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Abstract. Nonlinear filter are applied to target tracking, signal processing, navigation,
inertial navigation, attitude estimation and etc. For a class of nonlinear system, how to
descend then sample dimension and sample points and then reduce filter calculation are
studied. In this paper, a novel descending dimension CKF algorithm for a class of non-
linear system is proposed. And the simulations have performed to verify the effectiveness
of the algorithm proposed. And the simulations have performed to verify the effectiveness
of the algorithm proposed. The simulations results show the superiority to the traditional
CKF algorithm.
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1. Introduction. Because of the essential characteristics of nonlinear system, the algorithms for non-
linear system are studied by many researchers. Nonlinear filter algorithms[1-5] are applied in most of real
application systems, for example, target tracking, signal processing, navigation system, inertial naviga-
tion system, attitude estimation and etc. Therefore, filter algorithm to nonlinear system has important
meaning for engineer applications. The aim of state estimation is to estimate the implied states of state
system online by the observation with noise. The nonlinear filter algorithm became the most popular
central issue recent sixty years. With the development of the computer technology, the nonlinear filter
theory achieves the great development, for example, Unscented Kalman filter[6-7], particle filter[8-9] and
the novel proposed Cubature Kalman filter[10-13]. In order to overcome the situation of numerical insta-
bility and accuracy reduced in UKF high system filter algorithm, Arasaratnam proposed the Cubature
Kalman Filter (CKF) algorithm for nonlinear system recently. The proposed algorithm is easy to imple-
ment and has few adjustable parameters and then CKF has more rigorous mathematical theory supports
and better convergence.

CKF can solve some problems in UKF and CDKF, so it is widespread concerned by most researchers
when CKF is proposed. The CKF algorithm uses the Cubature transformation to probabilistic deduced.
Firstly, selecting the Cubature point set to parameterize the mean and variance of probability distributions
based on Cubature criterion. Secondly, apply the nonlinear transformation to all of the Cubature point.
And then, calculating the deduced approximate Gaussian distribution parameters based on transformed
Cubature. The filter processing of CKF and UKF is similar, calculating the transformed point sets
to provide the next time system state prediction with the nonlinear system equation transformed by a
class of point set with the weight. Therefore, the method avoids the linearization processing and does
not depend on the system nonlinear equation. And then, compared with the derivation of the UKF
algorithm, CKF algorithm is proposed by strict mathematical derivation based on Bayesian theory and
Spherical-Radial Cubature rules.

Dealt with some special nonlinear system, how to descend then sample dimension and sample points
and then reduce filter calculation are studied. In this paper, a novel descending dimension CKF algorithm
for a class of nonlinear system is proposed.
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2. Problem Statement. Consider the nonlinear Gaussian system as follows:

xk+1 = f(xk) + Γkwk (1)

yk = h(xk) + vk (2)

Where, xk ∈ Rn is the system state, yk ∈ Rm is the system measure, f(·) and h(·) is the system
nonlinear transfer function and measurement function respectively, Γk is n × p dimension noise input
matrix, wk ∈ Rp is the system noise, vk ∈ Rm is the measure noise, wk ∈ Rp and vk ∈ Rm are all the
Gaussian white noise and irrelevant, the statistical properties are as follows:
E(wk) = qk, Cov(wk, wj) = Qkδkj
E(vk) = rk, Cov(vk, vj) = Rkδkj
Qk is the non-negative definite symmetric matrix, Rk is the definite symmetric matrix, δkj .. is

kronecker-δ function.
If the state posterior probability density function can be calculated, and then the statistical properties

and different properties filter algorithms can be proposed by state probability density function and various
estimation rules and approximation methods respectively. Therefore, calculating the state posterior
probability density function is pivotal theoretically. However, the Bayesian estimation method in a
recursive manner to calculate state posterior probability density function is accepted by many scholars and
as the core idea of many filter algorithms. The idea of Bayesian recursive algorithm obtains p(xk+1

∣∣Y k+1 )
by prediction update and measure update processing when measure yk+1 at is known if state posterior
probability density function p(xk

∣∣Y k ) at time is known and Y k+1 = {y1, y2, · · · , yk+1}. Where, the

prediction updates are state posterior probability density function p(xk
∣∣Y k ) and one step state transition

probabilities p(xk+1 |xk ). And the one step prediction probability density function can be obtained as
follows:

p(xk+1

∣∣Y k ) =

∫
p(xk

∣∣Y k )p(xk+1 |xk )dxk (3)

