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1. INTRCDUCTION

A recent article of Dawid, Store, and Zidek (1373) notes two Bayesian
calculation methods--the first using an improper prior, the second avoiding
jt--that one feels intuitively ought to lead to the seme result, but in
general do not. This "marginalization paradox" has been interpreted widely
as revealing a fundamental incensistency in the cormon Bayesian practice
of using improper priors to express prior ignorance.

We argue that, on the contrary, resoiution of the paradox is very
simple, the discrepancy arising not from any defect of improper priors,
but from a rather subtle failure of the seccend method to take into account
all the relevant information. This situation, far from revealing an
inconsistency in Bayesian methods, shows that to violate them in seemingly
harmless ways, can gencrate paradoxes; i.e., it is orly by strict adherence
to the Bayesian principles expounded by Jeffreys in 123%, that ¢ne can
avoid inconsistencies in statistical reasoning.

The marginalization process is then turned to advantage by showing
that it leads to a new means for defining what is meant by "uninforrative”
and for constructing noninformative priors, as the sgiution of an integral
equation. This method draws only upon the universally accepted principles
of probability theory, making no appeal to such additional desiderata as
'éntropy, group invariance, or Fisher information. However, its range of

applicability is still largely unexplorad.



2. THE PARADOX

A conscientious Bayesian BI studies a problem with parameters 8 which
he partitions into two sets, 8 = {n,z), being interested only in inferences
about ¢. Dawid, Stone, and Zidek (1973; hereafter denated DSZ) note that,
in several examples where BI uses an improper prior for n, the data x may
also be partitioned into two sets, x=(y,z) in such a way that B]'s marginal
posterior distribution for ¢ "is a function of z only," while the sampling
distribution of z depends only on Z.

A lazy Bayesian 82 then tries to derive the posterior distribution
p(zix)=plgjz) more easily by applying Bayes' theorem directly to the
sampiing distribution p{z]¢}; and finds that he cannot reproduce Bl*s result
whatever prior w{¢) he assigns.

DSZ then point the accusing finger at B] thus: "82'5 intervention
has reveaied the paradoxical unBayesianity of B]'s posterior distribution
for ¢." In the ensuing discussion there was near unanimity of all opinions
expressed, holding that 81 is the party at fault, his transgression lying
in his use of an improper prior.

A group-theoretical analysis by DSZ showed that if the sampling
distribution p(dydzinz) has a certain group Structure [invariant under
the combined action of coupled homomorphic groups G, G which are exact
and transitive on the spaces S(y), S(n)], the paradox can be avoided by
choosing the prior as the right-invariant measure on S{n). This procedure
has, indeed, been advocated by a leng list of writers starting with Poincaré
(1912). However, as scon as we pass beyond the case of location and scale
parameters it is rather exceptional to find a problem with all that group
strycture; and the paradox persists even in problems that have no group
structure at ali. In general, therefore, no way emerged for avoiding the

paradox.



Predictably, some have seized upon this as a new tool for the abrogation
of Bayesian statistics in general. However unimportant the practical
consequences may be, it is imperative for Bayesian theory that this puzzie
be c¢learved up.

In the following we argue that (1) Resolution of the paradox is far
too simple a probiem to be in need of group-theoretical analysis. That it
can be made to appear and disappear by different choices o} the n-prior,
shows immediately where the difficulty lies. (2) the real cause of the
paradox is not B]'s use of improper priors, or indeed any transgression
on BT'S part. On the contrary, it appears only when 82 violates elementary
Bayesian principles. Bz's transgression was concealed from view by concise
notation. {3) Nevertheless, the prior =n(n) that "avoids the paradox" has =z
useful interpretation as being, in a certain sense, "completely uninformative."
{4) Recognizing this, marginalization leads to a new means for constructing
noninformative priors, via a set of simultaneous integral equations. This

method is consistent with, but appears more general than, the group analysis.

3. THE RESOLUTION

We must be careful to note exactly what the first quoted statement of
DSZ means. From the mathematics it is clear that to say the posterior
distribution of ¢ "is a function of z only" means that it depends on the
data x only through the value of z. But of course, any posterior distribution
depends not only on the data, but also on the prior information. As Jeffreys
(1939) stressed, to avoid ambiguities the prior information (or hypotheses)
on which our probabilities are conditional, ought to be stated explicitly to

the right of the stroke in our probability symbols p(A|B).



Bl‘s prior information includes the whole structure of the model, the
qualitative fact of the existence of the components n and y; and the prier
distribution of n. How, then, can one be sure that 82 is Justified in
considering only the reduced problem in which (n,y) never appear at all?
According to Bayesian principles, one may not disregard any part of either
the data or the prior information, unless that part is shown to be irrelevant
in the sense that it canceis out mathematically.

82'5 reduction appears, at first glance, to be reasonable; but so
did a multitude of ad hoc procedures of non-Bayesian statistics, which
were found eventually to contain defects. Surely, there is no room for
persconal opinions about this; the mathematical rules of probability theory
are quite competent to tell us whether Bz’s reduction is or is not justified.

As a constant reminder of the presence of prior informaticn, we

extend the notation of DSZ by introducing the symbols I], I2 to stand
for the totality of prior information used by B], 82 respectively. The
quoted first statement is then, more precisely,
plclxIy) = plelzly) . (1)
Now the rules of probability theory tell us that
p(elxyy) = [ en plalaxiplalxd)) (2)

If, given I] and all the data x, additicnal knowledge of n would be irrelevant

for inference about z; i.e., if
p(zlnxly) = plzfxIy) (3)

then n integrates out of (2) trivially. But if {3) does not hold, then n
is relevant, and the posterior distribution p(n|x11) intrudes itself

inevitably into the problem, bringing with it a dependence on the prior

"('tEI] ).



In this case, we have to expect that the separation property (1) canrct
hold for all n-priers. If (1) holds for some class C of priors, thren while
P(CIXI1) is, in a sense, "a function of z only,” it is a different function
of ¢ for different n-priors in C. But since BZ‘S posterior distribtution
p(cIZIZ) is independent of ﬂ(nlfl), it appears that we have at hard all the
material needed to manufacture paradoxes. In ather words. we sugogest that
this paradox has, fundamentaliy, nothing to do with ircreper priors; 81 and
82 obtain different results when, and only when, Ez igneores relevent prior
information (about nand/or the model), that B} is taking into account.

[t remains to be shown that the mechanism just sugcested is the one

actually operative in the examples of [0SZ. Since (3) is equivalent to
p(n,cixI) = p(nlxi)p(z[x1} (4)
we examine some of the DS7 examplies for this facterization preoperty.

Example 1. The model is described in DSZ. For present purposes we neod
note only that the raw data x={x, ... x_ } are partitiored inte y= x,,

and 2 = {z,=x./x;, 1 <1 <nl. The joint posterior distribution is

p(nzlxi,) = H(Clll)c'c o exp(-nyQ)=(nlly) | (5)

where

n
Qz,2) = ifzi te o, 7y (6)
ad

is a function that is known from the data. Here B1 has helped 82'5 prosnects
as much as possible by assigning independent priors to n, ¢. Nevertheless,

the 1ikelihood function mixes them up and we find the conjectured lack of

factorization (4). B]'s marginal posterior distributicn is

pleixty) « n(ol1 0™ " e ¥ ninln) an (7)
Y
9}



from which we note several things:

(A) As predicted, the dependence on the prior n(nll]) {s manifest.
Prior information about rn is clearly relevant to inference about 73 and 82'5
reduction violates Eayesian principles by throwing it away.

(B) The dependence on y drops cut on normalization, leading to (1},
if and only if the n-prior is in the class {C: n(nlI]) o nk, -n-1<k<ew},
which includes all those considered by DSZ.

(C) For any prior in c¢lass C there are no convergence problems. It
is therefore difficult to see how use of an improper prior can in itself be
grounds for reorcach; ail of BI'S conclusions can be approximated to any

accuracy we please {e.g., one part in 101000)

by use of a proper prior (as
shown explicitly below, Eg. (24)).

(D) Cn the other hand, use of a proper prior, In(nlll)dn =1, will
take us out of the class C. But then the statistic y cannot be disentangled,
and remains relevant; the separaticn property (1) is lost, and B2 becomes
superfluous.

{E} The proof of DSZ that use of proper priors avoids the paradox,
rested on two assumptions: that By uses a proper prior, and [DSZ, £q. (1.20)]
that the separation property still holds. But for this model, those assump-
tions are contradictory. DSZ supposed that, with proper priors, the paradox
would disappear because B} and 82 then agree. We now see that, at least in
this example, the paradox disappears rather because the comparison disappears;
82 can no longer play his game at all.

For efficient verbalization at this point, we need to coin a new term.

A prior n(n) that leads to the separation property (1) nullifies the effect

of the data y for inference about r. Let us call such a prior nullifying

{more precisely: y-nullifying within the context of a particular model).



What DSZ proved is then: If a proper prior is also nullifying, then it

necessarily leaves B] and 82 in agreement. However, except in the trivial

case of complete independence: pldydzinz)=p(dyin)p(dz]z) one cennot ascuime

ohne weiteres the existence of such a prior, as this example illustrates.

