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Personalized recommendation of Points of Interest (POIs) plays a key role in satisfying users on Location-Based
Social Networks (LBSNs). In this paper, we propose a probabilistic model to find the mapping between user-
annotated tags and locations’ taste keywords. Furthermore, we introduce a dataset on locations’ contextual
appropriateness and demonstrate its usefulness in predicting the contextual relevance of locations. We
investigate four approaches to use our proposed mapping for addressing the data sparsity problem: one model
to reduce the dimensionality of location taste keywords and three models to predict user tags for a new
location. Moreover, we present different scores calculated from multiple LBSNs and show how we incorporate
new information from the mapping into a POI recommendation approach. Then, the computed scores are
integrated using learning to rank techniques. The experiments on two TREC datasets show the effectiveness
of our approach, beating state-of-the-art methods.
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1 INTRODUCTION
Nowadays with the super fast growth in the amount of information available on the world wide web
and with the increasing popularity of mobile devices equipped with easy access to the Internet, it is
essential to assist users to find relevant and useful information according to their needs and context.
Recommender systems aim to filter information in order to satisfy the users’ information needs and
minimize the effort made by the user to find relevant information. More specifically, recommender
systems focus on suggesting items that can potentially be attractive to users [37]. The availability
of Location-Based Social Networks (LBSNs) together with a Global Positioning System (GPS) and an
always-on Internet access on mobile devices encourages many users to check in at various Points
of Interest (POIs) using their favorite platform. Among the many available LBSNs, we can point out
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some of the most popular ones. Yelp1 is one of the most popular LBSNs in the US and mainly relies
on users’ reviews. Users leave very creative and usually long reviews about almost any type of POI
on this service. According to the company’s factsheet2, 73% of searches on Yelp were performed on
a mobile device3. Foursquare4 introduces “tips” as short informative reviews and “tastes” as a way
for users to express their expectations and preferences. TripAdvisor5, on the other hand, focuses
on reviews and content related to travel and travel companies. The popularity of such services
enables them to gather various types of information about users including users’ mobility, feedback
and context. A key factor in satisfying the users’ needs is being able to personalize the system to
recommend POIs taking into account personal preference and contextual constraints [15].

Much work has been carried out to model users taking into consideration their preference history
and current vicinity to POIs to help them explore new and interesting locations6. More specifically,
POI recommendation tries to ensure user’s satisfaction by suggesting her the most interesting
locations, taking into account her preferences and contextual constraints [12, 15]. In fact, among
the many proposed works, there has been several successful approaches [20, 26, 36, 40], addressing
different problems of POI recommendation, taking into account various aspects. However, many
challenges in this area are not resolved yet. A major challenge in POI recommendation is data
sparsity [12, 43]. Normally, users visit a very limited number of locations, however, LBSNs feature
a relatively huge number of locations with a large variety. Consequently, the user-item matrix used
in Collaborative Filtering (CF) by many papers is sparse [48]. Several studies seek to address the data
sparsity problem incorporating additional information into the model [12, 15]. For instance, Zhang
et al. [46] derived virtual ratings from users’ reviews and studied the impact of fusing them into CF.
Zheng et al. [47], on the other hand, modeled users adopting a tensor representation, and introduced
amatrix decomposition and regularized tensor to better address the data sparsity problem.Moreover,
since users spend most of their time in their home town [30], the data sparsity problem is aggravated
when a user visits a new city where she has no history of visited locations [21].

Apart from personal preference and interest, the user behavior is influenced and, in many
cases, constrained by local and contextual preferences [20]. For instance, a user may be a big
fan of nightlife spots. However, when traveling with her family, she may prefer not to visit such
locations. Hence, it is crucial to consider a user’s context when recommending locations to her. It
is also important to note that the user’s context often introduces new constraints, not necessarily
inclined to her opinion and interest. To this end, the main focus of the Text REtrieval Conference
(TREC) Contextual Suggestion (TREC-CS) track7 in 2015 [18] and 2016 [25] was to improve location
recommendation with the aid of contextual information. However, not many successful participants
took into account context in their proposed approaches. Thus, applying contextual constraints still
remains a challenge for context-aware POI recommendation.

Given the easy access to the Internet and availability of mobile devices such as cell phone, smart
watches and tablets, users tend to leave their check-in data more often. However, writing a long
review on such devices is not as trivial as is using a desktop computer. As a consequence, the
majority of users rate locations without writing a review. Reviews contain critical information
regarding a user’s opinion and view about a location; for example a user’s opinion about a location’s
1http://www.yelp.com
2Yelp Inc. 2017. An Introduction to Yelp Metrics as of June 30, 2016. http://web.archive.org/web/20160825213451/https:
//www.yelp.com/factsheet. (2017). Accessed: 2017-03-23.
3As of June 30, 2016
4http://www.foursquare.com
5http://www.tripadvisor.com
6In this paper, we use the terms location, venue and POI interchangeably.
7https://sites.google.com/site/treccontext/
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Fig. 1. Overview of the proposed method.

view or staff. In order to compensate for the absence of such information, an LBSN can assist a user
with a few related predefined tags, from which the user can conveniently select those expressing
her opinion. Predefined tags come very handy especially on smaller devices such as smart watches
enabling users to express themselves with the aid of a couple of taps. Modeling users with such
tags is very challenging since user tags are much more sparse compared to user ratings. Thus the
traditional CF approach could not be applied for user tag modeling. Furthermore, in real-world
POI recommendation scenarios for mobile devices, the top 10 locations are usually interesting to
users [16], because of the screen size of a typical mobile device and limited effort a typical user
spends to go through the recommendation list. Therefore, providing a personalized ranking to the
user is crucial, making this task a top-k recommendation task.

In this paper, we aim to answer the following research questions:
• RQ1: How can we model a user’s interest and opinion based on her check-in record?
• RQ2: How can we leverage user tags to model users’ interests and opinions more effectively
to ultimately improve top-k POI recommendation effectiveness?
• RQ3: Could we use user tags to create a personalized model to reduce data dimensionality
and address the data sparsity problem?
• RQ4: Could we model users to predict how they would tag a new location?
• RQ5: How can we incorporate users’ context into top-k POI recommendation to improve the
performance?
• RQ6: How can we integrate different aspects of information to generate personalized ranking
considering both users’ personal interests and contextual constraints?

In an effort to address these research questions, the contributions of this paper can be summarized
as follows:
(1) We introduce a set of relevance scores for measuring the similarity between a user’s history

and a location considering location’s content and reviews.
(2) We present a probabilistic generative approach to find the mapping between location taste

keywords and user tags thus modeling the personalized opinion of users about venues more
accurately.

(3) We address the sparsity problem by performing personalized boosting of location keywords
in a user’s history.

(4) We explore different machine learning models to predict user tags and evaluate the prediction
effectiveness in terms of both tag prediction and recommendation effectiveness.

(5) We introduce a brand new dataset for predicting contextually appropriate locations and show
how to predict the contextually appropriate locations given the user’s current context and
evaluate its effectiveness on recommendation.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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(6) We evaluate several learning to rank techniques to incorporate boosting and tag prediction
into our POI recommendation model using information from multiple LBSNs.

Figure 1 shows an overview of our proposed method. In the first step, user and POI profiles are
analyzed to perform personalized keyword boosting, resulting in a list of boosted keywords for
each user (see Section 2). Then the list of boosted keywords together with user and POI profiles
are fed to the personalized scoring component to calculate the similarity scores between a given
user and a POI. The scores are then passed to the ranking model (i.e., learning to rank) to produce
a personalized ranked list of POIs for each user (see Section 4). Finally, given the user’s current
context, the level of contextual appropriateness of every venue is predicted (see Section 3) and used
to re-rank the personalized ranking scores, resulting in a personalized context-aware ranked list of
POIs.

This paper extends over three years of past work on personalized context-aware suggestion that
resulted in a number of published papers. In particular, in [6] we first proposed a user model en-
richment process leveraging user reviews from well-known LBSNs to support the venue suggestion
process. In [4] we tackled the POI appropriateness prediction problem, proposing a novel approach
based on a user model enrichment process. In [10] we combined multimodal information from
multiple LBSNs to recommend POIs and studied how personalized mapping of location keywords
to user tags could improve POI recommendation. Finally, in [8] we made publicly available a
contextual dataset that we created using crowdsourcing to incorporate the contextual constraints
in our personalized recommender system. All this work originated from our participation [3, 7] to
TREC-CS 2015 and TREC-CS 2016 where we consistently obtained the best run, demonstrating the
effectiveness of our approaches under a common evaluation framework. This paper draws together
content from all the above papers, presenting a coherent synthesis of this full line of research. In
addition, this paper extends our previous works as follows:
• It introduces a unified recommendation framework, combining our previous works and
showing how this can improve recommendation.
• It presents deeper theoretical details of the proposed models, providing more discussion about
keyword mapping, while elaborating on how to model user tag prediction as a sequence
tagging problem.
• It provides a more extensive experimentation on different datasets evaluating the proposed
models from various perspectives. In particular, we evaluate our POI recommendation method
in terms of personalized dimensionality reduction, user tag prediction, and contextual ap-
propriateness prediction. We furthermore analyze the results pertaining each information
component and reducing the number of visited POIs.