When one step prediction probability density function and the measure yk+1 are known, the measure
update can be obtained. Therefore, the posterior probability density function p(xk+1

∣∣Y k+1 ) of xk+1 is:

p(xk+1

∣∣Y k+1 ) =
1

ck+1
p(xk+1

∣∣Y k )p(yk+1 |xk+1 ) (4)

Where,

ck+1 =

∫
p(xk+1

∣∣Y k )p(yk+1 |xk+1 )dxk+1 (5)

The meaning of Bayesian recursive algorithm is to find a method that converting from the probability
density function obtained to the recursive mode theoretically. Therefore, the Bayesian estimation aims
to guide the nonlinear filter algorithm based on the recursive mode. Therefore, the CKF algorithm based
on spherical-radial rule can be realized as follows:

Time Update: On the assumptions that the posterior density function p(xk−1) = N(x̂k−1|k−1, Pk−1|k−1)
at time is known, disintegration the error covariance Pk−1|k−1 by Cholesky:

Pk−1|k−1 = Sk−1|k−1S
T
k−1|k−1 (6)

Calculate then Cubature points (i = 1, 2, ...m,m = 2n):

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1 (7)

Mapping the Cubature points by the state equation:

X∗i,k|k−1 = f(Xi,k−1|k−1) (8)

Estimation the state prediction value at time :

x̂k|k−1 =
1

m

m∑
i=1

X∗i,k|k−1 (9)

Estimation the state error covariance prediction value at time :

Pk|k−1 =
1

m

m∑
i=1

X∗i,k|k−1X
∗T
i,k|k−1 − x̂k|k−1x̂

T
k|k−1 +Qk−1 (10)

Measurement Update: Disintegration Pk|k−1 by Cholesky:

Pk|k−1 = Sk|k−1S
T
k|k−1 (11)
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Calculate the Cubature points (i = 1, 2, ...m,m = 2n):

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1 (12)

Mapping the Cubature points by measurement equation:

Zi,k|k−1 = h(Xi,k|k−1) (13)

Estimation the measurement prediction at time :

ẑk|k−1 =
1

m

m∑
i=1

Zi,k|k−1 (14)

Estimation the autocorrelation covariance matrix:

Pzz,k|k−1 =
1

m

m∑
i=1

Zi,k|k−1Z
T
i,k|k−1 − ẑk|k−1ẑ

T
k|k−1 +Rk (15)

Estimation correlation covariance matrix:

Pxz,k|k−1 =
1

m

m∑
i=1

Xi,k|k−1Z
T
i,k|k−1 − x̂k|k−1ẑ

T
k|k−1 (16)

Estimation the Kalman gain:
Wk = Pxz,k|k−1P

−1
zz,k|k−1 (17)

The state prediction value at time :

x̂k|k = x̂k|k−1 +Wk(zk − ẑk|k−1) (18)

The state error covariance estimation at time :

Pk|k = Pk|k−1 −WkPzz,k|k−1W
T
k (19)

From the procedure of the CKF algorithm, we can know that CKF algorithm realizes based on spherical-
radial rule of the nonlinear Gaussian filter.

3. Descending dimension CKF algorithm. A class of nonlinear system for system (1)-(2) is as
follows:

xk+1 = Fk(ξk)xk + gk(ξk) + wk (20)

yk = Hkxk + vk (21)

Where, ξk is the previous l of state xk, that is

xk =
[
ξTk , η

T
k

]T
. E[wk] = 0, E[vk] = 0 Cov[wk, wj ] = Qkδk,j , Cov[vk, vj ] = Rkδk,j Cov[wk, vj ] = 0

The system filter equation is as follows if x̂k/k−1 and P xk/k−1 can be obtained when the statistical

properties (x̂k−1, Pk−1) of state x at time k − 1 are known:

Pk/k−1 = P xk/k−1 +Qk−1 (22)

Kk = Pk/k−1Hk(HkPk/k−1H
T
k +Rk)

−1
(23)

x̂k = x̂k/k−1 +Kk(yk −Hkx̂k/k−1) (24)

Pk = (I −KkHk)Pk/k−1 (25)