Example 2. Ve have parameters 8 = (u],u2<j and data x= (u

sampling density function

p[uluzs]u1u20] =A(sv"]/ov+2)exp(—0)

where A is a normalizing constant and

1t

q

However, we are interested in inference only about

is found to depend only on Z:

p(zlu]L? g = plz|g) =/27 A fmmv e du
0
where

R{z,C,w) = %{vwz + (wz-)°)
Making the additional change of variables

=1 -1
o= 2(U]+U2) > u 2(U]+U2)

] 2 2 2
;;ﬁ [[Ul— u]) + (UZ' u2] +vs“]

(9)

(14)



the unwanted components are n = {u,0); y={u,s), and B]'s posterior dis-

tribution of ¢ is

p(glxI]) o« n(c]I1) jP W’ dw e-R flu,o) (1%)
S

where

flu,o) = 1 fm dp m{y,0) exp[-(u ;U sz (16)

ym
and in the integration over w = s/o, s is held constant while o varies.
Again, a certain class € of priors =w(n)= ={p,o) is found to be nullifying,

teading to the separation property {(1}. This includes the class
‘. -k, 1-k
C 'd“IdUZ(j do =¥ 2 dody o do (17)

considered by DSZ, or indeed any prior m{u,o) independent of 1, for which

(15) is independent of y:

(et = ateity) [ ae R ato) (18)
O

From this we confirm Eq. (1.3) of DSZ {(with k=1) and comparing with {12)
it is seen that B] and 82 will agree if k=2. Once again it is clear from
(15}, (18) that in general their conclusions will differ because B, is
taking into account relevant prior information about n={u,g) that Bé is
ignoring. |

Rather than continuing with a rather tedious, but still superficial,
inspection of more examples, which would only reconfirm the mechanism

already established, we can get a better understanding by returning to a

second lock at Example 1.
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4, A RETNTERPRETATION

We may take a more charitable view of BZ’ if DSZ will grant a similar
 courtesy to BI' In these examples, independentiy of all questions of priors,
it is true that the marginal sampling distribution of z depends only on 2.
Suppose that we now regard 82, not as a lazy fellow who "always arrives late
on the scene of inference” and tries to simplify 81'5 analysis; but merely,

through no fault of his own, an uninformed fellow whose knowledge about the

experiment consists only of the sampling distribution

plzlely) = plzizl,) (19)

and is unaware of the existence of the components (n,y). Then 82 is following

strict Bayesian principles, and
plzizl,) = n(c]l,)p(z]s1,) (z0)

will always represent the best inferences that can be made con the information

he has--whether or not BI'S posterior distribution has the separation
property p(clsz]) independent of y, that initiated all this.

It then makes sense to compare 82‘5 results with B]'s in all cases,
whether B]'s prigr for n is proper or improper; and in all cases the
comparison will reveal just how much difference B]'s extra information

has made. For the most meaningful comparison, we suppose they have the

same prior information about g:
r(zg]1y) = w(c]l,) = =(c) . (21)

Returning now to Example 1, from Eq. {1.2) of DSZ, 82'5 conclusions are

given by

p(glzl,) = w(z)c™® [Q(g,2)]7" (22)
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while Bl‘s are given by our Eq. (7). Let B1 assign a proper n-prior of the

conjugate form

(nl1)) « nlgttn t>0 (23)

which as t + 0 goes into the family of improper priors used by DSZ. Then

Bl's result is

n+k
P(:Isz]) « n(c)c"”[m%m} (24)

which, we note, goes smoothly and continuously into 82'5 result (22) as
t-+0, k~0.

Sut no "paradoxical unBayesianity" or "impropriety" is apparent.
Strictly speaking, the dependence on y drops out, leading to the separation
property {1}, only when t=0, but for t << yQ there is virtually no
y-dependence, even though the prior is still proper. There is no discontinuous
change; as t beccmes smaller and the prior (23) becomes more nearly nullifying,
the y-statistic just becomes less and Jess informative.

If then By, having noted that t << yQ, decides to simplify (24) by
setting t =0, this now appears, not as a paradox-creating transgression
into the realm of improper priors, but rather as a perfectly harmless and
reasonable approximation--indeed, an approximation far better justified
thén many that are accepted without question in non-Bayesian statistics.

If B, has very little prior information about n [i.e., if (t,k) are
small]), then there is virtually no difference between his conclusions and
82'5, whether his prior is proper or improper. If, on the other hand,
(t,k) are large, then B] is in possession of additional, highly cogent,
information relevant to inference about ¢; and it is only right and proper

thet his conclusions deviate from 82‘5. Any statistical method that failed
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to make use of this information although it was available to the user, would

then be deserving of the epithet, "impropriety."

5. IMPROPER PRIORS - DISCUSSIOGN

In view of the great emphasis on the issue of improper priors in DSZ
and in the ensuing discussion--almost to the exclusion of all else--and
subsequent attempts to use this as an argument against all Bayesian metheds,
some further exegesis defending the use of improper priorélis reeded.

A sequence {“1} of proper priors defines a corresponding sequence {Pi}
of posterior distributions. Often, even though the l1imit of {”1} is improper,
the limit of {Pi} is a proper, well-behaved, and analytically simple,
distribution. The Bayesian will often take that 1imit for mathematicel
convenience, after it is clear--whether by specific caiculation in the
manner of (24) or through past experience with similar problems--that
this will make no practical difference in the results.

Often, the experimental data are so much more informative than the
prior information that to carry along all the details of any particuiar
proper prior, although in principle the correct thing to do, would in
practice only increase the amount of computation without yielding anything
of value for the purposes at hand. Usually, it is so clear when we have
this situation that there is no need to construct specific sequences of
the type {23}, (24); one proceeds immediately to the simpler Timit.

In a similar way, a person using the Chi-squared test knows in
advance, from common sense and the past experience of Statisticians in
general, about how much data he needs, and how many cateqories, to give

a test that is good enough for his purposes. Beyond that, further
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refinements, although correct in principle, would only increase the amount
of computation without useful return. In orthodox statistics, use of a
little practical common sense in applying a method is not regarded as an
inconsistency. Perhaps, when his methods are more widely understood, the
Bayesian may hope to be granted an equal dispensation.

Now, as noted by several participants in the discussion follcowing
the DSZ paper and discussed at greater length in Jaynes (1976), it is
just the Bayesian resuilts based on roninformative improper priors that
correspond closely--often exactly--with those obtained by orthodox methods.
In these cases, it is difficult to see how one can reject the Bayesian
use of an improper prior, without thereby rejecting with equal force the
orthodox method which yields the same result,

On the other hand, in some cases the attempted passage to an improper
prior may fail, by yielding a non-normalizable posterior distribution in
the 1imit. This is symptomatic that the experiment is so uninformative
that our prior information is, necessarily, still highly relevant to any
inference that can be made; and in such a case we had jolly well better
take that prior informaticn explicitly into account by using the appropriate
proper prior. In this case an orthodox method, by its nature incapable
of taking prior information into account, is practically guaranteed to
produce absurd or dangerously misleading results [for a specific example,
see Jaynes (1976); reply to Kempthorne's comments],

The actual equaticns both in DSZ and in the present work, are not
in any way changed by our reinterpretation of 82'5 rele; but the analysis
is seen in a different and perhaps more constructive light. We are not
merely exhibiting the folly of a defective Bayesian procedure--ignoring

information or using improper prigrs. We are comparing two entirely



14

correct Bayesian procedures, making inferences about the same quantity g,
at two different stages of knowledge. The parameter n is nct merely an
"unwanted" complication; it represents new information relevant to the
desired inference about &.
The comparison is, in effect, a microcosm of an often-cccurring real
1ife phenomenon, the effect of advancing knowledge on a scientific inference.
For example, from the known rate {(z=2x 1020 megawatts) of radiation
of energy from the sun, estimate its future lifespan (z); how much longer
can it continue pouring out energy at thatrate? The datum {z) was kncwn
120 years ago about as well as it is today, and on the basis of the laws
of physics as then known, 82 [better known as Lord FKelvin {1862)] estimated
a future life of ¢ = a few million years; an entirely valid conclusion
from the information he had. But today we know of a new parameter
(n = energy release from nuclear reactions) that has an important bearing
on the question, and we have new data {y = abundance of various elements
in the sun, and energy release of a number of nuclear reactions}. As a
result, B] [Gecrge Gamow (1945)] reestimated the future 1ife of the sun
to be vastly greater, about 1010 years.
Doubtless, an econometrician cculd give much more immediate examples;
e.qg., the effect of new knowledge (the role of 01l prices) on prediction
of economic activity from models in which, prior to 1972, o0il price did

not appear as a factor.

6. THE INTEGRAL EQUATICNS
Can we extract something of positive value from all this, leaving
dayesian thecry with a net gain? As is now clear, there is no reason to

be surprised when 8] and 82 disagree; that was only to be expected. What
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is perhaps surprising, and calls for explanation, is rather that in some
cases B]'s extra information was unavailing, and they did agree, after
all. How is that possible?

Clearly, in all cases, 82 was incorporating no prior information
about n. If, nevertheless, they aqgree in one case, it seems natural to
conclude that, in that case, B] must not have been incorporating any
prior information either; at least, none that was relevant to z.

The prior w(n} that leaves them in agreement should, then, have
some close relation to the one describing “complete ignorance" of n, if

such exists. Is it possible that marginalization 1is giving us a new,

objective, and above all, workable criterion for defining precisely what

'

is meant by "complete ignorance,” and for telling us whether and when

such priors do c¢r do not exist?

But we must proceed cautiously., It is not clear how marginaiization
could tell us that a prior is "completely uninformative” without qualifica-
tions. But marginalization can and does provide an answer to the question
whether, within the context of a given model, any proposed prior m(n) is
or is not “"completely uninformative about z."

