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1. Introduction 

Let f be a probability density on an interval I, finite or infinite: I includes its 
finite endpoints, if any; and f vanishes outside of I. Let X1, . . . ,X  k be inde- 
pendent random variables, with common density f The empirical histogram 
for the X's is often used to estimate f To define this object, choose a reference 
point xosI and a cell width h. Let Nj be the number of X's falling in the j th  
class interval: 

[Xo +j h, xo +(j + l) h). 

On this interval the height of the histogram H(x) is defined as 

Njk h. 

This definition forces the area under H to be 1. The dependence of H on k and 
h is suppressed in the notation. 

On the average, how close does H come to f ?  A standard measure of 
discrepancy is the mean square difference: 

(1.1) ~2 = E {f [ f I ( x ) -  f (x)3 2 dx}. 
I 

This quantity is analyzed on the following assumptions: 

(1.2) f e L  z and f is absolutely continuous on I, with a.e. derivate f '  

(1.3) f '~L  z and f '  is absolutely continuous on I, with a.e. derivative f"  

(1.4) f"eLp for some p with l < p < 2 .  
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Conditions (1.3) and (1.4) have the (non-obvious) consequence that f '  is 
continuous and vanishes at oo. In particular, f '  is bounded; see (2.21) below. 
Also, f '  is in fact the ordinary (everywhere) derivative of f Likewise, f is 
continuous and vanishes at oe. It will also be assumed that 

(1.5) I is the union of class intervals. 

For instance, if I = [ 0 ,  1] and Xo=0 , condition (1.5) requires that h = l / N  for 
some positive integer N. By present conditions, if I = [0, 1], then f and f '  are 
continuous on I, even at 0 and 1. 

(1.6) Theorem. Assume (1.1-1.5). Let 

7 = ~f '(x)  2 dx > 0 
I 

f l=�88 �9 71/3 

~=61/3 7-1/3. 

Then, the cell width h which minimizes the 82 of (1.1) is ~ k-1/3+ O(k-a/2), and at 
such h's, 82=ilk -2/3 q--O(k-1). 

The technique deVeloped to prove (1.6) can be used to give a result under 
weaker conditions. 

(1.7) Theorem. Suppose f ~ L  2 is absolutely continuous with a.e. derivative f ' ~ L  2 
and ~f'(x)Z dx>O. Suppose (1.5) as well. Define ~ and fl as in (1.6). Then the cell 
width which minimizes the 8 2 of (1.1) is o~k-1/3q-o(k -1/3) and at such h's, 8 2 

~-fl k-2/3 +0(k--2/3). 

Such results suggest that the discrepancy 62 can be made small by choosing 
the cell width h as ock -1/3. Of course, this depends on 7, which will be 
unknown in general cases. In principle, y can be estimated from the data, as in 
Woodroofe (1968). However, numerical computations, which will be reported 
elsewher e , suggest that the following simple, robust rule for choosing the cell 
width h often gives quite reasonable results. 

(1.8) Rule: Choose the cell width as twice the interquartile range of the data, 
divided by the cube root of the sample size. 

Rough versions of (1.6) and (!.7) seem part of the folklore. Two recent 
references providing formal computations are Tapia and Thompson (1978), and 
Scott (1979). 

We hope to study the random variable A2= ~ [ H ( x ) - f ( x ) ] 2 d x  in a future 
paper. The standard deviation of A 2 is of smaller order than E(A2)=8 2. Thus, 
choosing h to minimize 82 is a sensible way to get a small A 2. To be a bit 
more precise, the standard deviation of A2 is of order k - l h - 1 / z ~ k  -5/6 for the 
optimal h ~ k  -1/3. Using (1.6), the minimal discrepancy A 2 is of order k -2/3 
give or take a nearly normal random variable of the smaller order k -5/6. 

The histogram may be considered a very old-fashioned way of estimating 
densities. However, histograms are easy to draw; and, unlike kernel estimators, 
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are very widely used in applied work. Mathematical aspects of density esti- 
mation are surveyed by Rosenblatt (1971), Cover (1972), Wegman (1972), 
Tarter and Kronmal (1976), Fryer (1977), Wertz and Schneider (1979), and 
references listed therein. These papers report a great deal of careful work on 
discrepancy at a point, and on global results for kernel estimates and other 
"generalized" histograms. The results show that the mean square error of 
kernel estimates tends to zero like a constant times k -4Is, while (1.6) implies 
that the mean square error of histograms tends to zero like a constant times 
k -2/3. Asymptotically, this rate is worse, a fact which seems to have stopped 
further work on the mathematics of histograms. However, for finite sample 
sizes, the constants determine everything. For example, take k=500:  then 
k -~*i5 -0 .007  while k -2/3 -0.016. The asymptotic rate of k -4Is can be achieved 
using another old-fashioned object: the frequency polygon. This is provable 
with the techniques of this paper. 

Before describing our results more carefully, it is helpful to separate the 
discrepancy (1.1) into sampling error and bias components. To this end, let 

(1.9) 
1 Xo+(n+l )h  

fh(X)= h ~+, f(u)du for Xo+nh<x<Xo+(n+l)h .  
xo h 

(1.10) Proposition. Suppose feL2,  and (1.5). Then 

1 1 !fh(x)2dx+ (. [fh(x)--f(x)]Zdx. E {5 [ H ( x ) - f ( x ) ]  2 dx} - k h k 
I I 

Proof. Suppose xo+nhNx<Xo+(n+l)h .  Then H(x)=N,/kh, and N, is bi- 
nomial with number of trials k and success probability P,h----hfh(X)" In partic- 
ular, 

{H(x)} : L ( x ) ,  

and 

Var {H(x)} = L fh(X) [1 -- hA(x)] 

Now integrate in x over I. [] 

The term 5 ( f h - - f )  2 in (1.10) represents the bias in using discrete intervals of 
width h. Reducing h diminishes this bias, at the expense of increasing the 
sampling error term 1/k h, for the number of observations per cell will decrease 
as h gets smaller. The tension between these two is resolved by (1.6) and (1.7). 