This paper demonstrates that our proposed approach is able to outperform state-of-the-art
strategies. In fact, experiments show that combining multimodal information from multiple LBSNs
improves POI recommendation significantly. Moreover, we show that the proposed mapping of
location keywords to user tags enables us to predict user tagging behavior effectively. We also
show that predicting contextually appropriate locations and reranking suggestions according to
their contextual appropriateness results in a more accurate top-k location recommendation.

The remainder of the paper is organized as follows. Before explaining our proposed recommen-
dation approach, we describe two critical components of our model in Sections 2 and 3. We first
describe how we model the statistical mapping between user tags and venue taste keywords in
Section 2.1. Then, we explore two directions to use this information. First, we explain how we use
the computed mapping to reduce the dimensionality of venue taste keywords in Section 2.3. Second,
we describe how we use the computed mapping as training data to learn the sequential tagging of
user tags in Section 2.4. The trained tagging models are then used to predict user tags for unseen
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venues. Section 3 describes our proposed contextual dataset and elaborates our proposed approach
to predict contextual appropriateness of locations. After describing the two main components of
our model, in Section 4 we describe how we integrate them with other similarity measures in order
to recommend POIs to users. Section 5 describes the evaluation protocol and Section 6 presents our
experimental evaluation, while Section 7 reviews related work. We conclude our study in Section 8
proposing possible directions as future work.

2 PERSONALIZED KEYWORD BOOSTING
In this section we propose a probabilistic approach by which we map location keywords to user
tags. Furthermore we propose two possible approaches of utilizing such additional information in
order to enhance location recommendation. First, we propose to use the mapping as an additional
information to reduce the dimensionality of location keyword space in order to address the data
sparsity problem. Second, we use the mapping to train a sequence labeling model to predict user
tags for a new location. We use the outcome of both directions to estimate the similarity of a
location to a user in Section 4.

2.1 Personalized Keyword-Tag Mapping
In this section we present a probabilistic approach to map location keywords to user tags. We aim to
find a meaningful correlation between the location content (e.g., keywords) and user tags since users
annotate locations with tags based on both their personal views and locations’ characteristics. We
assume that the key characteristics that trigger the user’s mind to annotate a location with a specific
tag are of those listed in the location keywords. For example, tagging a location as healthy-food is
a result of user’s personal view reflected in the location’s characteristics (e.g., keywords). Hence,
a user who believes vegan foods are healthy may tag a vegan location as healthy-food, whereas
another user with a different view may tag a sushi place as healthy-food. Therefore, user tags
are dependent on both users views and locations’ characteristics. That is why we need to find
a meaningful mapping between user tags and location keywords to take into account locations’
characteristics. The mapping needs to be personalized to model users’ personal views. Figure 2
depicts a real example mapping with a set of two user tags and four location keywords. Our ultimate
goal is to determine the most likely mapping of location keywords to user tags, personalized for
each user.

For a given user u, let f J = ⟨f1 . . . fj . . . f J ⟩ be a sequence of location keywords. We aim to find
the sequence of user tags tI = ⟨t1 . . . ti . . . tI ⟩. Note that tI refers to a sequence named t with the
length of I . Hence, ti denotes a set with the size of i (ti = ⟨t1 . . . ti ⟩), whereas ti refers to the i-th
item of a given sequence. Our aim is to find a user tag sequence maximizing Pr (tI |f J ):

t̂I = argmax
tI
{Pr (tI |f J )} = argmax

tI
{Pr (f J |tI )Pr (tI )} , (1)

where Pr (tI ) models user tags. In fact, given tI , this function determines to what extend tI is
likely to be generated by a specific user. It basically models the user’s behavior of tag annotation
regardless of location keywords. We fairly assume that users annotate locations with a specific tag
independent of other tags. In other words, we assume zero-order dependence of user tags. Hence,
we rewrite Pr (tI ) as follows:

Pr (tI ) = p (I )
I∏
i=1

p (ti |ti−1, I ) = p (I )
I∏
i=1

p (ti |I ) , (2)

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Fig. 2. An example of mapping of J = 4 location keywords to I = 2 user tags.

where ti−1 = ⟨t1 . . . ti−1⟩.
Pr (f J |tI ) in (1) models location keywords given a sequence of user tags tI . We need to find the

optimum mapping between location keywords and user tags to optimally model location keywords
given tI . Therefore, we marginalize the probability Pr (f J |tI ) overmJ . We introducemJ as the latent
variable defining how location keywords are mapped to user tags: mJ = ⟨m1 . . .mj . . .m J ⟩, with
mj ∈ {1, . . . , I }:

Pr (f J |tI ) =
∑
mJ

Pr (f J ,mJ |tI ) , (3)

where

Pr (f J ,mJ |tI ) = p (mJ |tI , I , J )p (f J |mJ , tI , I , J )

= p (J |tI )
J∏
j=1

[p (mj |mj−1, J , tI , I )p ( fj |f j−1,mJ , J , tI , I )] ,
(4)

where mi−1 = ⟨m1 . . .mi−1⟩. We also assume a zero-order dependence for bothmj ’s and fj ’s. Note
that given the limited amount of data and its sparsity, we make some assumptions in order to
reduce the number of parameters. Therefore, we consider p (J |tI ) only depends on J andmj is only
dependent on the length of the user tag sequence I . We also assume that fj depends only on tmj , i.e.,
the user tag associated to fj according to the mapping. Notice that since f J denotes the sequence of
location keywords of size J and tI denotes the sequence of user tags of size I , therefore Pr (f J ,mJ |tI )
also depends on the length of both sequences. Consequently, (4) is simplified as follows:

Pr (f J |tI ) = p (J )
∑
mJ

J∏
j=1

p (mj |I )p ( fj |tmj ) . (5)

2.2 Parameter Estimation Based on Expectation-Maximization
Assume thatwe haveN pairs of training samples as in S = {(f(1), t(1) ), . . . , (f(n), t(n) ), . . . , (f(N ), t(N ) )},
the log-likelihood function for the training samples would be:

F (ϑ ) =
N∑
n=1

Jn∑
j=1

log
In∑
i=0

p (i |In )p ( fjn |tis ) , (6)

where ϑ := {p (i |I ),p ( f |t )} are the free parameters. To solve the parameter estimation problem of
(6), we follow the Maximum Likelihood (ML) criterion subject to the constraint

∑
f p ( f |t ) = 1, for

each user tag t . We use Lagrange multipliers to make the optimization problem unconstrained.
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However, since we introduced hidden variables into our model (Equation (3)), there is no closed-
form solution to this optimization problem. Therefore, we follow the iterative process of the
Expectation-Maximization (EM) algorithm.

To be able to follow the EM algorithm, we first define Q (ϑ , ϑ̂ ) as:

Q (ϑ , ϑ̂ ) = Q
(
{p (i |I ),p ( f |t )}; {p̂ (i |I ), p̂ ( f |t )}

)
=

N∑
n=1

Jn∑
j=1

In∑
i=0

γn (i |j, Jn , In ) log
{
p̂ (i |In )p̂ ( fjn |tin )

}

=

N∑
n=1

Jn∑
j=1

In∑
i=0

p (i |In )p ( fjs |tis )∑In
i′=0 p (i

′ |In )p ( fjs |ti′s )
log

{
p̂ (i |In )p̂ ( fjn |tin )

}
,

(7)

where γn (i |j, Jn , In ) is the posterior probability, defined as:

γn (i |j, Jn , In ) =
p (i |In )p ( fjs |tis )∑In

i′=0 p (i
′ |In )p ( fjs |ti′s )

.

According to the EM algorithm, we follow an iterative procedure for parameter estimation. After
defining the relative objective function, Q (ϑ , ϑ̂ ), we follow the usual steps of the algorithm:
(1) E-step: calculate Q (ϑ , ϑ̂ ) for all training samples in S with the previous estimate of ϑ .
(2) M-step: optimize Q (ϑ , ϑ̂ ) over ϑ̂ .
We start the algorithm with uniform values for the parameters and follow the EM steps until

convergence.
In the following we describe two possible directions to use the computed mapping.