Two further cautions are necessary. A prior n(n) that is held to
be uninformative about n ought, one would suppose, to have the property
that 1t is uninformative a fortiori about any other quantity ¢. Clearly,
however, the converse need not hold., In any given model, a prior =w(n)
might express very great knowledge about n; and still be r-uninformative
because of the functional form of p(yz|nz). On the other hand, if one
could prove that a given prior n(n) is z-uninformative for all models
in which n appears as a scale parameter, and unique for one, that would

seem to be valid grounds for a stronger claim.
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Finally, we note that in ancther respect the property of a prior ={(n}
to leave B1 in agreement with 82 involves rather mere than what one usually
means by the term "uninformative." BIIS advantage over B, does not lie
only in his prior knowledge of n; he has also the additional data y. If
a prior n(n) is to leave him in agreement with 82, therefore, it is not
enough for m(n) to have the passive property of being g-uninformative
(i.e., of not in itself providing any information relevant to z). It
musf perform also the active function of rendering the new data y irrelevant

to z; that is what we have termed "nullifying."

The necessary and sufficient condition for a prior n{n) to be nullifying
independently of nw(z) is that B]'s quasi-likelihood contains y and 2 in
separate factors:

Joly.zine)ntnidn = fiy,2)g(z,c) (25)
for some functions f, g. The surprising discovery of DSZ was then that,
while a proper prior that is nullifying is also necessarily uninformative
[Proof: dintegrating y out of (25), it then reduces to B.'s likelihood

2
)], an improper prior may be nullifying without being uninformative.

p(z
In Example 1, the prior (23) is nullifying if t=0; but it is not
uninformative unless k = 0 also.

Let us seek the necessary and sufficient condition for agreemant of
B], 82’ subject to three essumptions. Firstly the property (19} without

which we should have 1ittle reason to compare B1 and 82 at all. Secondly,
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it would make little sense to ask whether an n-prior 1s uninformative about

r if it contained £; so we assume that B] assigns independent priors:

m(nlly) = mlnl 1) dn{c] 1) . (26 )

Thirdly, BSZ considered whether 82 could, by any choice of his prior
n(&[IZ), achieve agreement with B}'s posterjor distribution. But for present
that much freedom; for if B

purposes we cannot allow B and B2 had

2 1
different priors for ¢, that would in itself lead to a difference in

their conclusions, that really has nothing to do with B]'s prior knowledge
about n, although agreement of the posterior distributions might be,
fortuitously, restored by a particular n-prior. But in that case it

would be very wrong to label such an n-prior as "uninformative about z."

To avoid this, we must suppose rather that 81 and 82 start from the same

state of prior knowledge about ¢ as in (21):

w(el1y) = w(ell,) = wlz)

and end up still in agreement as to the posterior distribution. And by
"agreement”, we do not mean that they agree for one particular sample or

one particular prior. In order to justify saying that B,'s prior for n

1
was completely t-uninformative and y-nullifying, they must remain in
agreerent for all data sets x = {y,z), all sample sizes, and all priors

n{z).

With these assumptions, B;'s posterior distribution is

1
plcly,z,1y) = ﬂ(c)p(zlc)fdn n{n[1;)p(y]zncly) (27)
While 8,'s is

plzlzl,) = wl(glplzlg) . (28)
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Evidently, the necessary and sufficient coendition for agreement is that

[ an wtalippivizney) = plylzer) (29)
shall be independent of ¢ for all y,z. Denoting the paremeter space and
our partitioning of it into subspaces by Sg = SC (X Sn' we may write (29)
as

fp(y,ZFf;,n)ﬂ(n)dn=A(y,z)p(zlr,) , ¢ in S

S
n

¢ (30)

This is a Fredholm integral equation in which the kernel is B,'s likelihood,

1
K(z,n) = ply,ziz,n), the "driving force" és 82'5 1ikelihood p(zlz), and
My,z) = p(y[zI]) is an unknown function to be determired from (30).

For each possible data set x = {y,z) we have an equation of the form
{30); so if a single prior w(n) is to suffice for a1l data sets it rust
satisfy not just one integral equation, but a large--in general infinite--
class of simultaneous integral equations.

Now in other applications we are accustomed to find that a single
Fredholm equaticon has already a unique solution., At first glance, there-
fore, it seems almost beyond belief that the system of equaticns (30)

could fail to be grossly overdetermined; from which one would ke forced

to conclude, with the antiBayesian skeptics, that uninformative priors

. do not exist.

Clearly, the consistency of previous Bayesian thought, which pre-
supposed the existence of uninformative priors, is being put here to a
severe test., But it is also an eminently fair and "objective" test.
The.question whether, in a given model, the notion of an uninformative
pricr is contradictory, ambiguous, cr well defined, is remove& from the
realm of philtosophical debate, and reduced to the question whether a sot
of simyltaneous integral eguaticns is overdetermined, underdetermined,

or well-posed.
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7. AN EXAIPLE

We know at Teast that the system of equations (30) is not always
overdetermined; for in several examples DSZ were able to recognize particular
priors n{n) which leave B] and 82 in harmony for all samples. Each of the
0SZ examples can tell us something about the mathematical structure of (30)

and its correspondence with previous group invariance arguments.
Example 1.  The sampling distribution is

plyz[ng) = o "% y exp[-nyQ(z,z)] (31)

with Q{z,z) defined by (6). This gives the marginal sampling distribution

p(z]g) = (n-1)1 "8 Q" . (32)
Sn is the positive real line, and the family of integral equations (30)

becomes: for each possible sample (y,z),

imﬂ(n)n" Y g, = (n-1)1 yaly,z)[yQ(z,2)1™", ¢ = 1,2,...,n-1 . (33) -

Now choose any two values g # ¢', and write Q=Q(z,z), Q' =Q(z,z'). Equation

(33) then requires that for all (y,z)

j@v(n)(er)n eV 4y - [mﬂ(n)(nyQ')n e 4y (34)
or ° ©

ﬂ“(“) " “(”ﬁq"Hn" e84 =0, O<y<w . (35)

(o]

Since the Laplace transform is uniquely invertible, this requires that for
all choices of {z,z,z'} we must have, setting a = Q/Q',

n{n) = an{an) |, 0<n<w (36)
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But this is the same functional equaticn that was deduced earlier from

the transformation group that expresses "complete ignorance” of a scale
parameter. To complete the proof, note that from (6}, if ' < g,

Eq. (36) must hold in the continuous range {1 < a < c), and so the only

possibility is, to within a constant factor,

wn) = 0 . (37)

This argument shows that no n{n) other than (37) can satisfy (33).
Conversely, on substitution we see that {33) is indeed satisfied for all
{y,z,z}, with yA{y,z)=1. Again, we note several things:

(A} ~-This argument made no use of the separation property‘(l).
The solution (37) implies this as a necessary, if obvious, condition
for agreement of B] and 82.

(B) The problem turned cut to be well-posed; there is one unigue
prior m{n) that is "completely uninformative about z," and it is just
the one that Jeffreys anticipated, on partly intuitive grounds, scme
forty years ago {as the prior representing "complete ignorance” of a
parameter known to be positive). It follows also from the fact that
n is a scale parameter, by some transformaticon group methods {for
example, Jaynes, 1968; one of several quite different approaches al}l
called "the transformation group method" or "the group invariance
principle,” although they utilize different groups which operate in
different spaces, are chosen by different criteria, and yield different

results.. For further comments, see Appendix A).
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(C) But the prior (37) is now derived in a way that is completely
independent of anybody's intuition or any additiona1‘desiderata such as entropy,
group invariance,or Fisher Information. Given the sampling distribution
{31), the result (37) follows by straightforward mathematical steps.
[Indeed, on sufficiently fine analysis, it will be seen that the only
elements of probability theory used in the transition from {31) to (37)
are the product rule p(AB|C) = p(A{BC)p(B]|C}, and the sum rule
p{AlB) + p(~AIB) = 1].

(D)  This, however, recalls the oft-quoted remark of Lindley (1971):

"Why should one's knowledge, or ignorance, of a quantity depend on the
experiment being used to determine it?" The answer, in our view, is
that the prior distribution should, of course, be based on all the prior
information available., But the role a parameter plays in a sampling
distribution is always a part of that information. Irdeed, that is the
irreducible minimum information without which a problem of inference
cannot be formulated. Often, in ped2gogical examples, it is the only
prior information at hand, because {as in all the DSZ examples) the
persgn formulating the problem simply neglects to provide any more..

In this case--and only in this case--the prior distribution is,
recessarily, determined (not necessarily uniquely) by the sampling
distribution. But this is just the case we are solving by (37).

(E) In a real problem, a parameter will be, in general, "a
physically meaningful quantity about which we know something." But
for-the mechanics of incorporating that something into our informative
prior there are, to the best of the writer's knowledge, only two known
principles: Bayes' theorem and maximum entropy; and both of these still

require an ignorance pre-prior like {37) as their starting-point (Jaynes, 1968).
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Therefore, for any problem of inference we see no way to avoid the notion of
“complete ignorance,” any more than we could avoid the concept of zero in
arithmetic, Nor should we wish to avoid it; for clearly, to ask, "What is
pur state of knowledge after receiving informaticn 12" cannot have any
definite answer until we specify: What was our state of knowledge before
receiving 1?7 And this holds with equal force whether we choose to classify
I as part of the data, or part of the prior informaticn {(see, however,
Apperdix A for some further comments).

(F) In this example, n was a scale parameter, the sampling distribu-

tion (31) having the functicnal form p(y,z|z,n) = y_] g{z,z3yn). For any

sampling distribution of this form [or equally well, y'] g(z,75y/n}] one
readily verifies that the Jeffreys prior n{(n) ~ n-] satisfies {30), and
yA{y,z) is then a constant. Whether this solution is unique depends, of

course, on how z,; enter into the function g.

