diagnosis, the labelled data are far from sufficient for training a deep learning
model. Therefore, by considering the two typical mental disorders (i.e. ASD and MDD)
together, we develop a multi-task deep learning model to augment the labelled data for
each diagnosis task. Moreover, we also induce multi-scale combination into the proposed
model to learn more discriminative facial features. Experimental results demonstrate the
effectiveness and efficiency of our approach to mental disorder diagnosis.

1 Introduction

Artificial intelligence (AI) has been widely leveraged in many healthcare applications such
as skin cancer classification [7], congenital cataract management [23], and personalized nu-
trition [37], due to the latest advances in machine learning (especially deep learning). As one
of the most challenging problems in healthcare, autism spectrum disorder (ASD) diagnosis
has also draw much attention [2, 12, 15, 22, 34] from both psychiatry and Al

The focus of this paper is also ASD diagnosis, which is inspired by [2, 3]. In these closely
related works, facial characteristics of children with ASD were shown to have distinct dif-
ferences from those of typically developing (TD) children. For example, [2, 3] have reported
the following observations: 1) children with ASD have a broader upper face, including wider
eyes; 2) children with ASD have a shorter middle region of the face, including the cheeks
and nose. According to these findings, we choose to extract discriminative facial features for
ASD diagnosis by employing deep learning [17] as basic Al tool.

(© 2018. The copyright of this document resides with its authors.
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Multi-Task Multi-Scale Deep Learning

fc layers ASD
for ASD Diagnosis

multi-scale conv layers

All Data
(ASD:MDD=1:1
for each batch)

ResNet-101
(shared conv layers)

fc layers MDD

multi-scale conv layers . .
for MDD Diagnosis

Figure 1: The flowchart of our Deeplnsight approach to quick diagnosis of the two metal
disorders (i.e. ASD and MDD). The conv and fc layers in the proposed model denote the
convolutional and fully-connected layers, respectively.

Although deep learning has been shown to yield exciting results in many fields [10, 26,
27, 35, 38], it still has a limitation on model training when applied to healthcare problems.
That is, the ground-truth labels of medical data are very expensive to access, and we are
generally provided with a small labelled set for model training. It is well-known that the
scarcity of training data tends to cause the overfitting of a deep learning model [18, 19].
Hence, when leveraging deep learning in ASD diagnosis, our focus is how to overcome the
overfitting issue during model training.

In this paper, by considering another typical mental disorder, i.e., major depressive dis-
order (MDD), together with ASD, we develop a multi-task deep learning model to augment
the labelled data for each diagnosis task. As compared to the traditional single-task deep
learning that trains a convolutional neural network (CNN) model [13, 16, 30, 32] for each
diagnosis task, multi-task deep learning trains only a single CNN model for multiple diag-
nosis tasks, similar to [40, 42]. Note that the distinct advantage of multi-task deep learning
is that the labelled data of multiple diagnosis tasks can be shared to train a more robust CNN
model, which is crucial for leveraging deep learning in mental disorder diagnosis. Although
multi-task learning has been successfully applied to many medical problems [5, 31, 34] in
the literature, rare attention has been paid to multi-task diagnosis of more than one disorders.

As one of the most advancing CNN models, ResNet-101 [40] is used to form the shared
convolutional (conv) layers in our multi-task deep learning model. However, the shared
conv layers can only extract the shared facial features for the diagnosis of ASD and MDD.
To ensure that each diagnosis task has its own conv layers for task-aware feature learning, we
thus induce multi-scale combination [20, 25] into our multi-task deep learning model, which
is denoted with multi-scale conv layers in Figure 1. Moreover, by adopting the pre-training
and finetuning strategies, we develop a robust algorithm to train the proposed multi-task
multi-scale deep learning model. Note that the proposed model can not only learn shared
facial features but also learn task-aware facial features for the diagnosis of ASD and MDD,
by taking both multi-task deep learning and multi-scale combination into consideration.

To evaluate the performance of our Deeplnsight approach, we conduct extensive exper-
iments on two face datasets (denoted as ASD-Face and MDD-Face), which are collected
from a local psychiatric hospital and also from the web (e.g., the we-media on the ASD and
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MDD topics, and documentary films about ASD and MDD). Experimental results show the
effectiveness of our approach in the two diagnosis tasks. This means that both shared and
task-aware facial features are indeed crucial for the diagnosis of ASD and MDD. In addition,
our results also show that our approach (taking less than 1 second per-subject) is much more
efficient than the clinical diagnosis of ASD and MDD (taking more than 0.5 hour per-subject)
based on the behaviors of the subjects.

