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Abstract. Let G be a graph with vertex set V, and let k£ be a positive
integer. A set D C V is a distance-k dominating set of G if, for each vertex
u € V —D, there exists a vertex w € D such that d(u, w) < k, where d(u, w)
is the minimum number of edges linking u and w in G. Let di(z,y) =
min{d(z,y),k + 1}. A set R C V is a distance-k resolving set of G if, for
any pair of distinct z,y € V, there exists a vertex z € R such that dy(z, z) #
di(y, z). The distance-k domination number v;(G) (distance-k dimension
dim (G), respectively) of G is the minimum cardinality of all distance-k
dominating sets (distance-k resolving sets, respectively) of G. The distance-
k location-domination number, v¥ (@), of G is the minimum cardinality of all
sets S C V such that S is both a distance-k dominating set and a distance-k
resolving set of G. Note that 1 (GQ) is the well-known location-domination
number introduced by Slater in 1988. For any connected graph G of order
n > 2, we obtain the following sharp bounds: (1) v (G) < dimg(G) + 1;
(2) 2 < %(GQ) + dimg(G) < n; (3) 1 < max{y(GQ),dimg(G)} < ¥E(G) <
min{dimy(G)+1,n—1}. We characterize G for which v¥ (@) € {1,|V|-1}.

We observe that d‘;:’(‘c(g) can be arbitrarily large. Moreover, for any tree

T of order n > 2, we show that v¥(T) < n — ex(T), where ex(T) denotes
the number of exterior major vertices of T, and we characterize trees T
achieving equality. We also examine the effect of edge deletion on the
distance-k location-domination number of graphs.
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DISTANCE-k LOCATING-DOMINATING SETS

1 Introduction

Let G be a finite, simple, undirected, and connected graph with vertex set
V(G) and edge set E(G). Let k be a positive integer. For z,y € V(QG),
let d(z,y) denote the length of a shortest path between z and y in G,
and let di(z,y) = min{d(z,y),k + 1}. The diameter, diam(G), of a graph
G is max{d(z,y) : z,y € V(G)}. For v € V(G) and S C V(G), let
d(v,S) = min{d(v,w) : w € S}. The open neighborhood of a vertex v €
V(G)is N(v) = {u € V(G) : wv € E(G)} and its closed neighborhood is
N[v] = N(v) U{v}. More generally, for v € V(G), let N*[v] = {u € V(G) :
d(u,v) < k}. The degree of a vertex v € V(G) is |[N(v)|. For distinct
z,y € V(G), x and y are called twin vertices if N(x) —{y} = N(y) —{z} in
G. A major vertex is a vertex of degree at least three, a leaf (also called an
end-vertez) is a vertex of degree one, and a support vertexr is a vertex that
is adjacent to a leaf. A leaf ¢ is called a terminal verter of a major vertex
v if d(¢,v) < d(£,w) for every other major vertex w in G. The terminal
degree, ter(v), of a major vertex v is the number of terminal vertices of v in
G. A major vertex v is an exterior major vertex if it has positive terminal
degree. We denote the number of exterior major vertices of G by ex(G)
and the number of leaves of G by o(G). We denote by G the complement
of G, i.e., V(G) = V(G) and zy € E(G) if and only if zy ¢ E(G) for any
distinct vertices x and y in G. The join of two graphs G and H, denoted
by G + H, is the graph obtained from the disjoint union of G and H by
joining an edge between each vertex of G and each vertex of H. Let P,, C,,
and K, denote respectively the path, the cycle, and the complete graph on
n vertices; let K ,_s denote the complete bi-partite graph on n vertices
with parts of sizes s and n — s. Let Z™ be the set of positive integers and
ke Z*. For a € ZT, let [a] = {1,2,...,a}.

A vertex subset D C V(G) is a distance-k dominating set of G if, for each
vertex u € V(G) — D, there exists a vertex w € D such that d(u,w) < k.
The distance-k domination number, v,(G), of G is the minimum cardinal-
ity over all distance-k dominating sets of G. The concept of distance-k
domination was introduced by Meir and Moon [20]. We note that v, (G) is
the well-known domination number of G, which is often denoted by v(G)
in the literature. Applications of domination can be found in resource al-
location on a network, determining efficient routes within a network, and
designing secure systems for electrical grids, to name a few. It is known
that determining the domination number of a general graph is an NP-hard
problem (see [9]). For a survey on domination in graphs, see [14].
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A vertex subset R C V(G) is a resolving set of G if, for any pair of distinct
vertices z,y € V(G), there exists a vertex z € R such that d(z,z) #
d(y,z). The metric dimension, dim(G), of G is the minimum cardinality
over all resolving sets of G. The concept of metric dimension was introduced
independently by Slater [23] and by Harary and Melter [13]. A vertex subset
S CV(G) is a distance-k resolving set (also called a k-truncated resolving
set) of G if, for any distinct vertices x,y € V(G), there exists a vertex
z € S such that di(z,2) # di(y, z). The distance-k dimension (also called
the k-truncated dimension), dimg(G), of G is the minimum cardinality
over all distance-k resolving sets of G. The metric dimension of a metric
space (V, dy) is studied in [2]. The distance-k dimension corresponds to the
(1, k+1)-metric dimension in [5] and [6]. We note that dim; (G) is also called
the adjacency dimension, introduced in [16], and it is often denoted by
adim(QG) in the literature. For detailed results on dimy(G), we refer to [§],
which is a merger of [12] and [24], along with some additional results. For an
ordered set S = {uy,uz,...,us} C V(G) of distinct vertices, the distance-
k metric code of v € V(G) with respect to S, denoted by codeg x(v), is
the a-vector (di(v,u1),di(v,uz2),...,dr(v,us)). We denote by (k+ 1),
the a-vector with k£ + 1 on each entry. Applications of metric dimension
can be found in robot navigation, network discovery and verification, and
combinatorial optimization, to name a few. It is known that determining
the metric dimension and the adjacency dimension of a general graph are
NP-hard problems (see [19] and [7]). For a discussion on computational
complexity of the distance-k dimension of graphs, see [6].