8. THE ONE-DIMENSIONAL CASE

With the insight gained from the DSZ Example 1, we are able to give a
more general discussion of the case where y, n are one-dinensional. Wwe started
cautiously, asking only for a prior n(n) that is uninformative about Z
within the context of a given model. We now see that for a scale parameter
n, the Jeffreys prior is g-uninformative for all models, and unique for one.
But this is already enough to establish it as the only prior for a scale
parameter that is "completely uninformative" without qualifications.

Since the location and scale parameter cases are equivalent by the
transformation u=10g o, it follows that the uniform prior du is similarly
general and unique for a location parameter {but in this case the result is

so intuitive that it had never been doubted anyway).
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The analysis may be generalized in the follewing way [suggested to the
writer by a remark of W. D. Fisher]. Consider any sampling distribution with

the functional form

3h
plyzlnc) = glz.zih{y,n)] 3y (38)
for which the property p(zlng) = b(zlc) underlying marginalization theory follows

at once. The integral equation (30) for an uninformative prior becomes

d
JG(ZZ;h) %g-ﬂ(n)dn = l(y.Z)[g(ZC;h}dh . (39)
If this is to hold without further assumptions about the functional form of

g(zzih), it is necessary that A(y,z) = A{y) be independent of z, and that

3h ) ah
_a'}' TT(]'}) - ‘\(y) 871 . (40)
8ut then, making the change of variables (y,n) - (¥,7) where
7 = exp[Miy)ay
n oz EXpJﬁ(ﬂ)dﬂ ‘ (47)

Eq. (40) reduces h to a function of (yA):

h{y,n) = h{yn) (42)

and {38) assumes the functional form p(?,:}.]ﬁ,c)ﬂy’1 glz,z;yn) of remark (F)
above, where g{zz;a) = g(z,c3h(a)). Thus the class of functions h(y,n) for
which n(n} and X(y) can be constructed as in (40) takes us back, to within
the change of variables {41), to the scale parameter case.
For example, if

h(y,n) = tanh/y"+0" —a , 0 <<
we have at once from (40) that the uninformative prior is

1{n) = o
Likewise, if

hiy.,n) = €{y)[tano”? | 0<an < =

the uninformative prior is

7(n) = csc(2an) .
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and if

n{y.n) = 109[(w-3&cn+y)}

the uninformative prior is
w(n) = 14072
Now, although the result {40) is rather special in the class of all
problems with one-dimensional (y,n}, it is easily seen to exhaust the
possibilities of the DSZ group analysis for that class. They took the
sampling distribution as [0DSZ, Eq. (2.6)] p{dydz|ny) = f(yzjn;)uG(dy)dz,
where kg is "a fixed general measure element" and defined the group structure

by [DSZ, Eq. (2.7)]:

fly,zin,t) = flgy,z|9n,z) (43)

where g, g are corresponding elements of the groups G, G mentioned in Sec. 2
above. Evidently, if (y,n) are one-dimensional, (43) says only that we have

the functional form [compare (38}]:

flyz|ng) = afz,z5h(y,n)] (44)

the "combined action of the groups” signifying a kind of hycdrodynamic flow
in the (y,n) plane, whose streamlines are the contours h{y,n) = const. But
just as our Eq. (40) cannot be satisfied for all functional forms of h{y.n),
so the group structure (43) restricts the form of h{y,n) in (44).

The form of that restriction can be anticipated at once by the foliowing
argument. A continuous exact group of mappings of the real line onto jtself
is necessarily a one-parameter group {for in y' =gy with fixed y, each group
element g is represented by one and only one value of y'; thus y' parameterizes
the group]. But a one-parameter centinuous group is isomorphic with the group
of simple translations (x'=x+a). We infer that the group structure (43)
must restrict us to problems that are equivalent, to within a changa of
variables, to the location/scale parameter case. Indeed, on following

through the analysis (Hamermesh, 1962) we find that the condition imposed
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on (44) by the group structure is just our Eq. (40); 1.e., the functions
denoted h(y,n) in (38), (44) are identical.

The condition found here is the same as that given by Lindley (1958)
for agreement of a Bayesian posqerior with a fiducial distribution; such
relations were noted also by Fraser (1961) and Villegas (1971).

Now we arrive at the really interesting question: What happens in
the one-dimensional case if we try to go beyond the class of problems just
discussed? Do we continue to find uninformative priors from (30) beyond
those obtainable by group analysis; or do we come up against that threatening
overdetermination? This opens up a wide class of new mathematical problems,
interesting in their own right and of obvious importance for the future of
Bayesian statistical theory. At the time of writing (January 1978) progress
on them is far from complete, consisting mostly of isolated results.

The following example, due to C. L. Mallows, shows that further
solutions do exist beyond those resulting from the group structure {43);
and that the apparent overdetermination is not always real.

Let y, z be ncn-negative integers, and

ot Y (1-m) %Y 0<gm<ew

ST ' aiyes (45)

plyz|ng) =

Then the marginal sampling distributions are Poisson:
z
plzlen) = plzlz) = e™% & (46)

independent of n, as required by marginalization thecry and

y
plylzin) = e ﬁl;;--!)—— (47)

depending on both parameters; thus seemingly leading to a nontrivial
marginalization problem. This example lacks the group structure (43),

since y 1s discrete, n continuous. But we now find the peculiarity that
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(ylz,z,m) (48)

is independent of ¢, and as a consequence the integral equations (30) are
satisfied trivially; all priors 7{n) are nullifying and uninformative about z.

That the opposite behavior can also occur, is shown by Example 5 of DSZ.
The concluding message of their Sec. 1 was that all is well as long as 81

uses proper priors. Later, they consider the modei:

plyzing) = rt‘”—”‘* exp{~%{t2+n(zt~c)2+n(yt~n})2J}dt (49)
0
and note that, if y=0, the posterior distributions of B] and BZ are
p(c|211) o w(c)]thn—1 exp{ ft +n{zt -1 } . {50)
0
pelaty) « 2(0) €72 epf T0Penize- ) hhar (51)
0

But if z>0, the ratic of the integrals is (by a Schwarz inequality) a
menotonic increasing function of £; and so B] and 82 cannot agree unless
they assign a singular prior n(z) = G(C-CO), in which case their posterior
distribution is independent of the data.

DSZ (Appendix 2) term this situation, "The Inevitable Faradox cf
Example 5." It is, perhaps, even more inevitable and more paradoxical
than they intended; for it is clear from (49) that this situation arises
for all priors nu(n), proper or improper! What, then, are we to make of
their proof in Sec. 1, that this discresancy "could not have arisen if
B] had empioyed proper prior distributions”?

Passing over this query, the DSZ Example 5 is particularly instructive,
just because at first glance the trouble appears so acute. The ¢nly
nullifying prior is the uniform one ©{n)} = const.; and it leads us back to

50) for all y. Surely, we have now run up against that overdeterminaticn;
Yy Y d
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it is simply a mathematical fact that there is no prior m(n) that can leave
B] and B2 in agreement for all data sets (y,z) and all priors w(z).

Yet we would argue that there is still nc real paradox here. This
situation should not be disconcerting to anyone who has noted, in cther
Bayesian problems, that the effective sample number n often drops by one
unit when we integrate out an unwanted parameter; or who, in using the
Chi-squared test, has reduced the number of degrees of freedom by one unit
to take account of a parameter estimated from the data.

In fact, the explanation was noted in our Sec. 3 above; the mere
qualitative fact of the existence of the components {n,y); i.e., the
knowledge that other parameters are present in our mcdel beyond those of
interest--already constitutes prior information relevant to B}'s inferences,

that BZ is ignoring. For further discussicon, see Sec. 11 below.

These examples demonstrate that two opposite extremes of behaviof
are possible; presumably, many or all of the conceivable intermediate
cases are also possible. It is evident that a great deal more insight
into the content of the integral equations (30} will be needed before any
overall understanding of marginalization and its implications for Bayesian
theory can be reached. In the writer's judgment, the remaining space
available here is best used, not in communicating a mass of further
isolated results like the above (which the reader can easily invent
for himself), but by giving a preliminary survey of a more general attack
on the structure of those integral equations, not restricted to the
one-dimensional case. But before turning to that, we note some further

pertinent clues from the DSZ examples with higher dimensionality.
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9. HIGHER DIMENSIONALITY

It appears from the foregoing that the case of a single location
or scale parameter--or one that can be reduced to this by a change of
variables--is disposed of once and for all; the only remaining functien
of the integral equaticns {30) is to determine whether, in a given model,
the result is unique. Mathematically, this is the question whether the
kernel of the integral equation is complete.