Our main contributions are: (1) We have proposed a multi-task deep learning approach
to the diagnosis of more than one mental disorders, which has been rarely considered in the
literature. (2) We have made the first contribution to learning both shared and task-aware
deep features for multi-task medical diagnosis, to the best of our knowledge. (3) We have
developed a robust algorithm to train the proposed multi-task deep learning model.

2 Related Work

ASD Diagnosis. ASD is a neurodevelopmental disorder defined in DSM-5. Children with
ASD must present two types of symptoms: 1) deficits in social communication and social in-
teraction; 2) restricted, repetitive patterns of behavior, interests or activities. Among various
psychological assessment tools, the Autism Diagnostic Interview-Revised (ADI-R) and the
Autism Diagnostic Observation Schedule (ADOS) are considered the “gold standards" for
assessing autistic children. However, the clinical diagnosis of ASD with these measurements
is subject to the expertise of psychiatrists, and the whole procedure may continue several
months (including multiple times of clinical diagnosis). To overcome these limitations in
clinical diagnosis, many Al methods have been developed for ASD diagnosis. Specifically,
children with ASD are recognized from typically developing children by machine learning
with various types of medical data including genes [15], magnetic resonance imaging (MRI)
of brain [12, 34], and eye movements [8, 22]. In this paper, according to the interesting
findings in [2, 3], we propose a deep learning model to extract discriminative facial features
for ASD diagnosis. Since the face pictures of children can be obtained at significantly less
cost (of time and money) than genes, brain MRI, and eye movements, our model is expected
to have a wider use in real-world applications.

MDD Diagnosis. MDD is a mental disorder characterized by at least two weeks of low
mood. It often comes along with low self-esteem, loss of interest in normally enjoyable
activities, low energy, and pain without a clear cause. The most widely used criteria for
diagnosing depressive conditions can be found in DSM-IV-TR and ICD-10. Based on these
assessment measurements, the clinical diagnosis of MDD is subject to the expertise of psy-
chiatrists (or psychologists), which is similar to the clinical diagnosis of ASD. Therefore,
biomarkers of MDD have been explored to provide an objective method for clinical diag-
nosis. There exist several potential biomarkers, including brain-derived neurotrophic factor
[33] and various functional MRI techniques [11]. However, no biological assessments can
confirm major depression, and more effective biomarkers are needed for MDD diagnosis.
Multi-Task Learning in Healthcare. Since multi-task learning [40, 42] can greatly allevi-
ate the scarcity of training data, it has been successfully applied to many medical problems
[5, 31, 34]. In [34], multi-task ASD diagnosis was performed across multiple medical imag-
ing centers, i.e., a single task refers to the ASD diagnosis for one medical imaging center.
In [31], the neuroimaging data was first grouped into multiple subclasses by a clustering
method, and then an effective approach to Alzheimer’s disease diagnosis was proposed based
on multi-task learning across multiple subclasses. In [5], a family of multi-task learning algo-
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rithms were developed for collaborative computer aided diagnosis over multiple clinically-
related datasets of medical images. It can be seen that these multi-task learning methods
have considered only one medical disorder. In contrast, we focus on multi-task diagnosis of
more than one medical disorders. This also means that the conventional multi-task learning
methods are not suitable for our application scenario.

Deep Learning in Healthcare. We face great challenges when applying deep learning is
applied to healthcare problems. Specifically, the ground-truth labels of medical data are
very expensive to access, and a small labelled set is generally provided for training deep
learning models. Due to the scarcity of training data, the overfitting issue tends to degrade
the performance of deep learning [18, 19]. Hence, when leveraging deep learning in the
diagnosis of ASD and MDD, our focus is how to overcome the overfitting issue during model
training. In this paper, we adopt the multi-task learning strategy to alleviate the scarcity of
training data, and also develop a robust algorithm for model training.