Slater [22] introduced the notion of locating-dominating set and location-
domination number. A set A C V(QG) is a locating-dominating set of G if A
is a dominating set of G and N(x)NA # N(y)NA for distinct vertices z,y €
V(G) — A. The location-domination number, v, (G), of G is the minimum
cardinality over all locating-dominating sets of G. The notion of location-
domination by Slater is a natural marriage of its two constituent notions,
where a subset of vertices functions both to locate (via d; metric) each
node of a network and to dominate (supply or support) the entire network.
Viewed in this light, the following is but a natural extension of the notion
of Slater. For (s,t) € ZT x Z*, let S C V(G) be a distance-s resolving set
of G and a distance-t dominating set of G, which we call an (s, t)-locating-
dominating set of G. Then the (s,t)-location-domination number of G,
denoted by fyés’t)(G), is defined to be the minimum cardinality of S as S
varies over all (s,t)-locating-dominating sets of G. When s = k = t, we
will abbreviate and simply speak of distance-k locating-dominating set and
distance-k location-domination number, and we will simplify ygg’k)(G) to

VE(G).
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In this paper, we study the distance-k location-domination number of graphs.
We examine the relationship among 7 (G), dimg(G) and 7% (G). Let G be
a connected graph of order n > 2, and let k¥ € Z*. In Section 2, we
show that v, (G) < dimg(G) + 1 and that dimg(G) — 7 (G) can be ar-
bitrarily large. We also show that 2 < 44(G) + dimg(G) < n, and we
characterize G satisfying v (G) + dimy (G) = 2. In Section 3, we show that
1 < max{y(G),dim,(G)} < YF(G) < min{dimg(G) + 1,n — 1}, where
the bounds are sharp. We also characterize G satisfying 75 (G) equals 1
and n — 1, respectively. Moreover, for a non-trivial tree T', we show that
YE(T) < n — ex(T) and we characterize trees T achieving equality. In
Section 4, we determine 7% (G) when G is the Petersen graph, a complete
multipartite graph, a cycle or a path. In Section 5, we examine the effect
of edge deletion on the distance-k location-domination number of graphs.

2 Relations between v (G) and dimg(G)

In this section, we examine the sum and difference between ~;(G) and
dimy(G). Let G be a non-trivial connected graph, and let k € Z*. We show
that v;(G) < dimg(G) + 1, where the bound is sharp, and we observe that
dimy (G) — v, (G) can be arbitrarily large. We also show that 2 < v, (G) +
dimy (G) < |V(G)|, and we characterize G satisfying v, (G) + dimg(G) = 2.
We begin with the following observation.

Observation 2.1. Let G be any connected graph, and let s,s',t,t', k, k' €
7. Then

(a) for k >k, y(G) <y (G) <n(G);
(b) 2,5, 6] for k> K, dim(G) < dimy(GQ) < dimg/ (G) < dim; (G);
(¢c) more generally, we have 'yés’t)(G) > V(LS/’t/)(G) for s < ¢ andt <

t', since an (s,t)-locating-dominating set of G is an (s',t')-locating-
dominating set of G.

For any minimum distance-k resolving set S of a connected graph G, we
show that there is a vertex v € V(G) — S such that SU {v} is a distance-k
dominating set of G.

Proposition 2.2. For any non-trivial connected graph G and for any k €
77,
Y.(G) < dimg(G) + 1.
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Proof. Let S be any minimum distance-k resolving set of G. Then there
exists at most one vertex, say w, in V(G) — S such that d(w, S) > k; notice
that codeg x(w) = (k+1)g. If d(u,S) < k for each u € V(G), then S is
a distance-k dominating set of G, and hence 7;(G) < |S| = dimg(G). If
there exists a vertex v € V(@) such that d(v, S) > k, then S U {v} forms a
distance-k dominating set of G, and thus v;(G) < |S|+1=dimy(G)+1. O

Next, we show the sharpness of the bound in Proposition 2.2.

Observation 2.3. Let G be a non-trivial connected graph.