If the parameter n is two-valued, comprising both a location and
scale parameter; i.e., if n = (u,0) and the corresponding data y can be
separated into two components y = (u,s) such that the sampling distribution

has the form

plzus|z&o) = 572 g[z,c;%‘i;é) (52)

<

then we can verify that the element of prior probability

will satisfy (30) with si{s,u,z) a constant. Clearly, then, whether or not
(53) is uniquely determined by (30), no disagreement of BI and 82 can arise
from its use. Yet DSZ produce apparent counter-examples, in which a prior
of the form (53) does lead to disagreement! The DSZ paradoxes must, then,
have been in part illusory. In the following examples we will see just how

this has come about.
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Example 2. Here we appear to be in the afprementioned difficulty, for D57
note that the "paradox" (i.e., disagreement of B] and 82) does not disappear
for the "widely recommended prior" du] duz do/oy but it does for duI du2 do/02
for which "no recommendations appear to exist." Of course, in a problem
with two parameters the prior du.do/o is indeed widely--and as we have

just seen, justifiably--recommended; but that is a very different problem.
In Appendix A we discuss the present problem from the standpoint of the
transformation group method recommended by the writer {Jaynes, 1968) and
show that either result may be obtained depending on further details of

the "real-1ife"” situation which are not conveyed by the mere words

"location parameter” or "scale parameter“;

Our sampling distribution is, in the notation of Eqs. (9)-(18),

v 2 '
pluszlpaz) = A 3+2 EXD[- (Hgg} - R(Z,C,S/U)] . (54)
o

Note particularly thai from (14), u = %{u]-*uz)- Since {54) has the form

(52), the prior du do/o must be a solution of (30). To see this directly,
and to see whether the result is unique, we can write‘(SO), using (12),
in the form .
v =R 0<s<w
fm w e [flu,o) -~ si{u,s,2)]dw =0 (55)

4 e < U,Z,0 < o

where A{usz) = p(uslzI]), f(u,o) 1s given by (16}, and in the integration
overw= s/o, s is held constant.
But {55) is an integral equation with complete kernel, since e"R is

the generating function for a complete set of (Hermite) functiong:

_l_wz v 2 S
e R o ¢ (v+2 )ZE: H%Jﬂiﬂﬁﬁi@ﬂll . (56)
| n=0 /2| n!
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Substituting this into (55), 1t is apparent that each term of the surmand
must vanish separately. A function orthogenal tc a complete set must
vanish almost everywhere, and so the necessary and sufficient condition

(NASC) for an uninformative prior reduces to

0 <s,0 <
flu,0) = sa{u,s,z), (57)
-0 < y,7 €

from which we infer that f(u,o} is independent of g, and the undetermined

function

gl{u) = sifu,s,z) - (=8)

is independent of s, z. Using (16}, the NASC is then

- E:H.)Z 0 < g < o
J—J@d“ R i (59)

i — < Y < e

Evidently, for any w{u,c) that could be taken seriously as a prior,
the integral (59) converges so well that g(u) must be an entire function.
But then appealing again to completeness and nenerating function relations

of the form (56), the rost general furction satisfying (59) is

0

(o) = ;z: a il Hn(E]

n={

where a, are arbitrary constants, and Hn are the Hermite poiynomials.
We then find glu) = Zan(Zu)n. Conversely, on substituting (60) back
into {15), we find that Bl's postericr distribution reduces to Bz's,

all the arbitrary constants a, cancelling out upon normalization,
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Of course, not all functions of the form (60) satisfy the further
requirement n{y,0) > 0; but (60) includes many non-negative priors. For
example, if w(q) is any non-negative function with moments of all orders,l

the choice

2 = ;}Trw((})qn dq (51)

leads to a non-negative prior

S p— jdqm)exp(m - q%%) (62)

for which By and B, will be in agreement. As a special case, if y(q)
goes into a delta-function &(g-t) we get a, = tn/n! which in turn yields
the anticipated Jeffreys prior du do/o in the special case t = D.

Also in this example, then, cur early fears for the poverty of over-
determination disappear in an embarrassment of riches; from a mathematical
standpoint, the problem is grossly underdetermined. Nevertheless, out of
the many different solutions of {59) the Jeffreys prior W(u,c)ﬂaa-] still
appears to hold a favored position. Out of the class of solutions (62) it
is the only one that does not become exponentially large as {u| + «. We
conjecture that some further restriction on the allowable behavior at
infinity [for example that w(p,o) shall be at most O(IujN) for some N<w]

may lead, after all, to the Jeffreys prior as the unique solution.

Exarple 3. We have n independent cbservations of a bivariate (XT’XZ) with

model structure
) . Xy = YAt oo, e, {63)
where €1, €, are independent and N(0,1). We require inference about the

correlation coefficient ¢ = yo,/ 7202+ 02 7. The prior that aveids the
1 2

paradox sheuld then express complete ignorance about those components of
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the parameter space that can be varied with ¢ held constant. DSZ note that

the "recommended" prior
dy — — ' (64)

yields a posterior distribution identical with fraser's structural distribution;
but that the marginalization paradox is still present.
However, from the standpoint of the writer's transformation group
method, the difficulty with (64) i< obvious. For the model egquation (63)
is written in such a way that the parameter y is not decoupled {i.e., it
gets entangled in the change of scale transformations which express the
fact that 0y» 0, are scale parameters]; and so of course, it cannot he

assigned an independent prior. If we rewrite {63) as

;e . Xo = 02(e2 + TE]) (65)
then ©v = YG1/02 is decoupled, an arbitrary change of scale Ci =3, Oy,

oé =2, 0, inducing no change in 1. But since the parameter of interest

r is a function of tv [if 1=tan «, then ¢ = sin o], the prior assigned to

T should not have anything to do with the paradex. Re-examining the equations

of 0SZ we find, as expected, that use of the prior

avoids the paradox, where f(t) is an arbitrary functicn.

The same result can be reasoned out without introducing 7. For in
the model enuation (63), v appears not as a location parameter, but as a
scale parameter [note that the product or ratio of two scale parameters
1s still a scale parameter]. Complete ignorance of all three parameters
shouid then be represented by a product of three Jeffreys priors. Cut

again the prior assigned to the quantity of interest ¢ should not matter;
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so we should be able to insert an arbitrary function g{z) without disrupting

the agreement of B]

dy.
9()Y

leads to agreement, and is equivalent to (66).

as

alc) = /(1 -25)%

"avoiding the paradox"

and BZ' Indeed, one can verify that the prior

di, du

—J

2
2 92

(67)

Q

The prior which DSZ noted

is a special case of (67), corresponding to

The jeint tikelihood function, which forms the kernel of the integral

eguations, can be read

cumbersome expressions

where S]], 522 are the

is then

L{z,o

where

T{z,bsz,

off from Eq. (1.8) of DSZ. However, to avoid

we introduce the notation

J
= log ! AR cz (68)
92
5
= Iogifgll- (69)
22
g
_ /S S22 (70)

9 9

sample moments as defined by DSZ. The joint 1ikelihood

_oon _-wT
) = w e

1°92

and z = S 2// S S is the sample correlation coefficient, whose sampling

distribution depends only on z [DSZ, Eq.

of the parameter and sample spaces may then be taken as n = (01,0

y = (511,522); and the

"unwanted"

(1.10}]. The

components

5)s
NASC that a prior n(o},oz) shall be completely



uninformative about g is

-1 < z,n <1
n-2 -wl
fmdw deB[ﬂ(Ol,Gz)-wl]w e =g | 0 < S”,S22 < m (73)
0 -co n = 2,3

where A(z,ST],Szz) is an undetermined function, {S]],Szz,z} are held
constant in the integrations over w, B.

Evidently, if the kernels wn-? exp(-wTl) are complete on the comain
of integration we shall be led to tne Jeffreys prior (dsl/C})(df2/52) as
the unigue solution. We conjecture that this is the case; however we have
not succeeded in finding a fully rigorous proof of this, or a counter-example.
Therefore, in view of the writer's astonishment at discovering the non-
uniqueness of (59) after long believing it unique but being urable to prove

it, we leave this an open question which others may perhaps answer.

Example da. At this point in the DSZ narrative, the sense of paradox
increases sharply; for they produce two versions of a problem that appear
nct only paradoxical, but unavoidably inconsistent with each other. We
obtain the sample {x1}’x]2,...x1n} from N(y],c) and {X21‘x22""X2n} from
N(“2’0)° In version (1) B} is interested in inference about r = {g=111/c,
5y =u2/o}. The "unwanted" component is n=o0, and the corresponding data
separation is in part {Zi =(ns)'1 Ej X.., 1=1,2}; y was not specified.

1J
Using the class of priors

opdulduzdo (74)

DSZ show that B1 and 82 cannot agree unless p=-3.
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But then in version (2) B, "asserts his interest in % alone." Now
%5 becomes part of the "unwanted" parameters: n = {o,uzfc}, and the paradox
is resurrected; 81 and 82 cannot agree unless p=-2. Not only do the two
priors contradict the Jeffreys ru}e; they contradict each other!

In view of our carlier demonstrations, something must be very amiss;
yet we can find no error in the DSZ calculations. So the resclution must
be--and is--very much simpler. We have here a case of paradox by optical
illusion.

By and B, are free to partition the parameter space Sg = SC ® Sn
in any way they please; but having chosen any such partition, the mathematical

problen is; what prior n(n) in the space Sn’ i.e., with ¢ held constant, is

uninformative about ¢? The trcuble was simply that, after choosing a
partition, DSZ continued to write their prior (74} in terms of the old
variables (u],uz,c), thereby failing to make the condition (7 =const.)
visible. Had DSZ transformed their priors to the new variables w{z)n(n)
they would have found, in all these examples, that the "paradox" disappears
Just for the priors w#(n) recommended by Jeffreys. Far from suggesting any
inconsistency in Bayesian principles, marginalization thus demonstrates
again the power and basic soundess of the notions introduced into this

field by Jeffreys some forty years ago.

1G. SINGULAR SOLUTIONS: KNOWLEDGE IS IGNCRANCE

In the DSZ exampie 3, the correlation coefficient was considered the
quantity of interest, p=g, and we found that the prior n{n)dn= (do]/ol)(dozfc])
was completely uninformative about ¢. Can we reverse our viewpoinrt, and find
an uninformative prior n{p)dp for the correlaticn coefficient? Most pecple,

facing the problem of expressing ignorance of p, have chosen the form
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m(p) (1 - 92)-k more or less instinctively; but complete agreement on the
value of k still eludes us.
We wouid Tike to make the choice: {g-= (c},oz), n=opl, and our method

then requires that we find a separation of data x=(y,z) for which

p{z|tn) =p(z|z). Perhaps this is possible, but our first guess:

- v g % . .
{y"(SEI,SZZ)’ z=r 512/(511 322) } does not work. The joint sampling
distribution of (511,522) still depends on g, containing as & factor the

modified Bessel function

o 11 327

%-1 99, 1-¢

5 .