3 The Proposed Model

3.1 Face Preprocessing

Similar to previous work on face recognition [1, 4, 6, 9, 21], we preprocess the original large
face pictures to obtain standard faces, before training deep learning models. In this paper,
face preprocessing includes:

Face Detection. We first detect a single face or multiple faces from each original large
picture with FaceNet [29]. For each detected face, we further detect 68 facial keypoints.
Face Alignment & Cropping. Based on the detected 68 keypoints, we align each face using
a 2D affine transformation and then crop it to the size 256*256 pixels.

Data Augmentation. The output of face alignment & cropping is of the size 256%256 pixels,
but the input size of ResNet-101 is 224*224 pixels. Instead of random cropping used in
Caffe, we adopt the following data augmentation method: we first crop each original face of
256*256 pixels at five positions, denoted by the upper-left corners (0, 0), (0, 32), (16, 16),
(32, 0) and (32, 32), to generate 5 new faces of the size 224%224 pixels and then horizontally
flip the five cropped faces to double the face number.

The data augmentation step has three advantages: 1) the effect of head pose on model
training can be suppressed to some extent; 2) the deep learning model can be trained with
more data to avoid the overfitting problem; 3) the 10 new cropped faces can be used to
compute a classification probability for each face from the test set.

3.2 Network Architecture

For the diagnosis of ASD and MDD, we design a multi-task multi-scale deep learning model
based on a Caffe implementation of ResNet-101 [40], which is a typical CNN model. The
network architecture of our deep learning model is illustrated in Figure 2. In this deep
learning model, there are three groups of convolutional layers: (1) the first group of shared
convolutional layers for the two diagnosis tasks, called ResNet-101; (2) the second group of
multi-scale convolutional layers for ASD diagnosis, called conv_ASD; (3) the third group of
multi-scale convolutional layers for MDD diagnosis, called conv_MDD.

In this paper, we regard each group of convolutional layers as a subnetwork in our deep
learning model. The details of the three subnetworks are given as follows:
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Figure 2: The network architecture of our multi-task multi-scale deep learning model.

ResNet-101. This subnetwork is generally inherited from the original ResNet-101 model,
which consists of five subgroups of convolutional layers. In this paper, we modify the o-
riginal ResNet-101 in two aspects: (1) The fully-connected layers of ResNet-101 are not
included this subnetwork; (2) In the input layer, half of each batch contains samples from the
ASD-Face dataset, and the other half contains samples from MDD-Face. In our model, this
subnetwork is used to extract shared discriminative facial features for the diagnosis of ASD
and MDD, which is exactly consistent with the goal of multi-task learning.

conv_ASD. The design of the conv_ASD subnetwork is inspired by multi-scale combination
[20, 25] in CNN models. In the ResNet-101 subnetwork, there are five subgroups of con-
volutional layers and each subgroup contains one or multiple convolutional layers. For the
trade-off between efficiency and effectiveness, we only integrate three layers of ResNet-101
(i.e. the last layer of the first, third, and fifth subgroups of convolutional layers), as shown in
Figure 2. This subnetwork consists of two 3 x 3 max pooling layers, two 1 x 1 convolutional
layers, and one average pooling layer. In our model, the conv_ASD subnetwork is used to
extract task-aware discriminative facial features for ASD diagnosis.

conv_MDD. The conv_MDD subnetwork is designed similarly to conv_ASD, which also
contains two 3 X 3 max pooling layers, two 1 x 1 convolutional layers, and one average
pooling layer. In our model, the conv_MDD subnetwork is used to extract task-aware dis-
criminative facial features for MDD diagnosis.

At the end of conv_ASD (or conv_MDD), two fully-connected layers are added for the
diagnosis of ASD (or MDD). This also enables us to train our multi-task multi-scale deep
learning model in an end-to-end manner.


Citation
Citation
{Liu, Zha, Tian, Liu, Yao, Ling, and Mei} 2016{}

Citation
Citation
{Luus, Salmon, Bergh, and Maharaj} 2015{}


6 DING, HUO, HU, LU: DEEPINSIGHT
3.3 Model Training

In this subsection, we develop a robust algorithm to train our multi-task multi-scale deep
learning model (see Figure 2), by adopting the pre-training and finetuning strategies.