2.3 Location Keywords Boosting
After finding the optimum mapping between the user tags and location keywords, we aim to use
this additional knowledge in our system to address the sparsity problem and eventually enhance the
recommendation performance. Take Figure 3 as a real example of such mapping from our dataset.
As we can see, 19 taste keywords from one location are illustrated together with tags for the same
location by 3 different users . Not surprisingly, the 3 sets of tags have some in common such as
“beer” and “cocktails.” However, each user has her own personal opinion and therefore her personal
set of tags. The lines and the numbers in parentheses represent the result of our proposed mapping
for these 3 users. Every mapped item is based on the user personal preference and behavior with
respect to all locations in her history. As an example, we take one of the user tags that is common
between the three users: “cocktails.” What is interesting about this tag is that each user maps it to a
different location keyword. For User1 “cocktails” is mapped to “good-for-a-late-night,” for User2 to
“cocktails” and for User3 to “lemoncello.” All three location keywords are good candidates to be
mapped to “cocktails” user tag, however, as we argued each user has her own reasons to tag the same
location with a different tag.
After the observation of Figure 3, we assume that among the I location keywords, we can

determine J keywords that are mapped to user tags and presumably are more interesting to the
user. As in the example of Figure 3, the number of location keywords (I = 19) is much higher
than user tags (Juser1 = 4). Therefore, by boosting the mapped location keywords in our model we
achieve two main goals: 1) reduce the location keyword space dimensions drastically (e.g., 19→ 4)
and; 2) use the valuable information given by the users to detect those location keywords that are
more interesting to each users.

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Fig. 3. A sample of tags from three different users assigned to one single location and the calculated mapping.
The lines connect each user tag to their mapped location keywords. Also, the index number of the mapped
location keywords is written in parentheses for more convenient reading.

Formally, let f I = ⟨f1 . . . fI ⟩ be the set of keywords of a location and f̂ ∈ f I be the set of location
keywords which are mapped to user tags. According to the result of our probabilistic mapping,
we assume that there is a strong correlation between f̂ and the user’s interest. In other words, the
keywords in f̂ correlate more to the user’s interest as opposed to the other ones in f I . Hence, we
boost f̂ to model the user’s interests, reducing the data dimensionality from I to |f̂ |. This helps us
to address the data sparsity problem. The personalized boosted location keywords are used for POI
recommendation (see Section 4).

2.4 User Tag Prediction
As an alternative approach, we explore three models to predict user tags. We utilize the result of
our mapping model (m) between location keywords and user tags to train a model being able to
predict user tags for a new location. We predict user tags for an unseen location as an alternative
to keyword boosting. We explore this direction for two reasons: 1) to see how we can predict a
user behavior in terms of tag annotation and; 2) to compare the effect of user tag prediction against
location keyword boosting to see which strategy is able to enhance the recommendation more
effectively. We follow two approaches to predict user tags: 1) we use the maximum likelihood
criterion with our estimated parameters to generate the most likely set of user tags given a set
of location keywords and; 2) we model the user tag prediction as a sequence labeling problem
enabling us to apply different sequence labeling models.

Maximum Likelihood. Here we describe how we follow the Maximum Likelihood to leverage
the learned mapping parameters in order to predict user tags for a new POI. As we mentioned
in relation to (1) in Section 2.1, given a set of location keywords from Foursquare, f J , we aim to

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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compute the most probable set of user tags, t̂I . Once the model parameters are estimated using EM
(see Section 2.2), one approach to predict user tags given a set of location keywords is to follow the
maximum likelihood criterion (see (1)) to generate the most likely set of user tags. We search the
space of user tag probabilities to find the optimum sequence of user tags following a Viterbi-like
algorithm.

Sequence Labeling. In the following, we begin with explaining how we model user tag prediction
as a sequence labeling problem. Furthermore, we introduce the set of features we choose to train the
tagging models as well as the tagging models we adopt. Assuming we have N sample mapped pairs
of user tags and location keywords for each user: S = {(f(1), t(1) ), . . . , (f(n), t(n) ), . . . , (f(N ), t(N ) )}
with N corresponding mappings. That is, M = {m(1), . . . ,m(n), . . . ,m(N ) }. We should model the
tag prediction problem as a sequence labeling problem: given a sequence of location keywords we
aim to predict the most probable sequence of user tags. In order to do this, we need to adapt the
form of the training data.
As in a general sequence labeling problem, we need to assign a label from the target space to

each item in the source space. Therefore, we should assign a label to all location keywords even if
they are not mapped to any user tag. To this end, we automatically annotate location keywords
following these steps:
(1) For each fi ∈ f(n) mapped to a user tag withm(n) , we annotate fi with its corresponding user

tagmj .
(2) For each fi ∈ f(n) not mapped to a user tag with m(n) , we annotate fi with “null.”
As for the example of Figure 3, a sample training sequence would be as follows:

burgers︸  ︷︷  ︸
r estaurants

, chicken︸   ︷︷   ︸
beer

, good-for-a-late-night︸                      ︷︷                      ︸
cocktails

, pasta︸︷︷︸
f ood

, good-for-groups︸               ︷︷               ︸
null

, lively︸︷︷︸
null

, steak︸︷︷︸
null

, happy-hour︸        ︷︷        ︸
null

, . . .

As we can see, each of the location keywords is annotated with a tag. Therefore, it is straight-
forward to use this data as training samples for a sequence tagger. We adopt two models as
taggers: Conditional Random Fields (CRF) [29] and another tagger based on Support Vector Machines
(SVM) [28]. The main advantage of these models is that they are discriminative. Discriminative tag-
ging models have proven to be more effective for sequence labeling mainly because they normalize
the model over the whole training set, resulting in a more generalized model. Furthermore, dis-
criminative tagging models accept a wider range of features, something that is of great importance
to some applications.

As features of the sequence labeling models, for a user tag at position j, tj , we only consider the
location keyword at the same position, fj . That is to follow our assumption that user tags only
depend on one location keyword and since we assume that user tags are independent, we use a
zero-order tagger model.
In this section, we first introduced a probabilistic framework for finding the mapping between

location content (i.e., keywords) and user-annotated tags. Then, we described how this information
can be leveraged to reduce the dimensionality of location keywords and hence to address the data
sparsity problem. We also explored modeling this problem as a sequence labeling problem and used
some state-of-the-art techniques to predict user tags given a new POI’s keywords. In Section 4, we
show how we use the two mentioned directions to enhance POI recommendation.

3 CONTEXTUAL APPROPRIATENESS PREDICTION
In this section, we first define the problem of predicting the contextual relevance of locations. Then
we present the set of features that we use to train the appropriateness classifier and introduce the

ACM Transactions on Information Systems, Vol. 1, No. 1, Article 1. Publication date: January 2017.
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Table 1. Description of different contextual information dimensions.

Context Value Short Reference Description

Duration Day Trip day-trip The duration of the trip is one day.
Night Out night-trip The duration of the trip is a night out.
Weekend Trip weekend-trip The trip lasts for a weekend.
Longer longer-trip The trip lasts longer than a weekend.

Group Alone alone The person travels alone.
Friends with-friends The person travels with her friends.
Family with-family The person travels with her family.
Other with-others The person travels with a group

other than family and friends.

Type Business business-trip The type of the trip is business.
Holiday holiday-trip The type of the trip is holiday.
Other other-trip The type of the trip is other than

holiday and business, e.g., medical.

Table 2. Examples of contextual features generated using crowdsourcing.

Category Context Fapp (cat , cxt )

Beach Trip type: Holiday 1.0
College & University Trip duration: Weekend −1.0
Shop & Service Trip type: Holiday 0.71
Museum Trip type: Business −0.66
Pet Store Trip duration: Weekend −0.18
Medical Center Trip type: Other 0.0

dataset that we collected to train the classifier. The computed contextual relevance scores are then
used to re-rank a ranked list of POIs in Section 4.

LetV = {v1, . . . ,vn } be a set of locations andCx = {cx1, . . . , cxm } a set of contextual descriptors.
Our aim is to predict whether it is appropriate for a user to visit a location vi ∈ V under a given
context Cx . Different contextual dimensions define user’s preferences, constraints, or requirements
and are listed as follows: Trip type (holiday, business, other), Trip duration (day trip, night out,
weekend trip, longer) and Group type (alone, family, friends, other). More information could be
found in Table 1. We model the problem as binary classification considering location categories
and contextual descriptors as classification features.

3.1 Contextual Features
In this section, we describe the features that we used to train the appropriateness classifier. The
degrees of appropriateness between location categories and contextual descriptors constitute our
features.

We define a contextual feature function as follows:
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Definition 3.1. A contextual feature, Fapp (cat , cxt ), is a function determining the relevance of
a POI category, cat , to a contextual dimension, cxt . Fapp (cat , cxt ) ranges between −1 and +1 with
−1 representing absolute inappropriateness and +1 absolute appropriateness.