(a) If there exists a vertex v € V(G) such that N¥[v] = V(G), then {v}
is a distance-k dominating set of G and v(G) = 1.

(b) Suppose U*_{v;} C V(G) satisfies N*[v;] N N¥[v;] = 0 for i # j.
Then any distance-k dominating set of G must contain a verter of
NF¥[v;] for each i € [x]. Thus vi(G) > .

Remark 2.4. For each k € Z*, there is a connected graph G with v (G) =

Proof. Let G be a tree with ex(G) = x > 1 such that vy, ve,...,v, are the
exterior major vertices of G with ter(v;) = a > 3 for each i € [z], and let
V1,Va,...,0, form an induced path of order z in G. For each i € [z], let
{li1,i2,..., 4o} be the set of the terminal vertices of v; in G such that
d(vi, 4 ;) =k+1=1+d(v;,4; o) for each j € [@ — 1]. For each ¢ € [z] and
for each j € [@ —1], let s; ; be the neighbor of v; lying on the v; — ¢; ; path
in G. See Fig. 1 when k = 3.

First, note that v4(G) = za: (i) 7 (G) < za since D = UZ_ {l;1,..., 4o}
forms a distance-k dominating set of G with |D| = zqa; (ii) w(G) > za
by Observation 2.3(b) and the fact that N*[¢; ;] N N*[s,] = 0 for (i,7) #
(s,t). Second, note that dimy(G) = za —1: (i) dimg(G) < za — 1 since
R = (U2 {511,812, s 8i.a_1})U(UZ]{li o }) forms a distance-k resolving
set of G with |R| = za — 1; (ii) dimg(G) > w(G) =1 = za — 1 by
Proposition 2.2. Therefore, vx(G) = za = dimg(G) + 1. O

Based on Proposition 2.2 and Remark 2.4, we have the following

Question 2.5. Can we characterize graphs G satisfying

Y(G) = dimy(G) +17
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Figure 1: Graphs G with v3(G) = dim3(G) + 1.

Question 2.6. Can we characterize graphs G satisfying

Y(G) = dimy(G) ?

Next, we show that d::’("é?) can be arbitrarily large; thus, dimg(G) — % (G)

can be arbitrarily large. We recall the connected graphs G of order n for
which dimg(G) € {1,n — 2,n — 1}; here, we note that Theorem 2.7(a),(d)
for the case k = 1 is obtained in [16]. See Theorem 3.9 in [11] for a
characterization of all graphs G having dim;(G) = m for each m € Z*.

Theorem 2.7. Let G be a connected graph of order n > 2, and let k € Z7T.
Then 1 < dimg(G) < n — 1, and we have the following:

(a) [5, 24] dimy(G) = 1 if and only if G € UIZZ{P;};

(b) [8,12,24] forn >4, dim,(G) = n—2 if and only if G = Py, G = K4
(s,t > 1), G=Ks+ Ky (s >1,t>2), or G =K+ (K1 UK,)
(Svt > 1);

(c) [8,12,24] for k > 2 and for n > 4, dimy(G) = n—2 if and only if G =
Ksﬂg (S,tz 1), G:Ké—FKt (SZ 1,t22), OTG:KS+(K1UKt)
(s,t >1);

(d) [8, 12, 24] dimg(G) =n — 1 if and only if G = K.

Proposition 2.8. For a connected graph G and for k € ZT, e (e)

be arbitrarily large.

can

Proof. Let G be a connected graph of order n > 4. First, note that
dimg(K,) = n — 1 by Theorem 2.7(d) and x(K,) = 1 by Observa-
tion 2.3(a); thus d::’(“i}(fi’;) =n—1-—00asn— .

For another example, let G be the graph obtained from K, ., where a > 3,
by subdividing each edge of K , exactly k — 1 times; let v be the central
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vertex of degree o in G and let ¢1,0s, ..., ¢, be the leaves of G such that
d(v,4;) = k for each i € [a]. Let N(v) = {s1,82,...,54} such that s; lies
on the v — ¢; path in G, and let P* denote the s; — ¢; path, where i € [a].
Then 7;(G) = 1 since {v} is a minimum distance-k dominating set of G by
Observation 2.3(a). Note that dimg(G) = a —1: (i) dimg(G) < a— 1 since
N(v) — {s1} forms a distance-k resolving set of G; (ii) dimx(G) > o —1
since SN (V(PY) UV (P7)) # () for any distance-k resolving set S of G and
for distinct 4,5 € [a], as SN (V(P?) UV (P7)) = 0 implies codeg x(s;) =

codeg k(s;). So, dix’(‘éc)") =a—1-—00asa— oo. O

Next, for any connected graph G of order n > 2 and for any k € Z*, we
show that 2 < 7% (G) + dimg(G) < n and we characterize G with vx(G) +
dimy (G) = 2. We recall the following results.

Lemma 2.9. [1] Let G be a connected graph. Then there exists a minimum
dominating set for G which does not have any pair of twin vertices.