We first define the loss of our model as follows. Let xg and x; be the output of the last
fully-connected layer at the end of conv_ASD, and Iasp € {0, 1} be the label of the current
sample in the ASD-Face dataset. The softmax loss for ASD diagnosis is defined as:

% = x; — max(xg,x1),i = 0,1 €))
pasp(i) = €% /(e +eM),i=0,1 )
Lossasp = —log pasp(/asp) 3)

Similarly, let yp and y; be the output of the last fully-connected layer at the end of con-
v_MDD, and Impp € {0, 1} be the label of the current sample in the MDD-Face dataset. The
softmax loss for MDD diagnosis is defined as:

Ji = yi—max(yo,y1),i = 0,1 4)
pmpp (i) = €/ (e%0 +€1),i = 0,1 5)
Lossmpp = —log pmpp (/Mpp) (6)

The loss of our multi-task deep learning model is given by:
Loss = )LASDLOSSASD + )LMDDLOSSMDD (7)

where Aasp and Aypp are the weights for the two diagnosis tasks. In this paper, we assume
that the two diagnosis tasks have the same importance, and set Aasp and Aypp equal to 1 for
all experiments. Note that optimizing the above loss leads to an end-to-end training process
for our Multi-Task Multi-Scale ResNet model.

Since the fusion of ASD-Face and MDD-Face is still “small” for training a deep learning
model, we explore CASIA-WebFace [36] and CK+ [24] as outside data for model training. In
particular, CASTA-WebFace is a large-scale face dataset of 10,575 subjects and 494,414 face
pictures, and CK+ is a facial expression dataset of 2,977 face pictures from eight emotion
categories (i.e., neutral, anger, contempt, disgust, fear, happy, sadness, and surprise). In this
paper, the CASIA-WebFace and CK+ datasets are used for model pre-training and finetuning,
respectively. Our robust algorithm for model training is outlined as follows:

e Step 1: Pre-train a basic ResNet-101 model with the CASIA-WebFace dataset;
e Step 2: Finetune the pre-trained ResNet-101 with the CK+ emotion dataset;

e Step 3: Initialize the Multi-Task ResNet model (which simplifies both conv_ASD and
conv_MDD to average pooling) using the finetuned ResNet-101 model.

e Step 4: Finetune all the parameters of Multi-Task ResNet with the two training sets of
ASD-Face and MDD-Face.

o Step S: Initialize Multi-Task Multi-Scale ResNet using finetuned Multi-Task ResNet.

e Step 6: Finetune all the parameters of Multi-Task Multi-Scale ResNet with the two
training sets of ASD-Face and MDD-Face.
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Dataset Training Set Test Set
(positives/negatives) (positives/negatives)

ASD-Face 253/320 51/69

MDD-Face 240/240 60/60

Table 1: The characteristics of the two face datasets.

3.4 Test Process

Once our Multi-Task Multi-Scale ResNet model has been well trained, we can evaluate its
performance on the two test sets of ASD-Face and MDD-Face as follows. For each pair of
test faces (Iasp, MDD ), We preprocess them using the face preprocessing method and obtain

10 pairs of augmented test faces (IA/(\%D,IAIS/RDD)(I =1,...,10). We then input each pair of

augmented test faces (I/(X%D,IAM)D) into our multi-task deep learning model, and predict their

labels as: (lg)SD,l&)])D) where l/(\)SD € {0,1} and lMDD € {0,1}. Given that ASD is denoted

by ZX)SD =1 and MDD is denoted by ll(\/I)DD = 1, we predict the label Issp of test face Iasp
and the label /ypp of test face Iypp as:

1 ): 1) >3
l = ? ASD 8
ASD { 0 , 0therw1se ®
1, xS 3
l = J MDD 9
MPD { 0o , 0therw1se 2

where the threshold of 3 is empirically selected by taking the trade-off between the accu-
racies of recognition of positives and negatives in the two diagnosis tasks. This threshold
can also be selected by cross-validation on the training set. Although the training process of
our Multi-Task Multi-Scale ResNet model is time-consuming, the above test process is very
efficient since only forward computation is used for test with the trained model.