Section2 of this paper is about the bias term ~(fh--f)2; Sect. 3 gives exam- 
ples to show what happens when the regularity conditions like (1.3) and (1.4) 
are relaxed. In particular, (1.7) fails for some beta and chi-squared densities. 
Section 4 gives the proof of (1.6) and (1.7). Clearly, the uniform density requires 
special treatment, since the optimal number of class intervals is one. This 
density is excluded by the condition that  5 f ' 2 > 0 ,  which surfaces in Lemma 
(4.5) of Sect. 4. 
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2. The Bias Term 

To begin with assume only that 

(2.1) f is an L z function on the interval I. 

Define fh by (1.9). Let J be a union of class intervals. Clearly, 

(2.2) y fh(x) dx = y f (x) dx 
J Y 

(2.3) 5 fh(x) 2 dx < I f (x )  z dx 
J J 

(2.4) the fh are square integrable uniformly in h. 

Also, fh converges t o f  in L 2 :  

(2.5) ~ ( fh- f ) : -+O as h-+0. 
x 

For the proof of (2.5), approximate f in L 2 by a continuous function with 
compact support. Estimates on the rate of convergence in (2.5) will be helpful. 
For this, additional assumptions are needed. One such is: 

(2.6) f is an L z function on the interval I, and f is absolutely continuous 
with a.e. derivative f ' ,  and f ' s L  z. 

Under (2.6), the bias term on the left of (2.5) tends to zero like h 2. More 
precisely; 

(2.7) Proposition. Suppose (2.6) and (1.5). Let 

r(h)= ! [fh(x ) - - f  (x)] 2 dx _ 1  h2 ! f,(x) 2 dx. 

Then r(h)= o(h2). 

Proof To ease the notation, write g for f ' ,  and set x0=0.  Focus on a specific 
class interval, for instance, [0, hi. Clearly, 

f (x) = a + i g(u) du 
0 

where a=f(0) .  In computing S(fh--f) z, the constant a will cancel, so it is 
harmless to set a = 0. Of course, 

h h 

~(fh--f)2-----Sf2--hfk z. 
0 0 
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In what follows, u v v=max(u,  v) and u A v =min(u, v). Because a =0, 

h h x x  

5 f  2= 5 5 5 g(u) g(v) dudvdx 
0 0 0 0  

h h h  

=~ ~ ~ g(u)g(v)dxdudv 
OOuvv 
h h  

= ~ ~ ( h - u  v v) g(u) g(v) dudv. 
O0 

Likewise, 

SO 

and 

where 

1 h 
fh=~  ! (h - u) g(u) du 

2 1 h 
h fh =-~ i o ! (h-u) (h-  v) g(u) g(v) dudv 

h h h  

5 (fh _f )2  = f 5 ~bh(u, V) g(u) g(v) dudv 
0 O0 

G(u ,  v) = (h - u v v) - ~(h - u) (h - v) 

1 =(u+v)-(uv~)-~uv 

1 
~ - U  A I ) - - ~ U I J .  

This defines ~b h as a function from O<=u, v<h. Note that 4~(u,O)=O(u,h) 
= ~b(0, v)= q~(h, v)= 0. Define q5 on the whole plane by periodic continuation. 

Let 
(n+ 1)h 2 1 (n+ 1)h 

The argument thus far shows that 

1 (n+l)h (n+l)h 1 (n+l)h 

It will now be shown that ~n~Snh(g)'-+ 0 as h--* 0. 
If g is constant on [nh, (n+ 1)h], a direct computation shows that ~Snh(g)=0. 

But g may be approximated closely in L 2 by a function go which is constant 
on each class interval: for instance, apply (2.5) to g. It remains to show that 

G a.~(g) - z .  a.;,(g o) 



458 D. Freedman and P. Diaconis 

is uniformly small as h---, 0. Of course, 

2 ! I(.I g~)~- (j go) ~1 < I Ig-  go II 

is small, so it remains only to show that Z,A,h is small, where 

1 (n+l)h (n+l)h 
A,h=~ ~ S d?h(U,v)[g(u)g(v)-go(U)go(v)]dudv" 

nh nh 

Now Iq~hl<h, and 

Ig(u) g(v) -go(U) go(V)l < Ig(u)-go(U) l " [ g(v)[ + Ig(v)- go(V)l" Igo(U)[ 

so h IA,hl < ~,h +/~,h, where 

(n+ 1)h (n+ 1)h 
~,h = [~ Ig(v)-go(v)ldv" y Ig(v)ldv, 

nh nh 

(n+ 1)h (n+ 1)h 

~,h= ~ Ig(v)-go(v)ldv. ~ Igo(v)ldv. 
nh nh 

Using the Cauchy-Schwarz inequality, 

((n+ 1)h ((n+ 1)h 
[XnO~nh]2~-~Zn\ !h ]g(u)-g~ ~,, ]g(v)]dv)2 

<=h E ~ (g_go)2.5g2. 
I I 

Likewise, 

So 

[22.fi.h]2 ~h  2 ~ (g__ go)2.5g2. 
I I 

(Z~ [A~h[) 2 =< 2h -2 [(Z~ a~h) 2 + (Z. fi, h) 2] 

__< 2 ~ ( g -  go) '~. f (g~ + g~) 
I I 

is small. [] 

Notes. (i) If f ' r  2, then ~(fh--f) 2 need not be of order h2: see example (3.1). 
(ii) If (2.6) holds and f'=~0, then ( fa-f) /h converges weakly in L 2 to 0, 

but not strongly (in L 2 norm). Indeed, the proposition shows that 
I[(fh-f)/h[12--,1/12[[f'[I2>O; this rules out strong convergence to 0. To 
argue weak convergence to 0, let ~ s L  2. Write 1{ } for the function which is 1 
if the statement in braces is true, and 0 otherwise, and now let 

qSh(U , V)=(1 - h - l u ) - i { u < v } .  
Then 

(2.8) 
O 0  
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As before, (2.8) vanishes if 0 is constant on [0, hi, and Iq~h[ < 1, SO 0 can be 
replaced by a function constant over the class intervals, without disturbing 

1/h ~ (fh - f )  ~ very much. 
i 
For later use, it will be helpful to improve the o(h 2) error term in (2.7) to 

o(ha), To accomplish this, an additional regularity condition like (1.4) is need- 
ed. Indeed, example (3.11) below constructs a nonnegative f ~ L  1 c~L 2, such that 

f ' ~ L  2 and f"~Lo~; but r(h) is only of order h 2 log~ as h ~ 0 .  