For instance, assume a user wants to visit a location with category nightlife-spot, and her context
is described as follows: holiday-trip, with-family, weekend-trip. The three features of this example
are the appropriateness value between the location category and each of the contextual dimensions.
Therefore, the features are Fapp (nightlife-spot, holiday-trip), Fapp (nightlife-spot,with-family), and
Fapp (nightlife-spot,weekend-trip).
In many cases, determining such contextual features is intuitive and can be done by one hu-

man annotator. However, there are several features that human annotators cannot agree on, like
for example Fapp (office,with-friends), Fapp (food-and-drink-shop, business-trip), or Fapp (stadium,
night-out-trip). Hence, we define two classes of features: objective and subjective. Objective features
are those that the annotators quickly agree on. This suggests that a user would be very likely to
agree with the annotators on the objective features. Therefore, we can conclude that objective
features potentially influence a user’s decision of visiting a location. As in the previous example,
supposedly, everyone would consider going to a nightlife spot with family is not appropriate. Thus
a user who regularly goes to nightlife spots might change her mind when she is traveling with
her family. As we saw in this example, such objective features can directly change users’ decisions
adding contextual constraints to the model. Subjective features, in contrast, have less impact as
they mainly depend on the user’s opinion and personal preferences. If the annotators did not agree
on a feature, we would not be able to predict a user’s opinion. Therefore, we cannot predict the
influence of subjective features on a user’s decision.

We determined the level of subjectivity or objectivity of features via a crowdsourcing task. In the
task, we asked the workers to judge if a location category is appropriate for a context descriptor
(e.g., cat = nightlife-spot and cxt = with-family). We asked at least five different assessors to judge
each category-context pair. In the context of this paper, we define those pairs with high agreement
rate between the workers as objective, while we consider those lacking assessors agreement as
subjective. More details on how we created the dataset can be found in our previous work [8].

Table 2 lists some example features from our dataset. As we can see in this table, lower values for
|Fapp (cat , cxt ) | mean that the features are more subjective. We created the contextual features for
all pairs of 11 contextual dimensions and the 177 most frequent categories of Foursquare category
tree8. Overall we generated 1,947 contextual features from 11,487 judgments9.

3.2 Training the Classifier
As described earlier, we formulate contextual appropriateness as binary classification. In Section 3.1
we explained how we created the contextual features. Here, we describe another dataset for training
the appropriateness classifier using our features. We randomly selected 10% of the data from
TREC-CS 2016 dataset. We created another crowdsourcing task for annotating the training data.
We asked workers to assess if it is appropriate that a user with a full description of context (e.g.,
Holiday, Friends, Weekend) to visit a location category (e.g., Bar). Each instance in the dataset is
considered as appropriate only if at least two of the three assessors voted for their appropriateness.
We train the contextual appropriateness classifier on 10% of the data from TREC-CS 2016 to predict
the remaining 90% of TREC-CS 2016 and the whole TREC-CS 2015 dataset. We applied a wide
range of classifiers for this task. However, we only report the best results that were obtained with
8https://developer.foursquare.com/categorytree
9The dataset if freely available on request.
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SVM [17]. The predicted contextual relevance score is denoted as Scxt and we use it to re-rank the
personalized location ranking (see Section 4).

4 RECOMMENDATION BASED ON INFORMATION FROMMULTIPLE
LOCATION-BASED SOCIAL NETWORKS

After explaining the two major components of our proposed approach in Sections 2 and 3, here, we
explain our way of performing POI recommendation, exploiting the scores from multiple LBSNs.
We describe two sets of scores: the frequency-based and review-based scores. We use the frequency-
based score to incorporate the boosted keywords (Section 2.3), the predicted user tags (Section 2.4),
as well as other types of information. We also demonstrate how we combine different scores to
produce the personalized location ranking using learning to rank.

4.1 Frequency-based Score
We base the frequency-based scores on the assumption that users prefer the type of locations that
they like more frequently and rate them positively10. Therefore, we create positive and negative
profiles considering the content of locations in the user’s check-in history and calculate the
normalized frequencies as they appear in her profile. Then we compute a similarity score between
the user’s profile and a new location. For simplicity, we only explain how to calculate the frequency-
based score using location categories. The method can be easily generalized to calculate the score
for other types of information.

Letu be a user andhu = {v1, . . . ,vn } her history of check-ins. Each location has a list of categories
C (vi ) = {c1, . . . , ck }. We define the user category profile as follows:

Definition 4.1. A Positive-Category Profile is the set of all unique categories belonging to
locations that user u has previously rated positively. A Negative-Category Profile is defined
analogously for locations that are rated negatively.

Each category in the positive/negative category profile is assigned with a user-level normalized
frequency. We define the user-level normalized frequency for a category as follows:

Definition 4.2. A User-level Normalized Frequency for an item (e.g., category) in a profile
(e.g., positive-category profile) for user u is defined as:

cf+u (ci ) =
∑
vk ∈h+u

∑
c j ∈C (vk ),c j=ci 1∑

vk ∈hu
∑
c j ∈C (vk ) 1

,

where h+u is the set of locations thatu rated positively. We calculate user-level normalized frequency
for negative categories, cf−u , analogously.

We create positive/negative category profiles for each user based on Definitions 4.1 and 4.2 .
Given a user u and candidate location v , the frequency-based similarity score based on location
categories, Scat (u,v ), is calculated as follows:

Scat (u,v ) =
∑

ci ∈C (v )

cf+u (ci ) − cf
−
u (ci ) . (8)

We follow the same procedure to calculate a frequency-based score based on other types of
information as listed below:
• Skey : We consider location taste keywords (instead of categories) to compute the similarity
score between a given user’s profile and a candidate location.

10We consider reviews with rating [4, 5] as positive, 3 as neutral, and [1, 2] as negative.
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• Sboost : As for boosting, for each user we follow Definition 4.1 to create positive and negative
boosted location taste keyword profiles. We consider only the location taste keywords that
are mapped to user tags (see Section 2.3). Given a candidate location, we calculate boosted
keywords similarity score according to Definition 4.2 and (8).
• Sml : Following Definitions 4.1 and 4.2, we create positive and negative user tag profiles for
each user. However, since a candidate location does not naturally have user-assigned tags, we
use our ML-based approach to predict user tags. The predicted user tags are then compared
with the user’s profile following (8) to calculate Sml similarity score.
• Scr f :We calculate Scr f score similar to Sml . We predict user tags for a candidate location using
the trained CRF model. Then we follow (8) to calculate the Scr f score comparing predicted
user tags with user profile.
• Ssvm : This score is also calculated like Sml . For a candidate location, we predict user tags
using our trained SVM-based tagging model. The predicted user tags are then compared with
the user’s profile using (8) resulting in Ssvm .

4.2 Review-Based Score
Modeling a user only on locations’ content is general and does not determine why the user enjoyed
or disliked a POI. The content of locations is often used to infer “which type” of POIs a user likes.
On the other hand, reviews express the reasons of users’ ratings [39]. Since there could be a lack of
explicit reviews from the user, we tackle this sparsity problem using reviews of other users who
gave a similar rating to the location. We follow the same idea of Yang et al. [39], that is, a user’s
opinion regarding a location could be learned based on the opinions of other users who rated the
same location similarly.
We calculate the review-based score using a binary classifier. We model this problem as binary

classification since a user, before visiting a new city or location, would get a positive or negative
impression of the location after reading the online reviews of other users. We assume that a user
compares the characteristics of a location and the opinions which are expressed by other users in
their reviews to her expectations and interests. A user would be convinced of visiting a particular
location if the reviews satisfy her expectations up to a certain point. An alternative to binary
classification would be a regression model. However, we assume that users behave similarly to
a binary classifier when they read online reviews before deciding on whether to visit a venue or
not. For example, assume a user reads a few positive and negative online reviews about a POI and
measures how similar the mentioned qualities are to her expectations. Finally, depending on the
balance between the positive remarks and the negative ones, she makes a binary decision (i.e.,
whether to go or not). We see this behavioral pattern similar to that of a binary classifier: it learns
from the positive and negative samples and compares the learned parameters with a test sample
and assigns its label accordingly. Furthermore, due to data sparsity, grouping ratings as positive
and negative aids us to model users more effectively.

We train binary classifier using the reviews from the locations in a user’s check-in history. The
positive training samples for user u are positive reviews of locations that were liked by u. Likewise,
the negative reviews of locations that u disliked constitute the negative training samples. We
decided to ignore the negative reviews of liked locations and positive reviews of disliked locations
since they are not supposed to contain any useful information.

We consider TF-IDF score of terms in reviews as features. We trained many classifiers but SVM
outperformed all other models. Therefore, we choose SVM and consider the value of its decision
function as the review-based score and refer to it as Sr ev . The decision function gives us an idea on
how relevant a location is to a user profile.
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Table 3. Four proposed models using different combination of similarity scores.

Category Review Keywords Context

UT-ML Scat Sr ev Skey , Sml Scxt
UT-CRF Scat Sr ev Skey , Scr f Scxt
UT-SVM Scat Sr ev Skey , Ssvm Scxt
PK-Boosting Scat Sr ev Skey , Sboost Scxt

4.3 Location Ranking
After defining the mentioned relevance scores, here we explain how we combine them. Given a
user and a list of candidate locations, we calculate the mentioned scores for each location and
combine them to create a ranked list of locations. We adopt several learning to rank11 techniques
to rank the candidate locations since they have proven to be effective for similar tasks [32, 39]. In
particular, we examine the following learning to rank techniques: AdaRank, CoordinateAscent,
RankBoost, MART, LambdaMART, RandomForest, RankNet, and ListNet. We introduce four models
using different combinations of the scores as mentioned in Table 3.