4 Experimental Evaluation

4.1 Data Collection

For performance evaluation, we construct two datasets': ASD-Face of 693 face pictures, and
MDD-Face of 600 face pictures. The characteristics of the two datasets are given in Table 1.
To make the two datasets as large as possible, we have collected the face pictures not only
from a prestigious local psychiatric hospital but also from the web (e.g., the we-media on
the ASD and MDD topics, and documentary films about ASD and MDD). Note that the
datasets collected in this way would inevitably have noise. As a remedy, we have made great
effort on quality assurance during data collection, i.e., each case has been checked by at least
two psychiatrists. In addition, our Deeplnsight project has been confirmed by the Ethics
Committee of the local hospital.

mttps://github.com/anonymous04321/Face-Datasets-of-Mental-Disorders
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ASD MDD
ACC | SEN | SPE | PPV | NPV | ACC | SEN | SPE | PPV | NPV
EigenFace+SVM 61.7 | 56.7 | 62.5] 66.7 | 60.8 | 63.3 | 60.8 |64.8 | 71.7 | 61.7
FisherFace+LDA 69.2 | 58.7 |84.1]79.1 | 75.1 | 68.3 | 62.6 | 78.5| 79.8 | 69.5
ResNet-101 85.8 180.4|87.3|87.0|83.3|83.3|81.8|823|86.1|81.3
Multi-Scale ResNet | 87.5 | 82.4 {91.3 | 87.5| 87.5 | 85.8 | 86.4 | 83.3 | 87.7 | 83.6
Multi-Task ResNet | 88.3 | 88.2 | 88.4 | 87.9 | 91.0 | 86.7 | 89.4 | 83.3 | 86.8 | 86.5
Full CNN Model 90.0 | 84.3 194.2|91.5| 89.0 | 89.2 | 92.4 | 85.2 | 88.4 | 90.2

Models

Table 2: Comparison among different diagnosis models for ASD and MDD diagnosis.

4.2 Experimental Settings

We evaluate the performance of ASD diagnosis (or MDD diagnosis) on the test set of ASD-
Face (or MDD-Face). As in previous work on healthcare problems, five measures are used
for performance evaluation: accuracy (ACC), sensitivity (SEN), specificity (SPE), positive
predictive value (PPV), and negative predictive value (NPV). Given the number of true pos-
itives (TP), false negatives (FN), false positives (FP) and true negatives (TN), the five mea-
sures are defined as follows:

ACC = (TP+TN)/(TP+FN+TN + FP) (10)
SEN = TP/(TP+FN), SPE = TN/(TN +FP) (11)
PPV = TP/(TP+FP), NPV = TN/(TN ++ FN) (12)

In the following experiments, we train our Multi-Task Multi-Scale ResNet model in an
end-to-end manner using back-propagation [28] and stochastic gradient descent [41]. We
randomly initialize the new fully-connected layers (at the end of conv_ASD and conv_MDD)
of our model by drawing weights from a zero-mean Gaussian distribution with standard de-
viation 0.01, and initialize the bias to 0. For all the new convolutional layers (i.e., conv_ASD
and conv_MDD) of our model, we adopt the Xavier initialization. All the other layers (i.e.,
the shared conv layers) of our model are initialized by the original ResNet-101 model trained
with the CASIA-WebFace and CK+ datasets. A learning rate of 0.0001 is set for the first
1,000 mini-batches, and reduced to 0.1 times with a step size of 1,000. The maximum num-
ber of iterations is set to 3,000. A momentum of 0.9 and a weight decay of 0.01 are also set
for model training. In particular, we train the single-task models with 2 GPUs (batch size =
10), and train the multi-task models with 4 GPUs (batch size = 5). Our implementation is
developed using Python based on the Caffe framework.

4.3 Diagnosis Results

Comparative Evaluation. We select six diagnosis models for performance evaluation: 1)
EigenFace+SVM - the SVM classifier with the facial features extracted by EigenFace [39];
2) FisherFace+LDA - the linear discriminant analysis (LDA) classifier with the facial fea-
tures extracted by FisherFace [14]; 3) ResNet-101 — the original ResNet-101 model; 4)
Multi-Scale ResNet — the original ResNet-101 followed by conv_ASD (or conv_MDD);
5) Multi-Task ResNet — the degraded Multi-Task Multi-Scale ResNet by simplifying both
conv_ASD and conv_MDD to average pooling; 6) Full CNN Model — our Multi-Task Multi-
Scale ResNet model illustrated in Figure 2. The first four diagnosis models are all used for
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Figure 3: Comparative results of ASD diagnosis (left) and MDD diagnosis (right) using the
shared features/task-aware+shared features learned by our Deeplnsight model.

the two diagnosis tasks independently. The four deep learning models among these diagno-
sis models are all initialized using the outside data CASIA-WebFace and CK+ before model
training. Note that the multi-task learning problem defined in this paper (both inputs and
outputs are distinct) cannot be solved by the conventional multi-task learning models that
typically take the same inputs or the same outputs. Therefore, we do not include these multi-
task learning models in our performance evaluation.