As a preliminary, 

(2.9) Let O(u)=lOu(1-u) (1 -2u)  for 0_u_<l ,  and be continued periodically 
over the line. 
The function O(u) is a constant multiple of the third Bernoulli polynomial: see 
Sect. 1.2., 11.2 of Knuth (1973). 

0 1 (2.10) Lemma. O(u) vanishes at O, �89 and 1. It is positive on ( ,~ )  and anti- 
1 

symmetric about �89 so ~ O(u) du =0. Furthermore, [0[ < 1. 
0 

(2.11) Lemma. Let @~L 1. Then SO(u/h) O(u)du~O as h~O.  
I 

Proof. This is a variation on the Riemann-Lebesgue lemma. To prove it 
replace ~ by a nearby function in L 1 constant on each class interval. [] 

The form of the next theorem may seem curious, but it gives sharp es- 
timates for S(fh-f)2.  

(2.12) Theorem. Suppose (1.5) and (2.6). Suppose f '  is locally of bounded 
variation, determining the signed measure ]2. Let ]2 + and ]2- be the positive and 
negative parts of ]2, I]2] = ]2++ ]2-, and 

dnh = I]21 { IX o q- nh, x o + (n + 1) h]}. 

Assume 

(2.i3) 2 D h = z~ndnh < 0 0 .  

Then f~Ll(]2 ). Define r(h) as in (2.7). Then 

r ( h ) - l  h3 ! O[(x-  Xo)/h]f'(x ) ]2(dx) < 3 h3D h. 

Proof. Without loss of generality, set Xo=0. The first step is to show that 
f '~Lt(]2 ). First, it will be shown that for any ~ [ 0 ,  h], 

h 

(2.14) ~ If'[ Id]21 ~ If'(~)l doh + do 2. 
0 
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In (2.14) and below, Jd#l indicates integration with I~1. To verify (2.14), split the 
interval of integration at 4. Now 

r r ed# o}lf'lld~l=! f'(r I#(d,,)l 

_-< I f ' ( { ) l  Isxl {[0, ~]} +S J" Id/xl Id/xl 
O0 

= I f ' (O I '  hul {i-o, ~]}  + Isxl {ro, g-I} ~. 

Likewise, for the integral from ~ to h. Finally, 

Isxl fro, @ 2  + I~1 {(~, hi} 2 ~ Isxl {[0, hi} 2. 

This completes the proof of (2.14). 
Now for any ~,e[nh> (n+ 1) hi, 

(n+ 1)h 
I f ' l  Idsxl < lf'(~.)l d.h +d. 2. 

nh 

Sum, and use the Cauchy-Schwarz inequality: 

SIf'l Idvl < [DhS.f'(~.)2] 1/2 + Dh 

[ 1! Dh'-h 1 1/2 < f'(x)2dx] +D h 

with suitably chosen ~,. This completes the proof that f ' eLl( lx  ). 
Write Oh(u)=O(ulh ). Since O h is bounded, Ohf'eLl(#) as well. Turn now to 

the main inequality. Clearly, it is enough to prove that 

(2.15) ( fh - f )  2 -  hZ!( f ' )  z -  h3iOn f '  <~h3do~. 
0 

Now 
x 

if(x)-- b + ~ #(dr) 
0 

x 

f(x) = a + bx + ~ (x - v) #(dr). 
0 

The constant a cancels in fh - - f  SO it is harmless to take a = 0. Then 

fh=�89 (x-v)lx(dv)dx 

lhh 
-1-bh+7 ~ ~(x-v)  dx#(dv) 
- - 2  n O  v 

=�89 i (h -v )  2 #(dr). 
z n  o 
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Thus, 
h 

(2.16) h f 2 =  ~ b 2 h3 + �89 bh ~ ( h -  v) 2 I.t(dv) + ~ t 
0 

where 

~1 = ~  (h - v) z t~(dv) 

1 3 2 <gh doh. 
Likewise, 

(2.17) L h 2 i  1 h 12 (f,)2 = b2h 3 + ~ b h  2 ~ ( h - v )  #(dv)+e 2 
0 

where 
x 2 

~ h 3 d 2 o h .  

dx 

And 
h h 

2 1 2 3 2 3 (2.18) ~f  =sb  h +b~Ex(h - v 3 ) - v ( h Z - v Z l ] g ( d v ) + ~  3 
0 0 

where 
h x 2 

do\ 

i ( x -  v) g(dv) < h doh. because 

Combining (2.16-2.18) gives that 

(2.19) ( fh- - f )  z -  h a ~ ( f ' ) Z - b  Od# <=~h3do2h 
0 

where 
tp(u) = }(h 3 - u 3) - u(h 2 - u 2) - ~hZ(h - u) - �89 - u) 2 

=1h30(u /h) .  

It remains to estimate 

1 ha i O(v/h)(f'(v)-b) #(dr) 
~ 4 ~ ' 6 6  0 

O 0  
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Since 101 < 1, 

le,r<~h3do2h. [] 

(2.20) Corollary. Suppose (1.2-1.5). Define r(h) as in (2.7). Then r(h)=o(h3). 