5 EXPERIMENTAL SETTINGS
In this section, we present the experimental settings including the datasets we used, compared
methods, and evaluation process.

5.1 Datasets

Recommendation Effectiveness. We evaluate our approach on two benchmark collections,
published by TREC. The collections are those used in the Batch Experiments/Phase 2 of the TREC-
CS track 2015 [18] and 2016 [25]. The task was to rank a list of candidate locations in a new city for a
user, given her history of check-ins in other cities. The datasets were collected using crowdsourcing
where each user rated 30 to 60 locations in one or two cities. In addition, each user may have tagged
locations to explain why she likes them (i.e., user tags). Later, the same users were called to rate new
POIs in another city as well as the contextual factors of their trip. To get more information about
locations, we crawled Yelp and Foursquare for reviews, categories, and taste keywords12. More
specifically, for each location in the dataset, we formed a query from the location’s name and city
to find the corresponding Yelp and Foursquare profiles. To avoid irrelevant information, we verified
the title and location of each result. Yelp is crawled mainly for reviews, whereas Foursquare mainly
for location taste keywords. It is worth noting that we were able to find additional information for
most of the locations from both LBSNs. Table 4 lists the key attributes of our crawled dataset. More
details on the crawling process and structure of our dataset can be found in our previous work [8].

Dimensionality Reduction.We evaluate the dimensionality reduction effectiveness on the same
datasets as we do for recommendation effectiveness. We compare the performance of our proposed
model to a well-known dimensionality reduction model in terms of recommendation effectiveness.
Therefore, we use the same datasets used to evaluate recommendation effectiveness, however, we
provide more details and discussion related to dimensionality reduction.

User Tag Prediction. Since the test set in TREC-CS 2015 and TREC-CS 2016 do not include user
tags for locations, we need to evaluate the user tag prediction on the training datasets. Therefore, we
11We use RankLib implementation of learning to rank: https://sourceforge.net/p/lemur/wiki/RankLib/
12The dataset is available on request.
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Table 4. Statistical details of datasets

TREC-CS 2015 TREC-CS 2016

Number of requests 211 442
Number of requests evaluated by TREC 211 58
Number of locations 8,794 18,808
Number of locations crawled from Yelp 6,290 13,604
Number of locations crawled from Foursquare 5,534 13,704
Average reviews per location 117.34 66.82
Average categories per location 1.63 1.57
Average taste keywords per location 8.73 7.89
Average user tags per user 1.46 3.61
Number of distinct user tags 186 150

Table 5. Statistical details of user tagging dataset

Training Set Test Set

Number of instances 20,148 5,037
Number of non-null tags 102,667 25,541
Number of null tags 54,444 13,954
Number of unique user tags 156 121
Number of unique location keywords 2,676 1,398
Average user tags per location 1.85 1.82
Average keywords per location 5.10 5.07

randomly split the TREC-CS 2015 and TREC-CS 2016 training sets into: training, development, and
test set. We train the taggers using the new training set, tune them using the new development set
and evaluate them with the new test set. As part of the evaluating recommendation effectiveness we
show how different taggers can improve the recommendation; however, the aim of this experiment
is to show how accurately we can model the user interests and tagging behavior. The statistical
details of the tags dataset is listed in Table 5.

5.2 Compared Methods

Recommendation Effectiveness.We consider the best performing system in TREC-CS 2015 as
our baseline. Moreover, we compare our proposed method with state-of-the-art context-aware POI
recommendation methods. We also compare our proposed PK-Boosting with other models based
on user tag prediction (i.e., UT-ML, UT-CRF, and UT-SVM).
• LinearCatRev is our previous work [6] which is the best performing model of TREC-CS 2015.
It extracts information from different LBSNs and uses it to calculate category-based and
review-based scores. Then, it combines the scores using linear interpolation. We choose this
baseline for two reasons, firstly because it is the best performing system of TREC-CS 2015,
and secondly because it also uses scores derived from different LBSNs.
• GeoSoCa exploits geographical, social, and categorical correlations for POI recommenda-
tion [45]. GeoSoCa models the geographical correlation using a kernel estimation method
with an adaptive bandwidth determining a personalized check-in distribution. It models
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the categorical correlation by applying the bias of a user on a POI category to weigh the
popularity of a POI in the corresponding category modeling the weighted popularity as a
power-law distribution. We used the implementation of GeoSoCa released in [34]. We did
not include the social correlation component since such information does not exits in the
datasets.
• n-Dimensional Tensor Factorization (nDTF) [27] generalizes matrix factorization to allow
for integrating multiple contextual features into the model. We used the publicly available
implementation of nDTF13. Regarding the features, we include two types of features: (1)
location based: category, keywords, average rating on Yelp, and number of ratings on Yelp
(as an indicator of its popularity); (2) user based: age group and gender.
• UT-ML differs from PK-Boosting in one score. For UT-ML, instead of the keyword boosting
score (Sboost ), we use the score based on the predicted user tags following maximum likeli-
hood criterion. As we described in Section 2.4, we also explored three different models as
alternatives to PK-Boosting. Our aim is to study the impact of predicting user tags on recom-
mendation effectiveness, compared to PK-Boosting. The other two alternative approaches
are listed as follows.
• UT-CRF predicts user tags using a trained CRF model. Then, for each venue-user pair, it
computes the similarity between the predicted user tags and the user profile. Finally, it
replaces the boosting score with the computed similarity score (see Section 2.4). We used
CRFSuite14 implementation of CRF.
• UT-SVM predicts user tags given a user-venue pair using an SVM-based tagging model. The
boosting score is replaced by the similarity score between the user profile and predicted user
tags (see Section 2.4). We used YamCha15 implementation of the SVM-based tagging model.

Dimensionality Reduction. In order to evaluate the keyword boosting approach from the per-
spective of dimensionality reduction, we also apply the following well-known dimensionality
reduction method to reduce the location keywords dimension. In particular, we use PK-PCA. PK-
PCA uses Principal Component Analysis (PCA) to reduce the dimensionality of location keywords.
The corresponding score of keyword boosting is replaced by the score computed based on PCA.

User Tag Prediction. As user tags contain very crucial information explicitly described by users,
we aim to evaluate the effectiveness of user tag models. In particular, we evaluate the following
models:
• Conditional Random Fields (CRF) Tagger [29] models the sequence tagging problem in a
discriminative manner. The tagger is based on binary features that are extracted from the
text and optimized for the training data.
• SVM-based Tagger [28] is also a discriminative approach that trains one SVM classifier per
tag. The model is an ensemble of all SVM classifiers.

5.3 Evaluation Metrics
We evaluate the recommendation effectiveness as well as the dimensionality reduction for the top-k
recommendation. We also evaluate the effectiveness of user tag prediction methods.

Recommendation Effectiveness. In both TREC-CS 2015 and TREC-CS 2016 datasets, for each
user u, the data, S (u), is split into two sets: a number of locations visited in one or two cities
constitute the training set and a number of locations in a new city constitute the test set. Given
13https://github.com/VincentLiu3/TF
14http://www.chokkan.org/software/crfsuite/
15http://chasen.org/~taku/software/yamcha/
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a user u, if a recommended location in the test set is marked by the user as relevant, it is a “hit,”
otherwise it is a “miss.” To perform a fair comparison, we choose the official evaluation protocol and
metrics of TREC-CS for this task, which are P@5 (Precision at 5), nDCG@5 (Normalized Discounted
Cumulative Gain at 5), and MRR (Mean Reciprocal Rank). Since the main focus in this task was to
improve the location rankings, such evaluation metrics serve as perfect metrics.
The relevance assessments for test sets are slightly different in TREC-CS 2015 and TREC-CS

2016. In TREC-CS 2015 relevance of a location to a user is defined with a binary value with 0 as
irrelevant and 1 as relevant, whereas in TREC-CS 2016 users rated locations in the range of −2
to +2. This also explains why the main evaluation metric in TREC-CS 2015 is P@5 as opposed to
nDCG@5 in TREC-CS 2016. Both P@k and nDCG@k metrics are evaluated over k top locations
on the ranked list. Let U be the set of users and rpu be the rating score assigned by user u to the
location at the ith rank of the list. Precision and nDCG values are calculated at the k th position as
follows:

Pu@k =
#hitsu@k

k
,

nDCGu@k = Zu

k∑
i=1

2r iu − 1
log(1 + i )

,

where u is the given user, Zu is a normalization factor and #hitsu@k is the number of relevant
locations for user u in the top-k locations of the ranked list. nDCG@k and P@k are the mean of
nDCGu@k and Pu@k overU respectively. MRR is also calculated as follows:

MRR =
1
|U |

|U |∑
u=1

1
ranku

,

where ranku is the ranking of the first relevant location for user u. We conduct a 5-fold cross vali-
dation on the training data to tune our model. We determine the statistically significant differences
using the two-tailed paired t-test at a 95% confidence interval (p < 0.05).