That needs to obtain 2n samples for state x if by applying the regular CKF algorithm for solving
x̂k/k−1 and P xk/k−1. x̂k/k−1 and P xk/k−1 are the Gaussian integral with respect to ξk−1:

x̂k/k−1 =

∫
Φk−1(ξk−1)N(ξk−1; ξ̂k−1, P

ξ
k−1)dξk−1 (26)

P xk/k−1 =

∫
Ψk−1(ξk−1)N(ξk−1; ξ̂k−1, P

ξ
k−1)dξk−1 − x̂k/k−1x̂Tk/k−1 (27)

Where,

Φk−1(ξk−1) = Fk−1(ξk−1)

(
x̂k−1 + Sk−1

[
(Sξk−1)

−1
(ξk−1 − ξ̂k−1)

0

])
+ gk−1(ξk−1) (28)
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Ψk−1(ξk−1) = Φk−1(ξk−1)ΦTk−1(ξk−1) + Fk−1(ξk−1)Sk−1

[
0 0
0 In−l

]
STk−1F

T
k−1(ξk−1) (29)

It needs 2l sample points for ξk−1 in order to approximate the formula (26)-(27) based on spherical-
radial rule because ξk−1 is l dimensions vector, therefore, χik−1 = ξ̂k−1 − [

√
lP ξk−1]

i
i = 1, · · · , l

χik−1 = ξ̂k−1 + [
√
lP ξk−1]

i
i = l + 1, · · · , 2l

(30)

x̂k/k−1 =
1

2l

2l∑
i=1

Φk−1(χik−1) (31)

P xk/k−1 =
1

2l

2l∑
i=1

Ψk−1(χik−1)− x̂k/k−1x̂Tk/k−1 (32)

The formulas above (22)-(25) constitute the whole descending dimension CKF algorithm. Consider the
measurement is nonlinear mode as follows:

xk+1 = Fk(ξk)xk + gk(ξk) + wk (33)

yk = Hk(ςk)xk + vk (34)

Where, ξk is as the system (20)-(21), ςk is the s elements of state xk not the previous s elements,
therefore,

xk = [xk,1, · · · , ςk,1, · · · , ςk,2, · · · , ςk,s, · · · , xk,n]
T

(35)

The descending filter algorithm of the system above is complicated; it can be preceded as two steps.
Step 1: State estimation. That is to obtain x̂k/k−1 and Pk/k−1. Step 2: State update. Regulating

the elements order of xk makes x′k = [ςTk , ζ
T
k ]
T

and regulatingPk/k−1, Hk(ςk) as P ′k/k−1, H ′k(ςk) corre-
sponding. Therefore, x̂′k and P ′k can be obtained as the following formulas if ŷk/k−1, P xyk/k−1 and P yk/k−1
are known:

P yk = P yk/k−1 +Rk (36)

Kk = P xyk/k−1(P yk )
−1

(37)

x̂′k = x̂′k/k−1 +Kk(yk − ŷk/k−1) (38)

P ′k = P ′k/k−1 −Kk(P yk )
−1
KT
k (39)

And then,

ŷk/k−1 =

∫
H ′k(ςk)Θk(ςk)N(ςk; ς̂k/k−1, P

ς
k/k−1)dςk (40)

P yk/k−1 =

∫
H ′k(ςk)Ωk(ςk)(H ′k(ςk))

T
N(ςk; ς̂k/k−1, P

ς
k/k−1)dςk − ŷk/k−1ŷTk/k−1 (41)

P xyk/k−1 =

∫
Ωk(ςk)(H ′k(ςk))

T
N(ςk; ς̂k/k−1, P

ς
k/k−1)dςk − x̂′k/k−1ŷ

T
k/k−1 (42)

Θk(ςk) = x̂′k/k−1 + Sk/k−1

[
(Sςk/k−1)

−1
(ςk − ς̂k/k−1)

0

]
(43)

Ωk(ςk) = Θk(ςk)ΘT
k (ςk) + Sk/k−1

[
0 0
0 It

]
STk/k−1 (44)

Approximation for formulas (40)-(42) based on spherical-radial rule: ςik/k−1 = ς̂k/k−1 − [
√
sP ςk/k−1]

i
i = 1, · · · , s

ςik/k−1 = ς̂k/k−1 + [
√
sP ςk/k−1]

i
i = l + 1, · · · , 2s

(45)