Theorem 2.10. [1] Let G be a connected graph of order n > 2. Then
v(G) +dim(G) < n, and equality holds if and only if G € {K,,, Ks n—s} for
2<s<n-—2.

Proposition 2.11. Let G be any connected graph of order n > 2, and let
keZ*. Then 2 < v(G) + dimg(G) < n, and v,(G) + dimy(G) = 2 if and
only G € UE2{P,).

Proof. Let G be a connected graph of order n > 2, and let k € Z*. Since
v (G) > 1 and dimg(G) > 1, we have 74(G) + dimy(G) > 2. Note that
Y(G) + dimg (G) = 2 if and only if 74(G) = 1 = dimg(G) if and only if
G € UMZ2{ P} by Observation 2.3(a) and Theorem 2.7(a).

To prove v;(G)+dimg (G) < n, it suffices to show that v, (G)+dim; (G) < n
by Observation 2.1. The proof given for Theorem 2.10 in [1] actually shows
71 (G) 4+ dim; (G) < n. To see this, we can take a minimum dominating set
D of G that contains no twin vertices by Lemma 2.9. Suppose z,y € D
have the same neighbors in V(G) — D; this implies that neither = nor y
has a neighbor in D, because if, say, y has a neighbor in D, then D — {y}
remains a dominating set, and thus x and y have the same neighbors in
V(G), contradicting the choice of D. Since no two vertices of D have the
same neighborhood in S = V(G) — D, S is a distance-1 resolving set of G,
and we have 71 (G) 4+ dim; (G) < |D| + |S| = n. O
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In contrast to Theorem 2.10, we note that if G € {Py, K,,, K s} with
2 <s <n—2, then y1(G) + dim; (G) = |V(G)|. So, we have the following

Question 2.12. Can we characterize graphs G satisfying

Y (G) + dimg(G) = [V(G)| ?

3 Bounds on 7§(G)

In this section, for any connected graph G of order n > 2 and for any k €
Z7F, we show that 1 < max{v;(G),dimg(G)} < 7¥(G) < min{dim(G) +
1,n — 1}; we characterize G satisfying v¥(G) = 1 and v¥(G) = n — 1,
respectively. For any non-trivial tree T, we show that v5(T) < |V(T)| —
ex(T) and we characterize trees T' achieving equality.

Theorem 3.1. For any connected graph G of order n > 2 and for any
keZt,

max{yx(G),dimy(G)} < % (G) < min{1 + dimy(G),n — 1}.

Proof. Let G be a connected graph of order n > 2, and let k € Z*. Since
a minimum distance-k locating-dominating set of G is both a distance-k

dominating set of G and a distance-k resolving set of G, we have v¥(G) >
max{v;(G),dimg(G)}.

Next, we show that v¥(G) < min{l + dim(G),n — 1}. Suppose S is a
minimum distance-k resolving set of GG; then at most one vertex in G has
the distance-k metric code (k+1)g with respect to S. If codes(u) #
(k+1)g for each u € V(G), then S is a distance-k locating-dominating set
of G. If codegs x(w) = (k+1) g/ for some w € V(G), then S U {w} forms a
distance-k locating-dominating set of G. So, v¥(G) < |S|+1 = dimy(G)+1.
Now, v¥(G) < n—1 follows from the fact that any vertex subset S’ C V(G)
with |S’| = n — 1 is a distance-k locating-dominating set of G. O

Theorems 2.7(d) and 3.1 imply that max{v;(K,),dim(K,)} =75 (K,) =
min{1 + dimy(K,),n — 1} for n > 2 and for £ > 1. Since vx(G) > 1 and
dimg (G) > 1, Theorem 3.1 implies the following.

Corollary 3.2. For any connected graph G of order n > 2 and for any
keZt, 1<+¥G)<n—1.
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Next, we characterize connected graphs G of order n satisfying 7§ (G) = 1
and 7% (G) = n — 1, respectively, for all k € Z*. We recall the following
observation.

Observation 3.3. [8] Let x and y be distinct twin vertices of G, and let
k € Z*. Then, for any distance-k resolving set Sy of G, Sk N {x,y} # 0.

Theorem 3.4. Let G be a connected graph of order n > 2, and let k € Z7T.
Then

(a) vE(G) =1 if and only if G € UM} {P;};
(b) v1(G) =n—1if and only if G € {Ky,, K1 n-1};
(c) fork>2,v%(G)=n—1 if and only if G = K,,.

Proof. Let G be a connected graph of order n > 2, and let k € Z*.

(a) If G € UM { P}, then aleaf of G forms a distance-k locating-dominating
set of G; thus, v¥(G) = 1. Now, suppose 7¥(G) = 1; then %(G) =
1 = dimy(G). By Theorem 2.7(a), dimy(G) = 1 implies G € UMZ{P;},
where any minimum distance-k resolving set consists of a leaf whereas
a leaf of Pyio fails to form a distance-k dominating set of Pyyo since
diam(Py,12) = k4 1. So, v¥(G) = 1 implies G € UF{P;}.