Proof. Assume without loss of generality that Xo=0. The idea is to use (2.12). 
1 1 

To estimate Dh, choose q so that - + - = 1 ,  where p appears in (1.4) and 
p q 

1 _<_p=<2, so 2X-<q< oo. Now use Holder's inequality: 

(n+ 1)h 1 [(n+ 1)h ) l  
d,h= ~ 1.lf"(x)[dx<hV ~h If''fp ~" 

nh J- 

So 

where 

Dh<=hYZn {f"L p ~_~h2 2 -~ fl(h) ~ If"[ p 
nh I 

(n+ 1)h 2 1 
f l ( h ) = s u p  ~.h If"lP) p " 

If p=2 ,  then fl(h)=l for all h, and Dh=O(h)=o(1 ). If p = l ,  then h2-2/p=l for 
all h, and fl(h)~O as h--+0, so Dh=o(1 ). Likewise, if l < p < 2 ,  then D h 
=o(h2-2/p)=o(1). As (2.12) shows, f ' f " e L  1 and 

where 

Ir(h)l ~6~0 h3 [~(h)l-{-~-h 3 D h 

e(h) = ~ O(x/h) f '(x) f"(x) dx, 
I 

Now e ( h ) ~ 0  as h--+0, by (2.11). []  

Notes. (i) With the assumptions and notation of (2.20), not only is f '  c , , e l  "J ~1, 
but f'~Lq. This is so by assumption for p=2 .  If p<2 ,  then q>2, and 

]f,lq_= ff,lq- 2 If,j2. 

But f '  is bounded by (2.21) below. 
(ii) If f is smooth, then ~Ohf'f" is of order h, as is Dh, so r(h) is of or- 

der h a. 
(iii) However, example (3.3) below constructs an f with f"eC[O, 1], yet 

fO~f'f" is only of order 1/log . Now D h is of order h, so r(h) is of order 

h3/log 1. 

The following result has been used several times above. Similar results 
appear in Sect. 2 and 3 of Chap. 5 of Beckenbach and Bellman (1965). 
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(2.21) Lemma. Suppose 1 = ( - o %  c~). Let O~L= on I for 0<c~<oo and let ~ be 
absolutely continuous, with a.e. derivative tp'eLp for some fi> l. Then ~ vanishes 
at o0. 

Proof. Suppose, e.g., lim sup 0(x)> 0. There is a sequence of numbers 
x ~ o o  

al <bl <a2 <b2 <... 

with a,--+ oo and O(al)=e>0 and O(bi)=�89 and ~b(x)>�89 on [ai, bi]. In particu- 
lar, Z(b i -  al) < 00. However, 

S O  

bi 

al 

bi 

IO']~(le)~/(br -1 
a~ 

and the sum is infinite. [] 

While thinking about these results we discovered an interesting variation 
on Cauchy-Riemann sums. 

(2.22) Lemma. Suppose 4) is absolutely continuous on the finite interval [a,b]. 
Let ~ ~ [a, hi. Then 

b b 

[~b(x) - ~b(~.)l dx <(b - a). ~ kb'(x)] dx. 
a a 

Proof. Assume without loss of generality that i - - a :  if not, just split [a, b] at ~. 
Now 

x 

4(x)- qy(u) du 
a 

S O  

b b x  

y I~b(x) - q~(a)[ < y y ](y(u)ldu dx 
a a a  

b b  

=Y S Iq '(u)l dxdu 
a u  

b 

=~ (b-u)]~b'(u)[ du 
a 

b 

<(b-a).yl@'(u)ldu. [] 
a 

(2.23) Example. Let a = { = 0  and b = l .  Let n be a positive integer, let 

4)(x)=nx for O<_x<_l/n 

=1 for 1/n<_x<_l. 
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Then 

and 

1 1 
r a x :  1 - - -  

o 2n 

1 

(a'(x) dx = 1 
0 

so the ratio of the two integrals is arbitrarily close to 1. [] 

(2.24) Corollary. Suppose 0 is L 1 and absolutely continuous on ( -oo ,  oo). Let 
a, be a monotone bilateral sequence of real numbers, with a, ~ - o v  as n---, - c o  
and a, ~ + co as n ~ + oo. Choose 4, arbitrarily in [a,, a,+ 1] and let 

h = sup (a, + 1 - a,). 
n 

Then 

[ ~_~ ~p(x)dx- Z,O(~,)(a,+ l - a , )  <_h -~ IO'(x)ldx. 

Proof The left hand side is at most 

an+ 1 

z. j" Iq (x)- dx. 
an 

[] 

Remarks. The arguments for (2.22) and (2.24) work, in exactly the same way, 
when ~b is only assumed to be locally of bounded variation, determining the 
signed measure ~ with variation [#1. The integrals on the right hand side of the 
inequalities are replaced by I#[ [a, b] and [#l(-o% or) respectively. This in- 

b 

cludes (2.22) and (2.24) since ]P[ [a, b]=~ Iq~'l. It is easy to construct examples 
a 

where the Riemann sum is not a good approximation to a smooth L 1 
function. Take triangles of height 1, centered at the positive integers, the j-th 
triangle having base 1/j 2. Smooth the triangles, and define the function to be 
zero elsewhere. This function has positive, finite integral, but the Riemann sum 
approximation can be zero or infinite depending on the choice of a, and 4,. Of 
course, the right hand side of t h e  bound is infinite. For related material, see 
the discussion of direct Riemann integrability in Sect. 11.1 of Feller (1971). 

3. Examples 

(3.1) Example. Suppose f is L 2 on [0, 1], and is absolutely continuous, but 
1 

f'(~L 2. Then S ( f h - f )  2 need not be of order h 2, Consider the beta distribution: 
0 

f ( x ) = x  ~, so f ( x ) = e x  ~-1 and f ' (x)=c~(c~-l)x ~-2. Choose a . l  with 
1 

0.5 < ~ < 1.5. Then ~ ( fh - f )2  is of order h 2~- 1. 
0 
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Proof. Let h=  1IN. On [nh, (n+ 1)hi, 

(n+ 1)h 

hfh= ~ f = [ ( n + l ) ~ - n ~ ] h  ~ 
nh 

and 

SO 

where 

(3.2) 

hf# = E(n + 1) ~ -  n~l 2 h 2 ~- 

(n+ 1)h 

h 1-2~ ~ ( f h_ f )Z=q ,  
nh 

~2 

q" - 2 c ~ -  1 I-(n + 1) 2~- 1 _n2~-1] _ [(n + 1) ~ -n~] 2. 