Dimensionality Reduction. Since there is no ground truth data to evaluate dimensionality
reduction methods, we evaluate the recommendation effectiveness using different dimensionality
reduction methods to see how they enhance the overall recommendation. Therefore, we use the
same evaluation metrics that we used for evaluating recommendation effectiveness.

User Tag Prediction. Since we modeled the user tag prediction problem as a sequence-labeling
problem, we evaluate the effectiveness of user tag prediction using the same metrics used for
evaluating typical sequence-labeling problems such as Part of Speech (POS) tagging. Therefore, we
report Precision, Recall, and F-Measure for this experiment. Let Tp the number of true positive and
Fp the number false positive non-null predicted tags. Then precision is calculated as follows:

Precision =
Tp

Tp + Fp
.

Given the number of false negatives, Fn , we also calculated recall as follows:

Recall =
Tp

Tp + Fn
.

F-measure is then defined as follows:

F −Measure = 2 ×
Precision × Recall

Precision + Recall
.
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6 EXPERIMENTAL RESULTS
In this section, we first present the results for recommendation effectiveness. We also show the
results for location keyword dimensionality reduction and user tag prediction. Furthermore, we
study the effect of different sources and scores on recommendation effectiveness.

6.1 Recommendation Effectiveness
Tables 6 and 7 demonstrate the performance of our approach compared with other methods for the
TREC-CS 2015 and TREC-CS 2016 datasets, respectively. We choose the best performing learning to
rank technique for each model we adopt the best performing learning to rank technique according
to Tables 8 and 9. It is worth noting that the best learning to rank technique for PK-Boosting is
ListNet [14]. Tables 6 and 7 show that PK-Boosting outperforms the competitors in terms of the
three evaluation metrics. This indicates that the proposed PK-Boosting approach improves the
performance of POI recommendation. This happens because the proposed approach for boosting
location keywords addresses the data sparsity problem, while at the same time it captures user
preferences more accurately. In contrast, the models UT-ML, UT-CRF, and UT-SVM introduce a
prediction error, when predicting user tags for a candidate location. This error is then propagated
to location ranking and subsequently degrades the models’ performances. As we can see, GeoSoCa
and nDTF exhibit the worst performance among all compared methods. This happens mainly
because these methods rely on user-POI check-in associations among the training and test sets. In
other words, there should be enough common POIs appearing in both the training and test sets,
otherwise they fail to recommend unseen POIs. Hence, they suffer from the high level of sparsity
on these datasets. In particular, the intersection of POIs in the training and test sets is 771 (out of
8,794) and 4 (out of 18,808) in TREC-CS 2015 and 2016, respectively.
To compute the review-based classifier, we used various classifiers such as Naïve Bayes and

k-NN; however, the SVM classifier exhibited a better performance by a large margin. The SVM
classifier is a better fit for this problem since it is more suitable for text classification, which is a
linear problem with weighted high dimensional feature vectors. Also, we observed a significant
difference between the number of positive reviews and negative reviews per location. Generally,
locations receive more positive reviews than negative reviews and, in our case, this results in
a unbalanced training set. Most of the classification algorithms fail to deal with the problem of
unbalanced data. This is mainly due to the fact that those classifiers try to minimize an overall
error rate. Therefore, given an unbalanced training set, the classifier is usually trained in favor of
the dominant class to minimize the overall error rate. However, SVM does not suffer from this,
since it does not try to directly minimize the error rate but instead tries to separate the two classes
using a hyperplane maximizing the margin. This makes SVM more intolerant of the relative size of
each class. Another advantage of linear SVM is that the execution time is very low and there are
very few parameters to tune.

Impact of Different Learning to Rank Techniques. In this experiment we aim to show how
the recommendation effectiveness is affected by applying different learning to rank techniques to
combine the scores. Tables 8 and 9 report P@5 applying different learning to rank techniques for
TREC-CS 2015 and TREC-CS 2016 respectively. We report the performance for UT-ML, UT-CRF,
UT-SVM, and PK-Boosting. As we can see, ListNet in many cases outperforms other learning to
rank techniques. More specifically, for TREC-CS 2015, ListNet exhibits the best performance for all
models except for UT-ML. It is very interesting that RankNet exhibits the best performance for
UT-ML, and both ListNet and RankNet are based on artificial neural networks. As for TREC-CS
2016, RankNet performs better for UT-ML and UT-SVM while ListNet performs better for other
models. As we can observe, applying different learning to rank techniques can potentially have a
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Table 6. Performance evaluation on TREC-CS 2015. Bold values denote the best scores and the superscript *
denotes significant differences compared to LinearCatRev. ∆ values (%) express the relative improvement,
compared to LinearCatRev. For each model we report the scores using the best learning to rank technique
(Table 8).

P@5 ∆(%) nDCG@5 ∆(%) MRR ∆(%)

LinearCatRev 0.5858 - 0.6055 - 0.7404 -
GeoSoCa 0.5147* −12.14 0.5404* −10.75 0.6918* −6.56
nDTF 0.5232* −10.96 0.5351* −11.63 0.6707* −9.41
UT-ML 0.6224* 6.25 0.6320* 4.38 0.7496 1.24
UT-CRF 0.6249* 6.67 0.6285 3.80 0.7434 0.41
UT-SVM 0.6219* 6.16 0.6339* 4.69 0.7553 2.01
PK-Boosting 0.6259* 6.85 0.6409* 5.85 0.7704* 4.05

Table 7. Performance evaluation on TREC-CS 2016. Bold values denote the best scores and the superscript *
denotes significant differences compared to LinearCatRev. For each model we report the scores using the
best learning to rank technique (Table 9).

P@5 ∆(%) nDCG@5 ∆(%) MRR ∆(%)

LinearCatRev 0.4897 - 0.3213 - 0.6284 -
GeoSoCa 0.4207* −14.09 0.2958 −7.94 0.6497 3.39
nDTF 0.4172* −14.80 0.2663* −17.12 0.6167 −1.86
UT-ML 0.5138 4.92 0.3357 4.48 0.6389 1.67
UT-CRF 0.5138 4.92 0.3410 6.13 0.6765 7.65
UT-SVM 0.5207 6.33 0.3389 5.48 0.6510 3.60
PK-Boosting 0.5310 8.43 0.3526* 9.74 0.6800 8.21

big impact on recommendation results. Therefore, it is critical to apply the best technique for the
scores.

Impact of Using Information from Multiple LBSNs. Tables 10 and 11 evaluate the perfor-
mance of the examined models before and after removing information from each LBSN. In this
set of experiments, we also report the relative performance drop of different models when using
information from the two different LBSNs. As we can see in almost all cases, when a source of
information is removed from the model, we observe a drop in the performance. The average drop
for TREC-CS 2015 is −4.90% and for TREC-CS 2016 is −6.00% which confirms the effectiveness of
exploiting information from different LBSNs. This indicates that using multimodal information
from different LBSNs is a key to improve POI recommendation. For all different runs, the best
performing method is the proposed PK-Boosting, that uses a combination of information from both
LBSNs.

Impact of Using Different Scores. In this experiment, we try to demonstrate the effectiveness
of each score. We remove each score and analyze our model’s performance without it (but we do
not remove more than one score at a time). The results are reported in Table 12. The first line (All)
shows the results for P@5, nDCG@5, and MRR using all scores. The second line (−Scat ) shows the
results without the location categories, and so on for the other lines.
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Table 8. Effect on P@5 for different learning to rank techniques in TREC-CS 2015. Bold values denote the
best learning to rank technique per model.

UT-ML UT-CRF UT-SVM PK-Boosting

MART 0.5911 0.6008 0.5958 0.6010
RankNet 0.6224 0.6190 0.6155 0.6190
RankBoost 0.6030 0.6086 0.6088 0.6146
AdaRank 0.6028 0.6121 0.6117 0.5893
CoordinateAscent .06115 0.5858 0.5918 0.5997
LambdaMART 0.6022 0.6077 0.6061 0.6135
ListNet 0.6069 0.6249 0.6219 0.6259
RandomForests 0.5836 0.5966 0.5920 0.5963

Table 9. Effect on P@5 for different learning to rank techniques in TREC-CS 2016.

UT-ML UT-CRF UT-SVM PK-Boosting

MART 0.4653 0.4103 0.3931 0.4483
RankNet 0.5138 0.5103 0.5237 0.5103
RankBoost 0.3414 0.4241 0.4345 0.4586
AdaRank 0.3414 0.3414 0.3414 0.3414
CoordinateAscent 0.5021 0.4931 0.4931 0.5000
LambdaMART 0.3793 0.3931 0.3793 0.4931
ListNet 0.5103 0.5138 0.5103 0.5310
RandomForests 0.4207 0.4069 0.4345 0.4310

The results show a decrease of the model’s performance after removing each of the scores
exhibiting an average relative drop of −4.31%. It indicates that our system is able to capture
different aspects of information and combine them to create a better personalized ranking model for
POI recommendation. The Scat score models the types of locations a user is interested in visiting,
while Sr ev models the reasons the user likes/dislikes different locations belonging to the same
category. Skey tries to incorporate the most important keywords extracted from the reviews and to
describe a location and its characteristics. Sboost boosts the most important keywords that interest
a user and the contextual relevance is measured by Scxt . Our model exhibits its largest decrease in
performance when Sr ev is removed from the model. This suggests that the review-based score is
the most important score in our model. We think this is because it captures users’ opinions. In fact,
it is crucial to realize why a user rates two locations in the same category differently.