However, the sampling distribution of S]] depends cnly on aqy3 S0 let
us marginalize using the choice: {¢ = 0> N = (oz,p), z= 511,_y= (Szz,r)}.
In view of what we found above, we shall perhaps be willing to take from
the start n(n) = ﬂ(OZ,Q) = 0_% #{p). From Eq. (1.8) of DSZ, we are led to

the integral equation
]

da S 265 Sy |
2 ya 2
n(p)dp 0 exp < - Jf }; 5 - 2}5 + 22 J](
: 9, (1 -o )0] (1-0) o0y0, Oy j
Sy
= A exp|- '—"2— (75)
20|

where A must be independent of ay - For the class of samples: {822: 2, 512:

(75) collapses to

2\ I o5
-z expl- ——————l‘n(p)dp = A(5,4) . (76)
( 2 ) ‘f1 2{1 - pz)ogJ N

But this cannot be independent of o unless w{p} is singular:

n(p) = &(p) (77)



37

i.e., the prior informaticn must be that p=0 with certainty! Conversely,
the prior (77) satisfies (75) for all samples.

On further reflection, we see that this result does, after all, make
sense. B, is (in our reinterpre?ation) given data {x]...xn} whose sampling
distribution depends only on ays and uses it to make the standard Bayesian
inference about 0y - B, has in addition the other data components {y}...y }.

1 n

But if B] also knows that p=0, then these additional data cannot help him

to estimate s uncorrelated normal distributions are independent. B] and
82 vwill then agree, nct because 81 is totally ignorant of p, but for the
opposite reason that his perfect knowledge of p makes his extra data
irrelevant.
To recognize this puts a new dimension into the marginalization game.
A prior w{n) that is uninformative about z does not necessarily express
ignorance about n; it depends on the structure of the model. If B1 did
not know p, his extra data {y]...yn] would aiways be relevant and he would
always reyise 82‘5 conclusions about ol; there is no ignorance prior
w{o} v (1 - QZ)— *hat can avoid this. But if B1 had far greater knowledge,
he might throw away the new data and accept 82'5 conclusions after alll
This is not paradexical, but is a natural and necessary part of

consistent plausible reasoning. We can see this phenomenon in generality

already in Egq. (2). If for some particular value n= N, We should have

3y Pheingsysz,1y) = 0 (78)

then the singular prior n(nII]) = 5(n-n0) will bring about agreement of
B] and 82 by making the data y irrelevant. Whenever the preperty (78}
exists, the integral eguation will have singular sclutions representing

jgnorance of ¢ due to perfect knowledge of n.
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Now, a%t long last, we have enough clues in hand to commence a ceneral

attack on the integral equations.

11. STRUCTURE OF THE INTEGRAL EQUATIONS

For any fixed data set x = (y,z), (30) is an integral equation which

we write, for suggestiveness, in the form

f K(z,m)m(n)dn = 2f(c) tes. . (79)

>n

Already at this stage, it is possible to have “g-overdetermira+ion”.

The set of all functions on Sﬁ forms a Hilbert space HC' Rs n ranges cver
Sn‘the functions K{5,n) span a certain subspace H& of Hg. If f{g) dres not
1ie in Hé, there can be no solution of (79). In these cases, the rare
qualitative fact of the existence of the components (n,y)--irrespective of
their numerical values--already constitutes prior informaticn relevant to
BI's inferences {because introducing them restricts the space of 81'5 possible
posterior distributions to n(g)H;]. We saw an example in (£42). In this
case, the shrinkage of H_ cannot be restored by any prior cn Sw and the
integral equations (79) ask an ill-advised question. In the following we
consider only the case where the problem is free from r-overdetermination.

If we think of n{n) as a vector in a Hilbert space H of functions on
Sn’ then for each z, Eq. (79) specifies the inner product of =(n) with the
function K{r,n). 1If as z varies over Sg these functions span the fulil
space of H then the kernel K(z,n) may be said to be "complete," and the
function =n{n) is defined "uniquely"; i.e., almost everywhere,

On the other hand, if the functions {K(C,n):C;,Sr} are nct compliete

-

on Sn’ they span some subspace Hos:H, and {79) determines only the proiection
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no(n) of n{n) onto HO; i.e., n{n) = no(n) + n](n) where n](n) is erthogonal
to ﬂo(n) but is otherwise undetermined. Since the coefficient A is at this

stage arbitrary, no(n) is determined to within a multiplicative constant.

But all this has referred to only cone particular data set x. For

every different data set we can have a different kernel

K (2,n) = plyz|n,c) (80)

a different "driving force"

f ) = plzle) = [dy plyzine) (81)

and a different coefficient Ax' The equations

| Klomninien = £,(0) L es (82)
Sn
will, for two different data sets x, x', determine the projections ﬁx(n),

nx.(n) of 7{n) onto two different subspaces fs Hoo of H If Hx’ Hoo are

disjoint, the two integral equations (82) determine no relation between

these solutions; i.e., the arbitrary constants Cx in [nx(n),lx] and Cx'

in [xx.(n), Ax,] may be specified independently. But if H, and H . are
fisjoint {i.e., they have a common linear manifold M), then there are

several possibilities:

Cese I. If M has dimensionality greater than one, the two integral equations
for x and x' may determine different {i.e., linearly independent)projections
of n(n) onto M. If these are both non-zero, then formally we can still

escape overdeterminaetion by setting AX = kx|= 0; and then hoping that some

cther data point x" will allow kxnf 0. If one of the projections (say of

wx,)vanishes, then we need set only Ax = (0. But in either case there will
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be an embarrassing situation; since AX has the meaning: X(y,z) = p(y|z Il)’
we are escaping cverdetermination only by assigning a prior u{n) which says
that the trouble-making data set x=(y,z) is impossible!

One would be very reluctant to accept such a prier as “uninformative";
indeed, it would seem to be a rather obvious minimum requirement of any
prior deserving of that name, that it should not exclude in advance any
data set permitted by the sampling distribution p(y,z|nz). A fully
acceptable solution ought to lead to X > 0 over the entire sample space.
Case I thus represents a kind of moral--even if not formal mathematical--
overdetermination. If it should occur for many pairs of data points, we
could have also mathematical overdetermination, the only solution of {(82)

being Ax =0, m{n) = 0.

Case II.  The two integral equations for x, x' agree that =(n) is orthogonal
to M. Then the situation is basically as if the subspaces Hx, ng vere
disjoint; i.e., no connection is established, and Ax, Ax‘ may still be
specified independently. As far as x, x' are concerned, the “"unused"
manifold M could be removed from the Hilbert space with no essential

change in the problem (of course, if some other data point x" should

determine a non-zero projection onto M, we are back to Case I).

Case IIT. The two integral equaticns agree in assigning nonzero projections
of n{n) onto M, that are the same within a multiplicative constant. Thren
the existence of a single function n(n) demands that these nultiplicative
constants be equal. A connection is thus established, sc that, given Ays Ao
is determined. This can happen whatever the dimensionality of Y. If we

can find a third data set x" for which , and Ax” have common manifold,

A
X

then Ax” is in turn determined by Ax.
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In this way, by a sequence of points {x » x"+x" » ...} with overlapping
manifolds the constants Ax‘ originally arbitrary and independent at each
pcint of the sarmple space, become tied together by the requirement of a
single solution w(n), inte a furction A(x) defined at many points. The
existence or nonexistence of unique and “morgliy acceptable” noninformative
oriors then depends on whether by this process a single function A(x) > 0
can be set up over the entire sample space.

Let us call any seguence {x},xz,x3,...} such that ”xi and Hx1+1 overlap,
a continuation path P, Then for any two points x, x' that can be connected
by a contiruation path, the ratio [A(x')/A{x}] is determined by the integral
eauations (22).  The process is somewhat analegous to analytic continuation
[hat very different topologicallys; i.e., a sequence Hx‘Hx”"' of overlapping
cenifalds dees not o in general corresnend to a continuous path in the sample
sracel,

Case 111 is thus in turn comprised of three possibilities:

Case ITla.  "Nonintegrability."  Two points x, x' can be connected by two
different continuaticn paths PI’ P2;

Co{x" /00y 7 [l(x')/k(x)]z. Then there is no single-valued nonvanishing

but they yield different ratios

]
function A{x) and as in Case [ the problem is morally--and, depending on
how much of the samele space is infected with this disease, perhaps also
mathematically--overdetermined. The avoidance of this case is analogous

to a condition of integrability [but again, very different topologically!].

Case IIIb. "Intransitivity."”  The sample space 5, can be decomposed into
two subspaces S£1), Siz) in such a way that there is no continuation path
fromy any point in SE}) to any point in Sig). Then no connection is established

Kotween A(I)(x) and A(C)(x}; i.e., they can be assigned independent arbitrary
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multiplicative constants. The problem is then underdeter—ined, and more than

one "noninformative prior" exists. If there are K disconrected suybsnaces

s sty

w --+5, )}, then the prior 7(n) determined by (3C) will contain

arbitrary constants.