Thus, qo=(~ - 1)2/2e - 1, and for n>__ 1, 

1 q, = ~  ~2(c ~_ 1)2 n2~-4 +O(nZ~- 5). 

N o w 2 c ~ - 4 < - l s o  ~ q = q <  oe. Also, %>O by (3.2), so q>O, and 
n=O 

o~ (fh--f)2 = 1 (N-1 n ~=0 qn ) h2~- l - q ha~- l + [] 

Note. If e= l .5 ,  then 2c~-1=2 ,  but the argument breaks down because 

L',n 2~-4 diverges. Then ~(fh--f) 2 is of order h 2 log h. When e =  1, the argument 

applies, but q = 0 because each qn = 0. When c~ = 1/2, the density f is not in L 2 . 

(3.3) Example. Suppose f satisfies (1.2-1.4) on I=E0 ,1 l  and f " = g  is con- 
tinuous on E0, 1]. Still 

1 
t 2 - ~ 1  h2 !(f ,)2 r(h) = ! (fh --f)  

can be of order h3/log~, rather than of order h 4, along a sequence of h's 

tending to 0. See the notes following Corollary (2.20). 
The construction uses notation defined in (2.9-2.13). A preliminary lemma 

is needed. 

(3.4) Lemma. Let 0 be defined by (2.9). Let qJ be absolutely continuous on E0, 1] 
with a.e. derivative O'. Let m and n be nonnegative integers. There are finite, 
positive constants A and B, which do not depend on •, m, or n, such that: 

(3.4a) i O(nu)~k(u)du< 1 A i lO'(u)t du 
0 n o 

1 1 

(3.4b) ~ O(mu) O(nu) O(u) du <m A n B ~ [Iq4u)l + 14"(u)13 du. 
0 m v n  0 
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-i Proof Claim (a). Let O(u)- O(v)dv. The periodicity of 0 implies that 0>0. 
o 

Likewise, 0 has period 1 and vanishes at all the integers. Let A = m a x  O. 
Integrate by parts: 

1 1 

O(nu) O(u) clu = ~ O(nu) O'lul du. 
0 n O  

Claim (b). Suppose m<n. Apply claim (a) to the function O(mu) tp(u). [] 

Construction. Let h)= 1/2 j2 and define 

g ( u ) =  ~ O ( u / h j ) / j  2 o n  [ 0 , 1 ] .  
j = l  

Clearly, g is continuous (but not much more). Let 

x x 

if(x) = b + ~ g(u) du and f (x)  =~f'(u) du. 
0 0 

Choose b so f ' > 0  on [0, 1]. 
Now r(h) can be estimated using Theorem (2.12). In the notation of that 

theorem, the measure # is absolutely continuous with density g. Clearly, 
dnh <-h. max Igl, so 

1 2 z D h <~. h �9 (max Igl) = O(h). 

What is left is to estimate h 3 ~O(x/h)f'(x)f"(x)dx. 
Recall that f"(u) = g(u) = S, O(u/hk) k 2, so 

(3.5) 
j - 1  | 1 

i O(u/h)f'(u)f"(u)du=kF~,o = ~!O(u/h~)O(u/hs)f'(u)du 
1 1 

+ ~  ! 02(u/hj)f'(u) du 

+ ~ 1 O(u/hi)f'(u ) du. k= j + l ~ ! O(u/hk) 

The middle term on the right side of (3.5) is the dominant one, for 

1 1 
OZ(u/h)f'(u) du--*c~ ~f'(u) du as h--+0, 

0 0 

1 1 
O(u/hj) f f  (u) du P 0 

1 
is of order 1/j 2, namely, 1/log 7-, as j --* c~. 

n,. 

1 
where a=~  O;(u) du>O. Thus, 

0 
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It will now be shown that the two sums on the right in (35) are negligible. 
Of course, O(u/hk)=O(2k~u). Use (3.4b) on the first sum, with f '  for 0: when 
k<j ,  

1 

O(u/hk) O(u/h ~) f'(u) du < 2k~- J~B t 
0 

where B is from (3.4b) and 

The first sum is at most 

1 

B 1 =B, ~(]f'[ + )if'l). 
0 

j ~ l  1 k 2 .2 2" 
B l " k ~ l ~ 2  -J <B2/2 J 

where B 2 = 2B 1 �9 ~ l/k 2, because k 2 _j2 <_ ( j_  1)2 _ja  = _ 2j + 1. 

Similarly, use (3.4b) on the second sum, with f '  for 0: when k>j, 

1 

O(u/hk) O(u/hi) f ' (u ) du < 2 j~ -k~ B1" 
0 

The second sum is at most 

B~. ~ ~---~ 2J2-k~ < B3/2 2j 
k = j + l  

where B~=�89 1, ~ 1/k 2, becausej2-kZ<j2-(]+ l)2 = - 2 j - 1 .  [] 
k~ 1 

Condition (1.4) constrains f "  to lie in Lp for some p with l < p < 2 .  This 
guarantees that r(h)= o(h 3) by (2.20). Other values of p will not do, as the next 
sequence of examples shows. The densities are made up of an infinite sequence 
of quadratic "bumps". The conditions for (2.20) demand feL~. In the exam- 
ples, usually f(~Lz. 