(b) First, suppose G € {K,,, K1 ,_1}. Note that vi (K,) =n — 1 by The-
orems 2.7(d) and 3.1. For n > 3, if v is the central vertex of Kj ,_1
and N(v) = {s1,82,...,8n-1}, then dim;(K;y,-1) = n — 2 by Theo-
rem 2.7(b) and |S N N(v)] = n — 2 for any minimum distance-1 resolv-
ing set S of Ki,—1 by Observation 3.3; without loss of generality, let
S" = {s1,82,...,Sn—2} be a minimum distance-1 resolving set of Kj ,_1.
Since d(sp—1,5") =2, S’ fails to be a distance-1 locating-dominating set of
Kin-1; thus, v} (K1 n—1) > n— 1. By Theorem 3.1, v} (K1 ,—1) =n — 1.

Second, suppose 71 (G) = n—1. By Theorem 3.1, dim; (G) € {n—2,n—1}.
To see this, if dim;(G) < n — 3, then 4} (G) < dim;(G) +1 < n —2 by
Theorem 3.1. If dimy(G) = n — 1, then G = K,, by Theorem 2.7(d). If
dim;(G) = n — 2, then G = Py, G = K, with s,t > 1, G = K + K;
with s > 1, > 2, or G = K, + (K1 U Ky) with s,t > 1 by Theorem 2.7(b).
We note the following: (i) v;(P4) = 2 since the two leaves of Py form a
minimum distance-1 locating-dominating set of Py; (ii) vi (K1) = v} (K1 +
K ) = t as shown above; (iii) for s,¢ > 2, v} (K ;) = s+t—2 = v} (K;+K})
since all but one vertex from each of the two partite sets form a minimum
distance-1 locating-dominating set of K ; (iv) Ky + (K3 UK;) = K72 and
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71 (K1 2) = 2 as shown above; (v) for t > 2, v} (K7 + (K1 U K;)) = t since
all but one vertex of the K; and the leaf of K7 + (K7 UK}) form a minimum
distance-1 locating-dominating set of Ky 4+ (K7 U K3); (vi) for s > 2 and
t>1,vi(Ks + (K1 UK;)) = s+t — 1 since all but one vertex of the Kj
and all vertices of the K; form a minimum distance-1 locating-dominating
set of K5+ (K1 UK}). So, v;(G) =n — 1 implies G = K,, or G = Ky 1.

(c) Let k > 2. Note that 4% (K,) = n — 1 by Theorems 2.7(d) and 3.1. So,
suppose 75 (G) = n— 1. Then dim(G) € {n—1,n— 2} by Theorem 3.1. If
dimy (G) = n—1, then G = K,, by Theorem 2.7(d). If dimy(G) = n — 2 for
n > 4, then, by Theorem 2.7(c), G = Ky, with s,t > 1, G = K, + K; with
s>1,t>2 or G=K;+ (K UK,;) with s,t > 1; then diam(G) = 2 and
any minimum distance-k resolving set of G is also a distance-k dominating
set of G. So, dimy(G) = n — 2 implies v¥(G) =n — 2 for k > 2. O

Question 3.5. Can we characterize graphs G of order n such that

where B € {2,3,...,n—2}?

Next, we examine the relation between 7% (G) and other parameters in
Theorem 3.1.

Proposition 3.6. Let G be a non-trivial connected graph, and let k € Z*.
Then

(a) vE(G)
(b) YL (G)
(c) ([V(G)| = 1) = ~+%(G) can be arbitrarily large.

- dlmk(G) S {O, 1},‘

— Y(G) can be arbitrarily large;

Proof. Let k € Z*. For (a), 0 < 4% (G) — dimy(G) < 1 by Theorem 3.1.

For (b) and (c), let G be a tree obtained from the path vy, vs, ..., v, (x > 2)
by adding leaves ¢;1,%; 2, ..., 4o (o > 3) to each vertex v;, where i € [z];
notice that |V(G)| = z(a + 1). Since UZ_,{v;} is a distance-k dominating
set of G, v(G) < z. Note that v¥(G) > z(a — 1) by Observation 3.3 since
any distinct vertices in {€;1,%;2,...,0i o} are twin vertices in G. Also,
note that v¥(G) < wa since V(G) — U {/; o} is a distance-k locating-
dominating set of G. So, Y¥(G) —v(G) > x(a—1) —x = 2(a—2) — oo as
T — ooora— oo, and [V(G)|—1-+%(G) > z(a+1)—1-za=2—1— o0
as & — oo. O
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In view of Theorem 3.1 and Proposition 3.6(b), we have the following

Question 3.7. Can we characterize graphs G such that v (G) = v1.(G) ?

Next, for a graph G with v¥(G) = 3, we determine the upper bound of

V(G)I.

Theorem 3.8. [8, 12] If dimy(G) = B, then |[V(G)| < (Lz(kgl)J +1)P +
k1

ﬁzi[:i’ W(2z’ —1)2=1 and the bound is sharp.