1058 B. Zhao, and H. Li

ŷk/k−1 =
1

2s

2s∑
i=1

H ′k(ςik/k−1)Θ(ςik/k−1) (46)

P yk/k−1 =
1

2s

2s∑
i=1

Hk(ςik/k−1)Ωk(ςik/k−1)(H
′

k(ςik/k−1))
T
− ŷk/k−1ŷTk/k−1 (47)

P xyk/k−1 =
1

2s

2s∑
i=1

Ωk(ςik/k−1)(H
′

k(ςik/k−1))
T

(48)

The x̂′k and P ′k can be solved by integrating (36)-(39) and then regulating them as x̂k and Pk.
Therefore, the whole descending dimension CKF algorithm proposed for a class of nonlinear system can
be seen as the formula derived above.

Compared with the regular CKF algorithm, the sample vector dimension of descending dimension
CKF algorithm reduce from n to l, the sample points reduce from 2n to 2l in state step prediction.
The sample vector dimension reduces from n to s, sample points reduce from 2n to 2s. Therefore, the
algorithm computing load is improved. Besides, the estimation method applies for the spherical-radial
rule to approximate the posterior mean and covariance, so the estimation accuracy can reach third-order
Taylor series. Therefore, the algorithm proposed is more accuracy than the traditional algorithm.

4. Simulations and analysis. The simulation is performed on this section to illustrate the effective of
the algorithm proposed. The nonlinear system is as follows:

zk = zk−1

2 + 25zk−1

1+z2k−1
+ 8 cos(1.2(k − 1)) + rk−1

xk = Axk−1 +Bzk + wk
yk = Cxk + vk

(49)

Where, the means of rk ,wk, vk are zero respectively and rk ,wk, vk are Gaussian white noise with the

variances Qr, Qw, R. zk is the maneuvering target value. xk = [x, y, ẋ, ẏ]
T

is the position, velocity and
their differentials respectively at time k. The system above can be rewritten as follows:

[
zk
xk

]
= F

[
zk−1
xk−1

]
+ g(zk−1) + qk−1

yk = H

[
zk
xk

]
+ vk

(50)

where, F =
[
1
2 0 1

2B A
]

; g(zk−1) =

[
1
B

](
25zk−1

1+z2k−1
+ 8 cos(1.2(k − 1))

)
; H =

[
0 C

]
; qk−1 =[

rk−1
Brk−1 + wk−1

]
.

The related parameters in simulations are as follows:

A =


1 0 0.1 0
0 1 0 0.1
0 0 1 0
0 0 0 1

; B =


1.25
−1.25
0.25
−0.25

; C =

[
1 0 0 0
0 1 0 0

]
; Qr = 2;

Qw = 0.09


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

; R = 9

[
1 0
0 1

]
.

Define as x0 = [20, 30, 1.2, 1]
T

, z0 = 0 and initial variances are as follows respectively:

Px,0 =


10 0 0 0
0 10 0 0
0 0 1 0
0 0 0 1

, Pz,0 = 10.

The simulation time is 200s, the simulation initial values are x0/0 = x0, z0/0 = z0, Px/x,0 = Px,0,
Pz/z,0 = Pz,0. Compared the regular CKF algorithm with the descending dimension CKF algorithm
under the 100 times Monte Carlo simulations, the compared results of state estimation mean are depicted
in Fig.1-3.

It can be seen from Fig.1-Fig.3 that the averaged absolute value error of descending dimension CKF
algorithm is smaller than the regular CKF. Therefore, the algorithm proposed is more effective and



A Novel Descending Dimension CKF Algorithm for A Class of Nonlinear System 1059

Figure 1. Averaged absolute error of maneuvering target

Figure 2. x-axis position estimation averaged absolute errors
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Figure 3. y-axis position estimation averaged absolute errors

Table 1. State estimation averaged absolute errors

predominant than the traditional CKF algorithm. And then, the Table.1 also can verify the effective of
the algorithm proposed.

5. Conclusions. In this paper, dealt with some special nonlinear system, how to descend then sample
dimension and sample points and then reduce filter calculation are studied. A novel descending dimension
CKF algorithm for a class of nonlinear system is proposed. And the simulations have performed to verify
the effectiveness of the algorithm proposed. The CKF method can descend then sample dimension and
sample points and reduce filter calculation for a class of nonlinear system.
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