(3.6) Lemma. Suppose f is quadratic on [d, d +h]. Then 

d+h 1~2 d+h = -- vx~xf"(d) 2 h 5 . ( fh_f)Z_ h z ~ f,2 1 
d a l~u 

Now define a "bump"  of height parameter b, width parameter ~, and 
starting point a. This hmction f on [a, a + 4 e ]  is characterized by the require- 
ments 

f"(x)=b 
= - - b  

=b 

f ' ( a ) = 0 ,  

f ( a ) = 0 .  

for a<=x<a+ G 
for a+e<x<a+3e ,  

for a+3~<=x<a+4e, 
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(3.7) Lemma. Let f be a bump of height parameter b, width parameter e, and 
starting point a. Then 

a+4e  

(i) f ' (a+4e)= ~ f " = 0 ,  
a 

(ii) m a x f ' = b e  and m i n f ' = - b e ,  
a+4e  

(iii) f (a+4e)= ~ f '=O, 
a 

(iv) m a x f = b e  2 and m i n f =  0, 
a+4e  

(v) ~ (f')2=Ab2e 3, 
a 

a+d.e 

(vi) S f 2=Bb2es, 
a 

a+4e  

(vii) ~ f =  Cbe 3. 
a 

Here, A, B, C are positive, finite constants, whose exact value is 
immaterial. 

Now make a "bump function" f on [0, oo) as follows. Choose a sequence 
of height parameters b~, width parameters ei, and multiplicities nj. The function 
f will have bumps starting at 0, 1, 2, .... The first n~ bumps all have height 
parameters b 1 and width parameters e 1. The next n 2 bumps all have height 
parameters b 2 and width parameters e2; and so on. Here b~>0, e~=l/4 7j for 
some positive integer 7, and nj is a positive integer. The remainder 

is to be estimated for h=e j  and Xo=0. Let n=n t + ... +nj. Now 

r(h) = r 1 (h) + r2(h ) + r3(h ). 
Here 

rl(h)=~(fn_f)z h 2 f,2 
0 

will be called the "early bump error". It depends only on the first n bumps. 
Next, 

r2(h ) = _ h 2 f (f,)2 
n 

is the "incomplete-f'  error", and depends only on bumps n + l ,  n+2 , . . . .  
Finally, 

r3(h) = ; (fh _f)2  
n 

is the "incomplete-f error", and it too depends only on bumps n + 1, n + 2, .... 
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We have required e j+ ~ to divide ej evenly. As a result, the early bump error 
is easily estimated from (3.6). Indeed, fix h=e: and consider the bump on J , .J 
=[a ,a+4e~]  where i<j. Let M=e]ej=4 ~~ There are M class intervals 
which evenly cover [a,a+e~]; another M which cover [a+e~,a+28i]; etc. On 
each such class interval the bump is quadratic. This proves: 

(3.8) The early-bump error is 

As (3.7v) shows, 

4 ,, ~ nib~ei" 
l ~ J  i=1 

(3~ The incomplete-f' error is 

1 A ey ~ nib2e~. 
12 i=j+l 

Now ~j>4aj+l;  as a result, (3.7vi-vii) imply 

(3.10) The incomplete-f error is 

1 
i ~ j + l  '~j i = j + l  

(3.11) Example. There is an f>=0 on [0, oo) which is L 1 and L 2 and absolutely 
continuous; furthermore, f '~L 2 is absolutely continuous; and f"~Loo vanishes 
at oo. However, 

r(h)= ~ ( f h - f )2 -  h 2 ,2 
0 0 

2/( is only of order h log~ rather than o(h3), at least on a sequence hj 
= 4 - J ~ 0 .  

Construction. Choose b;= 1/j 2, aj=4 -j, and nj=43j. In view of (3.7), 

f~L 1 because Snjbfi 3 < oo, 
f~L z because 2 5 n j b j 8 j  < o o ,  

f '  ~L 2 because Nnjb2~ < oo, 
f "eL~  vanishes at oo because bj--*O. 

Also, r(h) can be estimated using (3.8-9-10). The early-bump error is of order 
ey/j4, as is the incomplete-f error. The incomplete-f' error is dominant, being 
of order ~y/j3 [] 

(3.12) Example. There is an f > 0  on [0, oo) which is L 2 and absolutely con- 
tinuous; furthermore, f ' eL  2 is absolutely continuous, and f"~Lp for all p>4.  



470 D. Freedman and P. Diaconis 

However, r(h) is only of order h 2 log rather than o(h3), at least on a 

sequence h j = 4 - J ~ 0 .  This f is not L 1. 

Construction. Choose b~= 1/(i24i), e~= 1/4 i, and ni=45i. []  

(3.13) Example. Fix p with 2 < p < 4 .  There is an f > 0  on [0, oo) which is L 2 
and absolutely continuous; furthermore, f ' 6 L  2 is absolutely continuous, and 

f"~Lp. However, r(h) is only of order h2/lOgh, rather than o(h3), at least on a 
sequence h ~ = 4 - J ~ 0 .  This f is not L 1. 

Construction. Choose c>2/(p-2) such that 2c is an integer. Set d = 3 + 2 c .  
Then bi=l/(i4ci), and e i= l /4  i, and ni=4 ai. [] 

(3.14) Example. Fix p with 0 < p < 2 / 3 .  There is an f > 0  on [0, ~ )  which is L 2 
and absolutely continuous; furthermore, f 'EL 2 is absolutely continuous, and 

f"eLp. However, r(h) is only of order h2/lOgh, rather than o(h3), at least on a 
sequence h j = 4 - J ~ 0 .  This f is not L 1. 

Construction. Let c=2/(2-p) and d = 3 - 2 c > 0 .  Typically, d is not an integer. 
Let b i=4  a, ~ =  1/4 i, and let n~ be the integer part of4a~/i 2. [] 

(3.15) Example. Fix p with 2 / 3 < p < 1 ,  and 0 with p < 0 < l .  There is an f > 0  
on [0, or) which is L 2 and absolutely continuous; furthermore, f ' ~L  2 is ab- 
solutely continuous, and f"~Lp. However, r(h) is only of order h 5-(2/~ rather 
than o(h3), along a sequence of h's tending to 0. This f is not L~. 