By Theorem 3.1, v%¥(G) = 8 implies dim(G) < 3. Theorem 3.8 is sharp,
and a graph G attaining the maximum order must contain a vertex w €
V(G) with codegs i(w) = (k+1)g) for any minimum distance-k resolving
set S of G. The deletion of w from G leaves intact distance relations and
code vectors; thus, we have the following sharp bound.

Corollary 3.9. If v%(G) = B, then |V(G)| < (L@J +1)P -1+
k41
syt i- et

Remark 3.10. The proof for Theorem 3.8 in [8, 12] uses a method similar
to the one in [15]. For a construction of graphs G with dim;(G) = S of
mazimum order (3 + 28, we refer to [11]. For a construction of graphs G
with dimy(G) = B and of order B+3°, we refer to [8, 12]; this construction
is similar to the one provided in [10].

Next, for any non-trivial tree T and for k € Z*, we show that v%(7) <
n — ex(T') and we characterize trees T' achieving equality.

Proposition 3.11. For any tree T of order n > 2 and for any k € Z7,
VE(T) < n— ex(T).

Proof. Let T be a tree of order n > 2 and let k € Z*. If ex(T) € {0,1}, then
V®(T) <n—1<n—-ex(T) by Theorem 3.1. So, suppose ex(T) = = > 2;
let vq,va,...,v, be the exterior major vertices of T'. For each i € [z], let
{li1,4i2,...,4i 0, } be the set of terminal vertices of v; in T with ter(v;) =
o; > 1. Since S = V(T) — UZ_,{¢;1} is a distance-k locating-dominating
set of T with |[S| =n — 2 =n —ex(T), Y¥(T) < n — ex(T). O
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Next, we characterize non-trivial trees T satisfying v§ (T) = |V (T)| —ex(T).
We recall some terminology. An exterior degree-two vertex is a vertex of
degree two that lies on a path from a terminal vertex to its major vertex,
and an interior degree-two vertex is a vertex of degree two such that the
shortest path to any terminal vertex includes a major vertex.

Theorem 3.12. Let T be any tree of order n > 2 and let k € ZT. Then
YE(T) =n —ex(T) if and only if k = 1, ex(T) > 1, and ex(T) +o(T) = n.

Proof. Let T be a tree of order n > 2 and let k € Z*. If ex(T) =z > 1, let
V1, V2, ..., U, be the exterior major vertices of T', and let {¢; 1,4 2,...,4i o, }
be the set of terminal vertices of v; with ter(v;) = o; > 1 in T for each
i€ lx].

(<) Let k=1, ex(T) =2 > 1, and ex(T) + o(T) = n; notice that T is a
caterpillar. Let S be an arbitrary minimum distance-1 locating-dominating
set of T. By Observation 3.3, |SN{¢; 1,4 2,...,4i s, }| > 0;—1. Thus, up to
a relabeling of vertices of T', we may assume that S D V(T') —UZ {v;, €1}
Since N[¢;1] N N[€;1] =0 for i # j, a vertex in {v;,£; 1} (for each i € [z])
must also belong to S by Observation 2.3(b). So, 71 (T) > n—ex(T). Since
Yi(T) < n —ex(T) by Proposition 3.11, v} (T) = n — ex(T).

(=) Let v%(T) = n — ex(T). If ex(T) = 0, then v#(T) < n — ex(T) by
Theorem 3.1. So, let ex(T) = > 1. We will show that T' has no major
vertex of terminal degree zero and no degree-two vertex; i.e., each vertex
in T is either an exterior major vertex or a leaf.

If T' contains either an interior degree-two vertex w or a major vertex w’
with ter(w’) =0, then A = V(T) — ({u}U (U7, {¢;1})), where u € {w,w'},
forms a distance-k locating-dominating set of T’; thus v% (T') < n—(z+1) <
n — ex(T). Now, suppose T contains an exterior degree-two vertex, say
z. By relabeling the vertices of T if necessary, we may assume that z
lies on the v; — ;1 path in T for some ¢ € [z]. If ter(v;) > 2, then
B =V(T) - ({z} U(Uj_1{4)0,})) forms a distance-k locating-dominating
set of T If ter(v;) = 1, then C' = V(T') — ({vi} U (Uj_1{¢;1})) forms a
distance-k locating-dominating set of T'. (It is easy to see that the sets A, B,
and C are distance-1 locating-dominating; then apply Observation 2.1(c)
for k > 1.) In each case, v¥(T) <n — (z + 1) < n — ex(T).

So, each vertex in T is either an exterior major vertex or a leaf; thus
ex(T) +o(T) =n. Now, if k > 2, then R = V(T) — ({v1} U (UF_1{li1}))
forms a distance-k locating-dominating set of 7', and hence v¥ (T') < |R| =
n—ex(T)—1<n—ex(T). Thus, k=1. O
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4 ~¥(Q) of some classes of graphs

In this section, for any k € Z*, we determine 7% (G) when G is the Petersen
graph, a complete multipartite graph, a cycle or a path. We begin with the
following observations.

Observation 4.1. [5, 6, 8, 12] Let G be a connected graph with diam(G) =
d>2,andletk € Z*. If k > d — 1, then dimg(G) = dim(G).