Impact of Number of Visited Locations. We report P@5 of all models on TREC-CS 2015 and
TREC-CS 2016 in Figure 4. In this set of experiments, we vary the number of locations to find
the mapping between the taste keywords and the user tags. We calculate the scores of Section 4
with different number of locations and train the ranking model. Figure 4 shows that PK-Boosting
is the winning method when compared with other models for all different number of locations.
This result indicates that PK-Boosting is more robust when the training set is smaller, whereas
the prediction models ML and SVM are not very well trained using such a small data and their
performance gets worse.
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Table 10. Performance evaluation after removing information provided by Foursquare (F) and Yelp (Y) in
the TREC-CS 2015 dataset. The superscript * denotes significant differences compared to the performance
each model has when using information from the two different LBSNs. ∆ values (%) express the relative
drop, compared to the performance each model has when using information from the two different LBSNs.
(Average drop= −4.90%)

F Y P@5 ∆(%) nDCG@5 ∆(%) MRR ∆(%)

LinearCatRev ✓ ✓ 0.5858 - 0.6055 - 0.7404 -
✓ ✗ 0.5649 −3.57 0.5860 −3.22 0.7263 −1.90
✗ ✓ 0.5697 −2.75 0.5917 −2.28 0.7341 −0.85

UT-ML ✓ ✓ 0.6224 - 0.6320 - 0.7496 -
✓ ✗ 0.5288* −15.04 0.5307* −16.03 0.6487* −13.46
✗ ✓ 0.5787* −7.02 0.5746* −9.08 0.6833* −8.84

UT-CRF ✓ ✓ 0.6249 - 0.6285 - 0.7434 -
✓ ✗ 0.5960* −8.95 0.5930* −5.65 0.7301 −1.79
✗ ✓ 0.6055 −3.10 0.6238 −0.75 0.7503 0.93

UT-SVM ✓ ✓ 0.6219 - 0.6339 - 0.7553 -
✓ ✗ 0.5728* −7.90 0.5921* −6.59 0.7388 −2.18
✗ ✓ 0.6129 −1.45 0.6250 −1.40 0.7497 −0.74

PK-Boosting ✓ ✓ 0.6259 - 0.6409 - 0.7704 -
✓ ✗ 0.5731* −8.44 0.6010* −6.23 0.7602 −1.32
✗ ✓ 0.6044 −3.44 0.6227 −2.84 0.7613 −1.18

Table 11. Performance evaluation after removing information provided by Foursquare (F) and Yelp (Y) in the
TREC-CS 2016 dataset. The superscript * denotes significant differences compared to the performance each
model has when using information from the two different LBSNs. (Average drop= −6.00%)

F Y P@5 ∆(%) nDCG@5 ∆(%) MRR ∆(%)

LinearCatRev ✓ ✓ 0.4897 - 0.3213 - 0.6284 -
✓ ✗ 0.4172* −14.49 0.2705* −15.81 0.6222 −0.99
✗ ✓ 0.4759 −2.46 0.3072 −4.39 0.6032 −4.01

UT-ML ✓ ✓ 0.5138 - 0.3357 - 0.6389 -
✓ ✗ 0.4862 −5.37 0.3079 −8.28 0.6038 −5.49
✗ ✓ 0.5034 −2.02 0.3313 −1.31 0.6393 0.06

UT-CRF ✓ ✓ 0.5138 - 0.3410 - 0.6765 -
✓ ✗ 0.5069 −1.34 0.3336 −2.17 0.6531 −3.46
✗ ✓ 0.4793 −6.71 0.3133 −8.12 0.6268 −7.35

UT-SVM ✓ ✓ 0.5207 - 0.3389 - 0.6510 -
✓ ✗ 0.4724 −9.28 0.3057* −9.80 0.6260 −3.84
✗ ✓ 0.4793 −7.95 0.3158 −6.82 0.6512 0.03

PK-Boosting ✓ ✓ 0.5310 - 0.3526 - 0.6800 -
✓ ✗ 0.4793* −9.74 0.3210 −8.39 0.6542 −3.79
✗ ✓ 0.4759* −10.38 0.3177* −9.90 0.6354 −6.56
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Table 12. Performance of PK-Boosting using all the scores (All) and after removing each score at a time. The
superscript * denotes significant differences compared to the model using all scores (All). Percentages in bold
represent the highest decrease in performance when the corresponding score is removed (Average relative
drop = −4.31%).

P@5 ∆(%) nDCG@5 ∆(%) MRR ∆(%)

All 0.6259 - 0.6409 - 0.7704 -
−Scat 0.6009* −3.99 0.6124* −4.45 0.7324* −4.93
−Sr ev 0.5555* −11.25 0.5837* −8.92 0.7383* −4.17
−Skey 0.6009* −3.99 0.6113 −3.35 0.7443 −3.10
−Sboost 0.6190 −1.10 0.6312 −1.51 0.7610 −1.22
−Scxt 0.5962* −4.75 0.6126* −4.42 0.7437 −3.47

(a) TREC-CS 2015 (b) TREC-CS 2016

Fig. 4. Effect on P@5 by varying the number of locations that each user has visited for (a) TREC-CS 2015 and
(b) TREC-CS 2016.

Impact of Visiting POIs from a Single City vs. Two Cities. In this experiment, we intend to
see how the number of visited locations from one single city affects the performance of our model
as opposed to the same number of locations from different cities. In order to do that, we consider at
maximum 2 cities, and we train our model using 10, 15, ..., 60 of them for each user as their history
of preferences. To make sure that the order of selected locations does not affect our experiment,
we shuffle the list of previously visited locations in two ways: 1) we make sure that the first 30
locations are from a city and the second 30 are from the other city; 2) we shuffle the order of visited
locations for each city and interleave them. For example, v1 would be a location from City1, v2
a location from City2, v3 a location from City1, and so on. We conduct this experiment with 5
differently shuffled lists and report the average of the results.

The first ordering method ensures that the first half of the locations, visited by a user, are from
a particular city. The second ordering, on the other hand, makes sure that for a given number of
visited locations n, n/2 of them are locations from City1 and n/2 are from City2 . We intend to
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Fig. 5. Our model’s performance in terms of P@5 with different number of locations as users’ history of
preferences compared to LinearCatRev. We have chose the order of locations in two different manners.
Sequential: the first 30 locations are from one single city, the second 30 are from another city, Interleaved : the
list of locations is interleaved based on their cities.

examine how our model performs when we have information about users from only one city as
opposed to two cities. Moreover, in cases where we have a low number of visited locations in the
user’s history, it is interesting to see how our model performs in both scenarios (i.e., all locations
from a single city vs. from multiple cities).

Figure 5 demonstrates our system performance in terms of P@5with different number of locations
in the user’s history compared to LinearCatRev. As we can see in the figure, the model shows a
large improvement up to the first 30 locations, decreasing in size after we add 40 locations in both
orderings. However, it is interesting to see that the sequential order always performs better than
the interleaved one. This difference is more evident when the number of locations is smaller than
20. It suggests that when we have limited number of locations as the user’s history, it is better to
have them all about the same city. This can be observed when there are 30 locations and all from
one single city (denoted as Sequential), we get a much better performance as compared to training
the model using 30 locations with half from one city and the other half from another one (denoted
as Interleaved).

6.2 Dimensionality Reduction
In this experiment we compare our personalized keyword boosting method with the well-known
dimensionality reduction method PCA. Since keyword boosting is a kind of personalized dimen-
sionality reduction, we choose to compare our method with PCA. As Tables 13 and 14 show, our
personalized keyword boosting method is able to beat PCA with respect to recommendation effec-
tiveness in terms of both P@k and nDCG@k . It suggests that the proposed probabilistic model is
able to effectively reduce the dimensionality of location keywords taking into account user personal
preferences as well as interests. In fact, in TREC-CS 2015 the average location keyword per user
is 277 and our proposed approach is able to reduce it to 41 (−%85), whereas PCA reduces it to 25
(−%91). Moreover, the average location keywords per user in TREC-CS 2016 is 302 and PK-Boosting
reduces it to 105 (−%65) compared with PCA reducing it to 16 (−%95).

It is worth noting that PCA produces min(n,m− 1) principal components, where n is the number
of data samples andm is the number of data dimensions. Since in both datasets n ≪m, the number
of principal components is bounded by n and thus PCA reduces data dimensionality more than
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Table 13. Performance comparison on TREC-CS 2015 on dimensionality reduction. The superscript * denotes
significant differences compared to LinearCatRev.