Construction. Let n~= 1. Let ~ be a large positive integer, to be chosen later. 
Let b~=4 ~/~ and e~=4-vk Here, the three errors are of the same order of 
magnitude, viz. z. 5-(2/~ However, for large 7, the incomplete-f' error --j 

dominates. [] 

Note. Similar examples (with p < l )  may be constructed starting with the 
function f(x)=c~x ~-1 for 1.5<c~<2. However, the calculations are quite te- 
dious. 

4. The Optimization 

Theorems (1.6) and (1.7) are proved in this section. The following notation will 
be used throughout: Let 

(4.1 a) 0k(h) = E {j [H(x) - f ( x ) ]  2 dx}, 
I 

(4.1 b) qbk(h)= ~-f~+ bh 2 , 

(4.1c) b l ~ f , ( x )  2dx, 

(4.1 d) d = ~f(x) 2 dx. 
I 
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Both theorems give an approximation to the cell width h* which minimizes 
the expected L 2 error 0k(h), and the size of this error at h*. The argument will 
show that 0k(h) is a continuous function of h on (0, oo), tending to oo as h 
tends to 0, and tending to some positive limit as h tends to infinity. The latter 
limit is bounded away from 0, as k tends to oo. Further, inf0k(h) is of order 

h 
k -z/3--'0. As a result, inf0~(h) is attained, say at h*. To begin, it is useful to 

h 
introduce an approximation to 0k(h); this is q~k(h) defined in (4.1b). The first 
lemma shows that ~bk(h ) achieves its minimum at ~k -1/3 and at this minimum 
is of size fik -2/3. These are the lead terms of (1.6) and (1.7). All preliminary 
lemmas are proved under the assumptions of (1.7). 

(4.2) Lemma. q~k(') is minimized at hk=(2bk)-l/3 =c~k -1/3, and 

~bk(hk) = 3 . 2 -  2/3. b~/3 . k -  2/3 = i lk-  2/3. 

(4.3) Lemma.(a)  G(h)>G(hk)+b(h-hk)  2, 

(b) d~k(h)<(~k(hk)+3b(h--hk) 2 if h>hk, 

(c) 4k(h)<~k(hk)+ 3b(h-hk)2 +lh-hkl3/kh 4 ifh<hk. 

Proof. Claim (a). Consider the difference between the left side and the right. 
The derivative turns out to be positive to the right of h~, and negative to the 
left. Clearly, the difference is 0 at hk, completing the argument. 

Claim (b). By Taylor's theorem, 

~bk(h ) = 4k(hk) + (h - hk) qSk(hk) + �89 - h k )  2 " 1 ' qb k (hk) + ~(h - hk) 3 ~b(k3)(~), 

with h k < ~ <h. Of course, 4'k(hk)= 0, and q~'(hk)= 6b, and qS(k3)(h)=- 6/kh 4 <0.  

Claim (c). This is like (b). [] 

Note. The bounds in (4.6a-b) are a bit surprising because the coefficient b does 
not depend on k. At hk, of course, qb~ 3) is of order - k  ~/3, so the function q5 k is 
changing shape as k grows. 

(4.4) Lemma. (a) Ok(h) is a continuous function of h for 0 < h < oo. 

(b) lim 0k(h)= oo. 
h ~ 0  

Proof Claim (a). The ( fh-- f)  and fh are uniformly square integrable by (2.4); 
as h,--,h, clearly fh,--'fh a.e. So fhn--*fh in L 2. Now use (1.10). 

Claim (b). Use (1.10). [] 

The next job is to estimate inf0k(h ) carefully, and show that unless h is 
h 

rather close to the h k of (4.2), 0k(h) is too large to be the inf. It is convenient to 
estimate Ok(h) separately in three zones: 0 < h < 6, and 6 _< h_< L, and L < h < Go. 
Only the first zone will matter. 
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(4.5) Lemma. For any 6 > 0  and L>3 there are positive numbers OoL and k~L 
such that k>k~L implies rain {~k(h):6<_h<_L} > O. 

h 

Proof In view of (1.10) and (2.3) 

1 2 

The first term on the right is a continuous function of h, as in (4.4). It cannot 
vanish: if it did, f=--fh; either f is discontinuous, or f '---0; both possibilities 
are ruled out by hypothesis. At this point we use the condition S f ' 2 > 0  to 
exclude the possibility that f is, e.g., uniform over [0, 1], in which case h = 1 is 
optimal. Let 0 o be the minimum over h with 5<_h<_L of 

S(fh--f) 2. 
I 

l ! f 2 < � 8 9  o. [] So 0 0 > 0. For k large, 

(4.6) Lemma. For any 6 > 0  there are positive numbers 0~ and k~ such that 
~k(h)>=Ot for all h>=3 and k>k~. 

Proof As h ~  o% it is clear that fh--*O pointwise. The convergence is L 2 by 
uniform integrability (2.4). So I(fh--f)2---~f 2. Choose L so large that h>L 

( f z>a  2 (4.5). [] entails ~ fh-- ) 2 ~ f . Then use 
The argument for (1.7) is easier than the argument for (1.6), and will be 

presented first. 

Proof of Theorem (1.7). Fix e with 0 < e < b :  (see 4.1c). Use (2.7) to choose 6 > 0  
so small that [r(h)[ =<eh 2 for 0 < h < 5 .  Now use (1.10) and (2.3): 

( 4 . ~ / )  (ak(h)--eh2--~<_<_Ok(h)<Ok(h)+eh 2 for 0_<h___5. 

In particular, the infinimum of ~k(h) over h with 0 < h__< 6 is smaller than 

rain [~bk(h ) + eh 2] = 3.2 - 213. (b + 0 1/3. k-  zla 
h 

and larger than 

kd ~_ [min (~k(h )_ eha] = _~  + 3.2-2/a.(b-@13.k -2/3. 