Observation 4.2. Let G be any connected graph, and let k, k' € ZT. Then

(a) for k> K, 4{(G) < 7F (G) < L(G);
(b) if k > diam(G), then v5(G) = dimy(G).

Next, we determine 7% (P) for the Petersen graph P.

Example 4.3. Let P be the Petersen graph with the the following pre-
sentation: two disjoint copies of Cs are given by ui,us,us, Uq, s, U1 and
wy, w3, Ws, Wa, Wye, w1, respectively, and the remaining edges are w;w; for
each i € [5]. Then, for k € ZT,

[ dimp(P)+1=4 ifk=1,
7L (P) _{ dimy (P) = 3 ik>2.

To see this, note that dim(P) = 3 (see [17]) and diam(P) = 2. For any k >
2, ¥ (P) = dimy(P) = dim(P) = 3 by Observations 4.1 and 4.2(b). Neat,
we show that i (P) = 4. For any minimum distance-1 resolving set S of P,
we may assume u; € S since P is vertex-transitive. It was shown in [18]
that there are six such S containing uy (i.e., {ui,wa, w3}, {u1,uq, wa},
{ur, wg, ws}, {u1,us,ws}, {ur,uqs,ws} and {uy,us,ws}). Since none of
those siz sets S containing uy form a distance-1 dominating set of P,
YE(P) > dimy(P) + 1 = 4. Since {uq,us, w2, ws} is a distance-1 locating-
dominating set of P, L (P) < 4; thus, v}(P) = dim;(P) + 1 = 4.

Next, we determine 7% (G) when G is a complete multipartite graph.

Proposition 4.4. [21] For m > 2, let G = Kq, q,.....a,, be a complete m-
partite graph of order n =" a; > 3. Let s be the number of partite sets
of G consisting of exactly one element. Then

. | n-m if s=0,
dnn(G){ n—m+s—1 ifs#0.
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Proposition 4.5. Form > 2, let G = K, q,
graph of order n =3_""  a; > 3. For k € Z*,

a,, be a complete m-partite

.....

(@) = dimp(G)+1=n—-1 ifk=1and G=Ki,_1,
L T\ dimg(G) otherwise.

Proof. Let G = Kq, qa,,....a,, De & complete m-partite graph of order n =
> a; > 3, where m > 2, and let k € Z*. Note that diam(G) € {1,2},
where diam(G) = 1 if and only if G = K,, and 7% (K,,) = dimg(K,,) =n—1,
for any k > 1, by Theorems 2.7(d) and 3.1. If diam(G) = 2 and k > 2, then
7%(G) = dimy,(G) = dim(G) by Observations 4.1 and 4.2(b). So, suppose
diam(G) = 2 and k = 1. Let s be the number of partite sets of G consisting
of exactly one element. If s = 0, then any minimum distance-1 resolving set
of G is also a distance-1 dominating set of G; thus, 7} (G) = dim; (G). If s =
1 with m = 2, then G = K ,,—1 and v} (K1 1) = n—1 = dim (K3 ,—1)+1
by Theorems 2.7(b) and 3.4(b). If either s =1 with m > 3 or s > 2, then
any minimum distance-1 resolving set of G is also a distance-1 dominating
set of G, and hence v} (G) = dim; (G). O

Next, we determine 7% (G) when G is a cycle or a path.

Theorem 4.6. [8, 12] Let k € Z*. Then

(a) dimg(P,) =1 for2 <n <k+2;

(b) dimg(Cp) =2 for 3 <n < 3k+3, and dimg(P,) =2 fork+3<n <
3k + 3;

(¢) for n > 3k + 4, the formula for dimg(C,,) = dimg(P,,) is as follows:

L2n+k?fglj ifn=0,1,....,k+2 (mod (3k + 2)),

3k
|24l | ifp=k+3,...,[3E5] 1 (mod (3k +2)),

3k+
|23t ifn=[3E5], 003k + 1 (mod (3K +2)).

Proposition 4.7. Let G = P, forn > 2 or G = C,, for n > 3. For any
k € Z*, the formula for 4% (G) is as follows:

dimi(G)+1 if Ge{P,,Cr} andn=1 (mod (3k +2)),
orG=P, andn=k+2 (mod (3k + 2)),
orG=Cp,n>3k+4 andn=k+2 (mod (3k + 2)),
dimg (G) otherwise.
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Proof. Let G =P, forn>2o0or G=C, forn>3. Let k € Z*.