Case IIlc.  "Integrabie Transitivitv.”  Any two points x, x’ in the samnle

space can be connected by a continuation path, and if more than cre such
path exists, all paths assign the same ratio [A{(x'}/i(x}]. Then a single-
valued function A(x) > 0 exists over the entire sarnle snace, and the
equations (82) define one unique noninformative prior 7{r), to within a
normaiization constant.

Previous Bayesian thought (including the writer's) which sirply tock
for granted the existence of unigue neninformative priors, has thus in

effect assumed that we always have Case Iiic., CGut leoked a2t in this row

9]

way, 1t seems astonishing that such a thing could bte true. If for any

two points x, x' in our samnie space we should have Case | or Ca

(]

e Illa,
then it is all over with cur search Yor a "morally acceptable” noninforative

prior. Yet we have the counter-examplies of DS7 where such solutiars o arnigt,
What, in the structure of the probliem, preverts these cases from ccourring?
For enlightenment let us turn back, still ancther time, to our faithfyl

DSZ Example 1, which has never yet failed to give us an interesting and

useful answer to any question we have put to it.

12. EXAMPLE 1T — A FOURTH LOCK
We have seen already, in Eg. (37), that the integral equations

determine the Jeffreys prior w{n}) = 1 ° uniquely; now we want to eraine

in minute detail the mechanism by which this is acconplished,  Introducing
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the Laplace transform of n" m(n):

Fla) = fm AP (n)e”d dn (83)
o]

the set of integral equations (33) beccmes

FlyQlz,e)] = L) oy L (e
[y2(z,2)]

For a fixed data set x={y,z) this determines the value of F(a) to
within 2 muitiniicative factor, at (n-1) discrete points a£=_y0(z,g).
The set of points {al(y,z) ... an_](y,z)} will be called the spectrum of
x. we can suppose without loss of generality that ¢ > 1. From {6), the

¢; are nonincreasing: a, > Ay Z e 2R 4 and all lie within a factor

1

Vca/a, <c . (85)
The subspace HX is the cne spanned by the set of functions

("’\(r") =nn e 1 N i = 1,2,.-.(”"]) (86)

lirearly indcpendent if the a, are all distinct.

Clearly, for n > 3 we can in general find another data set x'=(y',z')

such that

¢
—
“
N
——
1

az(y'.z') (87a)
(yaz) = a5(y",2") (87b)

and the subsnaces HX, HX, then have a two-dimensional linear manifold M in

cormen, consisting of all functions of the form
) = G ey g, ay(n) (88)

with arbitrary coefficients C], CE'



Therefore unless both

data sets x, x' determine the came

projectisn
of n{n) onto this manifold:
ey} Fleg) (29)
F(az) P(a3)

we shall have Case I, and the

from the data set x we have

F(a])
?(557

and from x' = {y'z")

(a5)
aéf

Ty M

But (87) is, more explicitly,

YQ(Z,C]) =
¥Alz,z,) =

from which we see that (90) and (51) are indeed equal.

problem will be morally overdetermined. ow

0z, "
] {an

0lz.t,) it
[

Gz ey |
— _.__...2_ {9])
RN
vzt 5] (¢2e)
y'Q(z",z3) (e2r)

Yie have escaped

overdetermination only because of the connection (87) requirved to produce

a common linear manifold,

Likewise, we could have a three-dimensional common manifold by adding

to {87) the condition

asly,z)

which s generaily possible if n > 4.

(87b), (93) are just sufficient to bring aboul equality of the three rctios

: ‘j); and so on.

= a,ly’,z") (93)

But again the three conditicns f&7aj,

o

ke continue to have Case Ilic.
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We see now how different this problem is from the usual theory of
integral equations with complete kernel. It is just the very great
incompleteness of our kerne! K{z,n) that, so to speak, creates room for
agreerent so that all the integral equations {(B2) can be satisfied
simultaneously. Because of this incompleteness the subspaces Hx are so
small, and scattered about so widely in the full Hilbert space H like
stars in the sky, that it requires a very special relation between x, x'
to bring about any overlapping manifoid at all.

Sut 1t still seems magical that the relation required to produce
overlapping should also be just the one that brings about agreement in
the projections. So we still have not found the real key te understanding
how Case [ is avoided.

Since there is a unique solution (37), a single-valued function
Ax:>0 must have been determined over the sample space Sx' Evidently,
then, our integral egquations must be transitive on Sx; i.e., there must
exist a continuation patn connecting any two points x, x'. What are these
paths? Are there more than one for given x, x'? If so, how was nonintegrability
(Case IIIa} avoided?

We suppose the spectra {a],az,...,an’1h b{,aé,...,a;_]} of x, x' to
have no point in cormon {otherwise Hx, Hx' have already a common manifeld M

and there is no need for a continuation path). If any point 2, is within a

factor ¢ of scme point aé we define a new data point x" = (y",z") by
caif a, A, -ai_
YT g %2 T tal - a (94)
J i
and 25 = ZH = .. 0= zg = 0. Then the first two points of the spectrum of x"

are, from (6),

a{ a. , a% = 3! (95)
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Lk}

and x =+ x" =+ x

is a continuation path. If the spectra of x, x' are mcre

widely separated (i.e., if ck—1

< an_i/a¥ < ck), then {because of the
restriction (85) on the spectrum of any one point x"] it will require a
continuation path with at least k intermediate points to connect them;

but this can always be done by repetition of the above process. The reason
for the transitivity is thus clear.

Now, how does this determine the function Xy,z)? Writing the family

of integral equations (33} as
6a) = [ dn w)(2)" &P = (D1 yay,2) (36)
o}

for any given data point x, the necessary and sufficient cendition that -{r)
be uninformative about ¢ was that the integral in (95) take on egual values
at (n-1) discrete values of 1z, or G(a}} = G(az) = ... = G{a ]). Intreducing
new data points x', x", ... connected by continuation paths, this equality

is extended to further values a',a",.... Now G(a) is a continuous function.
As we continue to all points of the sample space Sx, if the set of spectral
points a' where G{a') = G(ai) becomes cverywhere dense on 0 < a' < =, then

G(a) = const, is the only possibility. Equation (96) then reads:

f dn 1(n)n" "™ = (const)xa™", 0 <ca <= (97)
o
and on inverting the Laplace transform we have again the unigue solution (41),
On setting n{n) = n—], (97) reduces to
My,z) =y ' s 0 (99)

Qur questions have now been answered. Uniqueness of the solution requires
that the set of spectral points a' be everywhere dense on the positive real
Tine; and nonintegrability was avoided because extensicn of )x alorg any

continuation path connecting two points took the eminently satisfactory
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form that a function of (x,z) was a constant. So, by study of Example 1
we see how all the conditions can be met, leading to the Case Illc most
pleasing to a Bayesian.

The structure thus revealed will, of course, generalize readily to
other problems. But our story has already grown too long, and the next

Chapter must be told elsewhere.

13. CONCLUSION

While the full implications of marginalization for Bayesian statistical
theory are still far from explored, the analysis given here represents at
'east the necessary beginnings. However, in research of this type, more
than half the game usuaily lies in the slow process of recognizing the
existence of an important solvable problem, and learning how to reduce
vague conceptual questions to definite, clearly formulated mathematical
ones. After that, further progress to the Timit of our mathematical
capabilities generally comes rapidly.

Viewed in this way, cone is encouraged to think that the slow initial
stages are now over, and we may hope to see major advances in the determina-
tion of prior probabilities by logical analysis, in the near future.

The integral equations introduced here may or may not prove to be
more widely useful, in practice, than previous desiderata for uninformative
priors. At present, they seem to have at least the advantage of being
general and noncontroversial; i.e., they express only the universally
accepted principles of probability theory, making no use of intuitive
ideas (symmetry, entropy, indifference, group invariance, "letting the
data speak for themselves", etc.) which appeal differently to different

people. Of course, with full understanding, those integral equations may
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in time be seen as stepping-stones to a still more appropriate and useful
methed, as yet unimagined.

The most encouraging sign of all is simply that, at last, the first
prerequisite for progress in Bayesian theory is now an accomplished fact.
The blind alleys have been tracked to their ends, and after decades of
neglect and worse--even from scme who professed to be Bayesians--the program
started by Jeffreys is recognized as the true road to progress. Mathematical
problems that micht have been solved by Wald or Fisher in 1940 are, at last,
being taken seriously and actually worked on.

At present, the crucial problem before us is: What is the necessary

and sufficient condition on the functional form of p(y,z|n,c) for the

integral equations (30) to possess nontrivial and "morally accepteble”

solutions? Our analysis in Sec. 11 above dces not yet answer this; only

the future will tell how close it has come to that goal.

14. APPENDIX A — COMMENTS ON GROUP ANALYSIS

The explicit mathematical use of group invariance as a criterion for
assigning probability distributions goes back to Poincaré (1912), although
of course the intuitive recognition of symmetry in gambling devices was
present from the very beginnings (Cardano and Pascal). It appears to the
writer that, in the final enalysis, all applications of probability theory
are based necessarily on such considerations, however much those
motivations have been disavewed.

Since the term "group analysis" has several different meanings, we
try here to indicate how they are related to each other and to the general

problem of inference.
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In the group structure (43) considered by DSZ the sampling distribution
is invariant under two groups G, G operating simultaneously on the sample
space and the parameter space. The status of that approach can be seen as
follows: (A) Whatever group structure of this kind a problem may possess,
is determined by the functional form of the sampling distribution. (B) Erqgo,
whatever results may be deduced from that group structure, must also be
deducible directly from the functional form. (C) Since the group analysis
cannot be more general than a "functional form" analysis--and is easily seen
to be ltess general--the question of method reduces to whether, in a problem
where it is applicable, the group analysis leads to a more efficient
calculation, or a better intuitive understanding, of the result. It seems
clear that group analysis does accomplish both; and often brilliantly.
Therefore, by all means, let us take advantage of the DSZ group analysis
wrenever we can. (D) Nevertheless, whether or not any group structure
exists, the necessary and sufficient condition for agreement of 81 and 82
is always the set of integral equations (30). For a general understanding
of marginalization, then, it appears that we should appeal to the integral
equaticns rather than the group structure.