Avg. Dim. P@5 ∆(%) nDCG@5 ∆(%) MRR ∆(%)

LinearCatRev 277 0.5858 - 0.6055 - 0.7404 -
PK-PCA 25 0.6030* 4.37 0.6157 3.07 0.7366 −0.32
PK-Boosting 41 0.6259* 6.85 0.6409* 5.85 0.7704* 4.05

Table 14. Performance comparison on TREC-CS 2016 on dimensionality reduction. The superscript * denotes
significant differences compared to LinearCatRev.

Avg. Dim. P@5 ∆(%) nDCG@5 ∆(%) MRR ∆(%)

LinearCatRev 302 0.4897 - 0.3213 - 0.6284 -
PK-PCA 16 0.5106 4.21 0.3406 6.02 0.6424 2.23
PK-Boosting 105 0.5310 8.43 0.3526* 9.74 0.6800 8.21

PK-Boosting. This difference for TREC-CS 2016 is even bigger due to the fact that users have
smaller number of previously visited locations. It is interesting to note the difference between the
dimensionality reduction that PK-Boosting exhibits on TREC-CS 2015 and TREC-CS 2016 (i.e., 41
vs. 105). This is due the difference between the average number of user tags in the two datasets. As
we can see in Table 4, the average user tag per user for TREC-CS 2015 is 1.46 as compared with 3.61
for TREC-CS 2016. Since PK-Boosting personalizes dimensionality reduction problem according to
user tags, the average number of user tags can potentially have an impact on the average number
of reduced dimensions. The results of Tables 13 and 14 show that PK-Boosting outperforms PCA
in terms of recommendation effectiveness even though PCA is able to reduce more dimensions.
This suggests that incorporating personal information for dimensionality reduction is effective and
hence PK-Boosting performs better.

6.3 User Tag Prediction
In this experiment we evaluate the effectiveness of different user tag prediction methods. The aim
of this experiment is to show how effective user tag prediction is in terms of user tag prediction
accuracy. In previous experiments we showed how user tag prediction can improve the overall
recommendation effectiveness; however, it is crucial to know how effective is the prediction model
so that we can further analyze and improve the prediction accuracy in order to achieve better
recommendation. Table 15 reports the performance of different user tag prediction models. Note
that CRF and SVM-based taggers are trained using the same feature set for fair comparison. As
we can see in this table the SVM based model is able to beat all other models. In fact, the SVM
based model benefits highly from the features that are extracted using the proposed mapping and
therefore it can beat ML.

7 RELATEDWORK
In this section, we review some of the existing related works on POI recommendation, and context-
aware POI recommendation.

POI Recommendation. Recommender systems play an important role in satisfying users’ expec-
tations for many online services such as e-commerce, LBSN and social network websites. CF-based
approaches are based on the core idea that users with similar behavioral history tend to act similarly
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Table 15. Performance comparison of user tag prediction models.

Precision Recall F-Measure

ML 0.3982 0.2421 0.3011
SVM-Based 0.7923 0.8110 0.8016
CRF 0.7646 0.7573 0.7609

in the future [23]. A large body of research has been done following this idea [21, 24, 42, 46]. CF-
based approaches often suffer from data sparsity since there are a lot of available locations, and a
single user can visit only a few of them. As a consequence, the user-item matrix of CF becomes very
sparse, leading to poor performance of recommender systems in cases that there is no significant
association between users and items. Many studies have tried to address the data sparsity problem
of CF by incorporating additional information into the model [41, 44]. More specifically, Ye et al. [41]
argued that users’ check-in behavior is affected by the spatial influence of locations and proposed a
unified location recommender system incorporating spatial and social influence to address the data
sparsity problem. Yuan et al. [44], on the other hand, proposed a time-aware collaborative filtering
approach. More specifically, they recommended locations to users at a particular time of the day
by mining historical check-ins of users in LBSNs. Yin et al. [42] proposed a model which captures
user interests as well as local preferences to recommend locations or events to users when they
are visiting a new city. Ference et al. [21] took into consideration user preference, geographical
proximity, and social influences for POI recommendation. Griesner et al. [24] also proposed an
approach integrating temporal and geographic influences into matrix factorization.
Other works follow a review-based strategy, constructing rich user profiles based on their

reviews [39, 46]. Reviews reveal the underlying reasons of users’ ratings related to a particular
location. In fact, as argued by Chen et al. [15], online reviews significantly aid a system to deal with
the data sparsity problem. Zhang et al. [46] fused virtual ratings derived from online reviews into CF.
Yang et al. [39] created rich user profiles aggregating online reviews from other users and measured
the similarity between a new location and a user profile. We exploit online reviews similarly,
however, we employ more sophisticated machine learning models to learn users’ preferences and
opinions. Aliannejadi and Crestani [5] studied various strategies for reducing the number of reviews
in users’ profiles while maintaining the model’s efficiency.

Context-Aware POI Recommendation. Another line of research tries to leverage context to
enhance the performance of a recommender system. Context-aware recommendation has been
categorized into three types [2]: (1) pre-filtering: data selection is done based on context; (2) post-
filtering: recommendation is done using a traditional approach and context is used to filter them;
(3) contextual modeling: contextual information is incorporated into the model. Our work aims at
modeling the contextual information by re-ranking the recommendations. Adomavicius et al. [1]
proposed a multidimensional context pre-filtering model based on the online analytical processing
for decision support. Park et al. [36] computed a weighted sum of the conditional probabilities
of restaurants’ attribute values. They automatically detected users’ physical contexts such as the
time of the day, the position, and the weather and used a Bayesian network for expressing their
probabilistic influences. Levi et al. [31] developed a weighted context-aware recommendation
algorithm to address the cold start problem for hotel recommendation. More specifically, they
defined context groups based on hotel reviews and followed a user’s preferences in trip intent
and hotel aspects as well as the user’s similarity with other users (e.g., nationality). Other works
focused on time as context [19, 20, 22, 44]. Gao et al. [22] developed a time-aware recommendation
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model. Fang et al. [20] proposed a model which takes into account both spatial and temporal
context to address the data sparsity problem. Deveaud et al. [19] modeled locations popularity
in the immediate future utilizing time series. They leveraged the model to make time-aware POI
recommendation. Aliannejadi et al. [9] recommended POIs while considering, as users’ contexts, the
traveling group as well as the season in which the trip occurred. Braunhofer et al. [13] used various
complex contextual factors such as budget, companion, and crowdedness to overcome the cold
start problem. They developed an active learning strategy and a context-aware recommendation
algorithm using an extended matrix factorization model.

TREC Contextual Suggestion. The TREC-CS track [25] aimed to encourage research on context-
aware POI recommendation. In fact, the task was to produce a ranked list of locations for each user
in a new city, given the user’s context and history of preferences in 1-2 other cities. The contextual
dimensions were the trip duration, the season, the trip type, and the type of group with whom
the user was traveling. These contextual dimensions were introduced in TREC-CS 2015. Since
then, among the top runs, few approaches tried to leverage such information. Arampatzis and
Kalamatianos [11] studied the performance of various content-based, collaborative, and hybrid
fusion methods on TREC-CS and they found that content-based methods performed best among
these methods. Yang and Fang [38] introduced some handcrafted rules for filtering locations based
on their appropriateness to a user’s current context. According to them, applying such filters
degrades the performance of the system. Hence, we conclude that contextual appropriateness is
not a simple problem of applying some deterministic rules to filter locations. Manotumruksa et al.
[35] introduced a set of temporal, term-based, and categorical features to train a set of classifiers to
predict contextually appropriate locations. In our opinion, such features are not general enough to be
applied to similar problems. Moreover, similar to our work, they collected the contextual relevance
dataset using crowdsourcing, however, since they asked the workers to assess the appropriateness
of a particular location to a given user’s context, this could result in biased assessments. In contrast,
we attempt to build a contextual relevance dataset that is not biased and can be used for similar
problems.

8 CONCLUSIONS
In this paper, we presented a probabilistic model to find the mapping between user tags and location
taste keywords. This mapping enabled us to exploit various directions to address the data sparsity
problem for POI recommendation. In particular, we followed two directions: 1) a PK-Boosting
model to reduce the dimensionality of location taste keywords and 2) three models to predict user
tags for a new location, as alternatives to PK-Boosting. Moreover, we described how to incorporate
the new information into POI recommendation, calculating different scores from information from
multiple LBSNs. In addition, we also created a dataset to measure the contextual appropriateness
of locations and explained how we used the dataset to improve our model. Following learning to
rank techniques, the final POI recommendation ranking is obtained based on the computed scores.
The experimental results on two TREC collections demonstrate that our method outperforms
state-of-the-art strategies. This confirms that the proposed approach, PK-Boosting, addresses the
data sparsity problem capturing user preferences accurately.
As future work, we plan to extend our contextual model to capture the time dimension and

perform time-aware POI recommendation [33].
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