Table 2 shows the results obtained by the above six models for the diagnosis of ASD and
MDD, respectively. It can be seen that: 1) By overall evaluation, our Multi-Task Multi-Scale
ResNet model performs the best among all the six models. The superior performance of
our model is mainly due to the fact that it can extract both shared and task-aware facial fea-
tures for mental disorder diagnosis. This is also supported by the results given by Figure 3,
where the shared features yield dominant results and the task-aware features lead to further
improvements. 2) The gains achieved by Multi-Scale ResNet over ResNet-101 demonstrate
the effectiveness of multi-scale combination for the two diagnosis tasks. This means that
Multi-Scale ResNet can extract more discriminative facial features for mental disorder di-
agnosis than ResNet-101. 3) The gains achieved by Multi-Task Multi-Scale ResNet over
Multi-Scale ResNet demonstrate the effectiveness of multi-task learning for the two diagno-
sis tasks. That is, the shared conv layers can help to alleviate the scarcity of training data. 4)
Multi-Task ResNet is shown to yield promising results (especially for ASD diagnosis). This
provides extra evidence that multi-task learning is effective for mental disorder diagnosis.
5) As expected, all the four deep learning models yield significant improvements over the
conventional classifiers using hand-craft features.

CNN Alternatives. In this paper, we employ ResNet-101 as a basic CNN model to develop
our multi-task multi-scale model for ASD and MDD diagnosis. In fact, any CNN model
can be used to design our network architecture. We compare ResNet-101 to VGG-16 [30]
and Inception-ResNet v1 [32] by applying them to ASD and MDD diagnosis separately.
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Model ASD MDD
odels ACC [SEN [ SPE [PPV [NPV | ACC | SEN | SPE | PPV | NPV
ResNet-101 858 | 80.4 | 87.387.0| 833 | 833 | 81.8 |82.3|86.1 | 813

VGG-16 (VGGFace) | 85.0 | 89.4 | 79.6 | 84.3 | 86.0 | 84.2 | 87.9 | 79.6 | 84.1 | 84.3
Inception-ResNet v1 | 86.7 | 90.2 | 84.1 | 80.7 | 92.1 | 84.8 | 88.4 | 81.5 | 85.6 | 85.3

Table 3: Comparative results obtained by different CNN models used for ASD and MDD
diagnosis independently.

The same experimental setting is adopted for each CNN model. The comparative results are
shown in Table 3. We have the following observations: (1) The three CNN models generally
yield comparable results in the two tasks of ASD and MDD diagnosis. (2) Both ResNet-101
and Inception-ResNet v1 achieve slight improvements over VGG-16 that has been widely
used for face recognition. Since the architecture of ResNet-101 is less complicated than that
of Inception-ResNet v1, we only employ ResNet-101 in this paper.

Computational Time. We provide the training and test time of our Multi-Task Multi-Scale
ResNet model. In the experiments, we make use of the following computer: 2 Intel Xeon
E5-2603 v3 CPUs (1.6GHz and 6 cores for each CPU), 4 Titan X GPUs (12G memory for
each GPU), and 128G RAM. When all the 4 GPUs are used parallel, the time of training
our model is 71 minutes. Moreover, during test process, the time of processing a pair of test
faces is 0.1 second. This means that our Multi-Task Multi-Scale ResNet model can provide
very quick diagnosis of both ASD and MDD. This is far more efficient than a psychiatrist
who usually makes a diagnosis with at least half an hour.

5 Conclusion

In this paper, we have proposed a novel approach Deeplnsight to quick diagnosis of ASD and
MDD. To alleviate the scarcity of training data, we have designed a multi-task deep learning
model. Moreover, to extract task-aware facial features, we have also induced multi-scale
combination into our multi-task deep learning model. The experimental results show that
our approach can yield very impressive results in mental disorder diagnosis. We have made
the first contribution to learning both shared and task-aware deep features for multi-task
medical diagnosis, to the best of our knowledge. In the future work, we will collect more
facial images to train more robust deep learning models and also extend our Deeplnsight
approach to other mental disorders. Moreover, we will apply our approach to mental disorder
diagnosis with other types of medical data (e.g. brain MRI) other than facial images.
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