Now an entirely different kind of group analysis (Jaynes, 1968;1971:;1976)
has also been preposed and illustrated in several applicaticns. Since I
believe it to be closer to the spirit of what one means intuitively by
"jgnorance", and alsoc more widely applicable mathematically, let us look

at it in the context of the DSZ Example 2 [Egs. (54)-(62) above].
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What prior probability element ﬂ(U]Uzﬁ)dU} duz do expresses
“complete ignorance” of two location parameters associated with a corrmon

scale parameter? We have a sampling distribution of the form

X -\ y-u
_ | 21 dx dy
pldxdyluuyo) = hi—— ;3 — e (A.1)

and we consider

Problem 1: Given the data D = {(Xl’yl);(XE'YZ)""(Xn'yn)}'

estimate (ul,uz.o).
Complete initial ignorance means, intuitively, that having nc other basis
for inference, our estimates are obliged to follow the data; i.e., a
noninformative prior is the means by which one achieves Fisher's goel
of letting the data speak for themselves. As noted in the text, it is
also the necessary starting point for ccnstruction of an informative
prior.

Of course, a mere verbal statement such as "complete initia)l
ignorance” s too vague to determine any mathematically well-posed
problem.  However, there is a rather obvious and basic desideratun

of consistency: In two problems where we have the same prior informaticn

we should assign the same prior probabilities. Surely, any methed for

gssigning priors which was found to viclate this requirement would be
rejected as self-contradictory.

Yet, as noted before (Jaynes, 1963}, in many cases this desideratunm
is already sufficient to determine a unique sclution. For, given the
above Problem 1, we can carry out a transformation of all variables:
{Xi,yj,u]pzn} i {X% y;‘% né(}'} which invglves a rapping 0~ &' of the

parameter space onto itself, and consider:
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Problem 2: Given the data D', estimate (ui,ué.o').
Any proposed prior f(u] P o)du] duz do will be transformed into

g(ui ué O)d“i dué do' according to the Jacchian of the transformation:

-1

9y wyo') =07 fluy uy0) (A.2)

where J(u] by o) = a(pi “é o')/a(ui Mo o); and of course the transformation
rule (A.2) will hold whatever the function f(u]uzc)). But now the
transfornation may be such that we recognize Problems 1 and 2 as entirely
equivalent problems; i.e., they have the same sampling distribution and

if dnitially we were "completely ignorant” of (u} Mo o) in Problem 1--
whatever that means--we are at least in the same state of knowledae about
(ui ué o') in Problem 2. But our desideratum of consistency then demands
that f and ¢ must be the same function; i.e., the prior representing

ccnpiete ignorance must satisfy the functional equation
G Y

flug wy 0') = 37! fluy vy o) (A.3)
which determines the ratio of prior density at any two points e, 8' of
the parareter space that are connected by the mapping.

If then the mapping € + 0' is OHGIOf a group of transformations
that is transitive on the parameter space (i.e., from any point 8 any
other point 9' can be reached by some transformation of the group),
then {A.3) determines the prior, to within a multiplicative constant,
everywhere,

Note that, in this method the prior is determined by the Jacobian of

the transformation on the parameter space; and this remains true whether the

groun is Abelian or non-Abelian, compact or non-compact. Therefore, considera-
tions of richt Haar reasure eor left Haar measure do not arise.  Haar measure

Py dediacd on the group ranifoldy add not on our parameler space.
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Furthermore, this method is more generai; for if by any means we can
recognize the group c¢n the parameter space that transfoerms cur pricr state
of knowledge into an equivalent one, the same result (A.3) will follow whether
there is or is not an image group on the sample space. Thus, the Mallows
example (45) has no group structure of the DSZ type; yet there is a natural
group induced on Sn by Bayes' theorem (Jaynes, 1962) which leads to the
uninformative prior ﬂ(n)cr[n(l—n)]-1; and let me acknowledge [correcting
an erroneous statement in Jaynes (1968)] that, unknown to me at the time,
this result, too, had been anticipated by Jeffreys.

This will perhaps meke clearer the distinction between our method and
other group invariance arguments which do not appear to be motivated by the
desideratum of consistency; or at least, to the best of the writer's knowledge,
do not explicitly invoke it,

In this method a noninformative prior is nct in general determined
merely by the form of the sampling distribution; it is determined by
specifying the invariance group on the parameter space. Furthermore, even
if we do choose a group by the form of the sampling distributicn, a given
sampling distribution may be invariant under more than one group.

For the sampling distribution {A.1) perhaps the simplest transforme-

tion aroup is given by

o} ‘11\ = ad 0 <a <=
' = 4 - o)
My N b] < b] < (A.4)
! = + -0 5]
Mo My b2 < b2 <
with
t - ! = -
(xi u]) a(xi U])
[ t - , . A5
(_‘/]- 112) a()f:[ 1-2) ( /
The new sampling distribution p{dx’ dy‘iu; “é c') s then identicid wiih

(A1), If our state of prior knowledge is such (hat this transiorrsiien
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results in a Problem 2 that is entirely equivalent to Problem 1, then

1

frem the Jacebian J = a ' of {A.4) the uninformative prior must satisfy

the functional equation
af(u] + bI’UZ + bz,ao) = f(u]uzcr) (A.6)
frein which we obtain the "widely recomrended” prior element

. . do
T, uzo)du] du, do = duy du,

(AR.7)
However, when two "lccation” parameters are present, we may in some
cases feel that this does rot represent our prior knowledge. In (A.4)
a.change of scale ¢' = & affects only the accuracy of the Xis ¥s
measurements, It may be that for other reasons not discernible in the
samplirg distribution (A.1}, we know that the parameter o not only sets,

the scale for the "measurement errors” (xi —u}), (y.

; ~u2); it also sets

the scale on which the difference of means (”2"UI) is to be measured.

As a concrete if oversimplified example, a spectroscopist may wish
to determine the difference in magnetic moment of two atomic states by
observation of the Zeeman effect, but the available magnet has uncontrollable
field fluctuations. Here v corresponds to the magnetic field strength,
and My Mo to the resonant frequencies one is trying to measure.
Doubling ¢ doubles the probable error in the measurements; but it also
doubles the measurable difference (uz-u1). On the other hand, the
crystalline environment of the atoms affects both their frequencies
in the same urknown way independent of o. A1l this prior information

i5 in the mind of an experimenter E], but it does not appear at all
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in the sampling distribution (A.1}. Because of it, EI replaces (A.4) by

¢ =a 0 <ac<w
(ué - ui) = a(u2 - u]) +c¢c o € € € o
T LTI I < b < (8.2)
This leads to the functional equation
azf(qu]*-pu2+t)-c,pu1 *qu, * b + c,ao)'=f(u1uzoj (A.Q)

I

where 2q = 1+a, 2p = 1-a. But the LHS can be incepencant of both b, ¢ only

if f(u]uzo) = f(¢g). The functional eguaticn then c¢ollapses to a2f(ac)==f(c),
or flg} = 0‘2, the prior that DSZ found to avoid the paredox in Example 2.
We are far from having exhausted the number of transitive groups under

which the sampling distribution (A.1) is invariant. For example,

H

o] = Qag D0 < a < w
Ui = Ay + b -~ < b < w
Ué = ]Jz-!-c —t0 € C € o

leads again to fﬁﬁ uzc) « c-z; while

o = adg

T
—
1

au] + b
UZ = auz + ¢

Teads to f(u] uzo) « 0"3, vhich 0SZ noted as avoiding the paradex in
Example 4a, Version 1,

A1l of these correspond to different possible kinds ¢f pricr knowledge
about the physical meaning of the parameters. Thesedifferences cannot he
seen in the sampling distribution, which describes conly the measurement
errors. Thus, when we pass beyond pedagogical exarples to real life

probiems, a further aspect of the quoted remark of Lindiey (1971} becones

apparent,
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As we see from this, group analysis does not answer questions of
uniqueness. A given group leads to a definite prior, but there may be
more than one group; and in any event group analysis--at least in any form
yet visudlized--does not tell us whether other solutions of the integral
dquations (30) may exist beyond those resulting from the group structure.
However, it may be that new theorems bearing on this are waiting to be

discovered.

APPENDIX B — HISTORICAL NOTE

Since statistical theory is returning to the original viewpoint of
Laplace on the relation of inference and probability, we follow Laplace's
example also in concluding with two remarks on the background of the
marginalization problem, in addition to those noted by DSz,

The mathematical facts underlying marginalization were fully recognized--
and in the writer's view correctly interpreted--by Geisser and Cornfield k]963).
Thefr eguations (3.10) and {3.26) are just what we now call Bl's result and
82'5 result; but instead of seeing a paradox in the difference, they very “
wisely termed the latter a “pseudoposterior distribution."”

And inevitably, when we search for the origin of a Bayesian result, we
turn to Jeffreys {(193%9). His §3.8 considers the bivariate normal case, and;
although the sample correlation coefficient r is a sufficient statistic for
p, the posterior distributions {10), (24) again reveal the slight difference
caused by different prior information about the location parameters {a,b}.

The comparison is reminiscent of our Equations (50), (51) above.
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