If 2 < n < k+1, then 4%(P,) = dimg(P,) = 1 by Theorems 3.4(a)
and 4.6(a). If n = k + 2, then ¥ (Py42) = dimg(Pyy2) + 1 = 2 by Theo-
rems 3.1, 3.4(a) and 4.6(a). If k+3 < n < 3k+2 and P, is obtained from C,,,
given by wg,u1,...,Un—1,Ug, by deleting the edge upur+1, then {ug, uy},
where a = min{2k + 1,n — 1}, forms a distance-k locating-dominating set
of P,, and thus v¥(P,) = dimy(P,) = 2 by Theorems 3.1 and 4.6(b). If
3 <n < 3k+2and C, is given by ug, t1, ..., Un_1, Uy, then {ug, uy}, where
a = min{2k + 1,n — 1}, forms a distance-k locating-dominating set of C,,
and thus 7% (C,,) = dimy(C,,) = 2 Theorems 3.1 and 4.6(b). If n = 3k + 3,
then, for any minimum distance-k resolving set R of G € {Psk+3, Csrt3},
there is a vertex w in G with codeg (w) = (k + 1,k + 1); thus, 7% (G) =
dimy (G) + 1 = 3 by Theorem 3.1.

Now, suppose n > 3k+4, and let G € {P,, C,,}; then dimy(G) > 3. Let S be
any minimum distance-k resolving set of G. First, suppose that |S] is odd.
If n # k+2 (mod 3k+2), then there exists a minimum distance-k resolving
set Sp of G such that Sy is also a distance-k dominating set of G (see [8, 12]);
thus, 7% (G) = dimg(G). If n = k + 2 (mod 3k + 2), then there exists a
vertex w in G with codeg x(w) = (k+1)g| for any minimum distance-k
resolving set R of G (see [8, 12]); thus, 7% (G) = dimy(G) + 1. Second,
suppose |S] is even. If n # 1 (mod 3k + 2), then there exists a minimum
distance-k resolving set S7 of G such that Sy is also a distance-k dominating
set of G (see [8, 12]); thus, v¥(G) = dimy(G). If n =1 (mod 3k + 2), then
there exists a vertex w in G with codeg y(w) = (k+1),g| for any minimum
distance-k resolving set S of G (see [8, 12]); thus, 7# (G) = dim(G)+1. O

Based on the proof of Theorem 3.1, we note that 7§ (G) = dimy(G) + 1 if
and only if, for every minimum distance-k resolving set S of G, there exists
a vertex w € V(G) — S with d(w, S) > k. In other words, if there exists a
minimum distance-k resolving set S’ of G such that d(v, S’) < k for each
v € V(G), then v} (G) = dimg(G).

Question 4.8. Since dimy(G) < ¥ (G) < dimy(G)+1, can we characterize
G for which each of the two (end) inequalities is an equality?
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5 The effect of edge deletion on v%(G)

In this section, we examine the effect of edge deletion on the distance-k
location-domination number of graphs. Throughout the section, let both
G and G — ¢, where e € E(G), be connected graphs. For the effect of edge
deletion on the metric dimension of graphs, we refer to [4]. We recall how
the distance-k dimension of a graph changes upon deletion of an edge.

Theorem 5.1. Let G be a connected graph with e € E(GQ), and let k € Z7".
Then

(a) [11, 3] dim;(G) — 1 < dim; (G — e) < dim; (G) + 1;
(b) [8, 12] dima(G — e) < dimo(G) + 1;
(c) [8, 12] for k > 3, dimk(G — e) < dimg(G) + 2;
[8, 12] for k > 2, dimy(G) — dimg (G — €) can be arbitrarily large.

Theorem 5.2. Let G be a connected graph with e € E(G), and let k € ZT.
Then

(a) VH(G) =2 < 7H(G =€) < 1H(G) +2;
(b) (G — ) S3(G) +2
(c) Jor k>3, 7£(G — ¢) < 75(G) +3.

Proof. Let k € ZT. By Theorem 3.1, we have dimy(G) < 7#(G) <
dimg(G) + 1 and dimg (G — €) <75 (G — e) < dimy (G —e) + 1.

For (a), note that v (G—e)—71 (G) > dim; (G—e)—(dim; (G)+1) > —2 and
YH(G) =71 (G—e) > dim; (G) — (dim; (G —e)+1) > —2 by Theorem 5.1(a);
thus, 77 (G) =2 <71 (G —e) <7L(G) +2.

For (b), note that 7% (G) — 4 (G

—e) ms(G) — (dima (G —e) +1) > =2
by Theorem 5.1(b); thus 7% (G —¢e) <

>d
0% (G) + 2.

For (c), for any k > 3, we have v} (G) — 'yf(G e) > dlmk(G) — (dimg (G —
e) + 1) > —3 by Theorem 5.1(c); thus 7# (G — e) < v¥(G) + 3. O

Theorem 5.3. For any integer k > 2, v%(G) —~v% (G —e) can be arbitrarily
large.
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Figure 2: [8] Graphs G such that dimy(G) —dimy (G —e) can be arbitrarily large,
where k > 2 and a > 3.

Proof. Let G be the graph in Fig. 2 with a > 3. It was shown in [8, 12]
that, for any k > 2, dimy(G) = 2a and dimy(G —e) = a+ 1. For k > 2,
YE(G) > dimg(G) = 2a and ¥ (G — e) < dimg(G —e) +1 = a + 2 by
Theorem 3.1; thus, 7% (G) — (G —€) > 2a — (a+2) = a—2 — o0 as
a — 00. O
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