Here, (4.2) has been used with b++_e in place of b; and k is so large that 
[2(b-e)k]-113<6. Because e was arbitrary, the infimum of Ok(h) over h 
with 0<h___b is 

(4.8) 3 .2 -  2/3. b 1/3. k-  2/3 + o(k- 2/3). 

Now (4.4-6) show that ~k(') has a global minimum, say at h~, any such h* 
tends to 0 as k ~  o% and Ok(h*)=qSk(hk)+O(k-21a). 
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To bound  the locat ion of h~, apply (4.3) with b - e  in place of b, and use 
(4.7) again. For  O<h<5, 

2'3 d @k(h)> fi~k- ~ - ~ + ( b - e ) ( h - h k )  2, 

where 
/~ = 3 . 2 -  2/3. (b - ~)1/3. 

If [h-hkl>~lk -1/3, and a is small, and k is large, then 

d 
Ok(h) > fi~k- 2/3 _ k + (b - e) t/2 k -  2/3 > min @k. 

In particular,  any h* must  be within rlk -1/3 of h k, for k large. 
Theorem (1.7) asserts a bit more  than has been proved so far: that  for any 

h suitably close to h k, 0k(h) is close to its minimum. Thus, suppose 
Ih-hkl<tl  k-1/~, where t? is small. To finish the proof, 0k(h) will be est imated 
above and below. First, if r/<�89 (2b) -1/3, then 

�89 < h < 2 h  k. 

Now @k(h) can be est imated from below using (4.7) and (4.2): 

d 
Ok(h) >= Ok(h)-- gh 2 - ~  

d 
>4)k(hk)--a4h~ k" 

Since e is arbitrary,  and h k is of order  k -  1/3, 

Ok(h) > d~k(hk) + o(k- 2/3). 

The estimate for Ok(h) from above is very similar when h>hk; see (4.3b). So, 
suppose 

�89 <__hk-t]k-1/3 <h<_hk. 

N o w  use (4.7) and (4.3c): 

Ok(h) < 4)k(hk) + ah 2 + 3 b tl 2 k -  2/3 + T 
where 

T= Ih - hk[ 3/kh 4 < (rl k -  ~/3)3 /k(�89 hk) 4 

< 2  4 . t/3 . (2 b)4/3 . k-2/3. 

Again, a is arbi t rary and h k is of order  k -1/3. Also t/ is arbi t rary;  so if Ih--hkl 
=o(/<1/3), 

as desired. [ ]  



474 D. Freedman and P�9 Diaconis 

Note. We guess that h~ is unique, but cannot prove this without additional 
conditions. 

Turn now to the proof of Theorem (1.6). Assume (1.1-1.5). This is stronger 
than the assumptions for (1,7), so for any 6 > 0, the infimum over all h of Ok(" ) 
is achieved in 0 < h < 6 and tends to 0 as k tends to oo. The region 0 < h < 6 will 
be split into the following zones, defined in terms of h k from (4.2) and a 
constant A to be chosen later: 

�9 th-hkl<=A/kl/2 

Ih-hkJ>A/k  1/2 but h < 2 h  k 

�9 2 h k < h < &  

For any small positive constant c there is a 60 such that for 0 < h < 6  o 

(4.9) Ok(h) --~-- ch 3 <= Ok(h) < Ok(h) + ch 3. 

This follows from (1.10): relation (2.3) shows Sfh2<Sf 2 and the bias term is 
estimated by (2.20). 

(4.10) Lemma. Choose c and 6 o as in (4.9). Let k be so large that 2hk<6Oo Fix 
A finite and positive. I f  �89 and [h-hk] <=A/k 1/2, then 

1 
(a) Ok(h)>(G(hk)- (4 .b+d) . -  s 

(b) Ok(h)<Ok(hk)+(3b2A+4b).~+(16b)4/3A3 1~ k7/6" 

Proof Claim (a). Since h 3 <8h2 =4/b, relation (4.9) implies 

0k(h) > qSk(h ) - (4. g + d 

and Ok(h)>Ok(hk) by (4.3). 

Claim (b). First, suppose h>h  k. By (4.9) and (4.3b), 

c 1 
Ok(h) < d?k(h ) + 4 . b . k  

1 

Second, suppose h <h k. Then an extra term T must be added to the upper 
bound: 

T= Ih - h~13/kh ~ < A 3/EkS/2(hJ2) ~3 

<(16b)'~/3A3/kT/6. [] 

Note�9 For sufficiently large k, if ]h - hk] < A/k 1/2, then �89 h k < h _-< 2 h a eventually. 
The next lemma gives a careful upper bound for min 0k" 
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c 1 
(4.11) Lemma. The minimum of Ok(') is at most Ok(hk) q 2b k" 

Proof minOk(h)<Ok(hk)<Ok(hk)+ch2 by (4.9). [] 
If h is more than A/k 112 away from hk, then 0k(')  is larger than the upper 

bound of (4.11). Consider first h < 2 h  k. 

(4.12) Lemma. Choose A so large that 

c 
b A 2 > 5 " ~ + d .  

I f  h<2hk,  but Ih-hkl> A/k 1/2, then 

c 1 
Ok(h) > G(hk)+~'~.  

In particular, the minimum of Ok(') cannot be found in this range of h's, by 
(4.11). 

Proof From (4.3a), 
1 

(4.13) Ok(h) > Ok(hk) + bA 2 . • 
k 

Now 

d ha Ok (h )>Ok(h ) -~ -c  by (4.9), 

d 8 ch3k because >Ok(h) fc 

c 1 (4 because 

>-_ Ok(hk)+(bA2-4 �9 - d  .~ by 

c 1 >G(hk)+~.~. [] 

h < 2 h  k, 

hk =(2bk) -1/3, 

(4.13), 

Finally, consider h's in the zone 

(4.14) 2hk<<_h <_6. 

(4.15) Lemma. Choose g) positive, but smaller than rain {6o, b/3c}, where c and 
6 o are as in (4.9), Then Ck(h)-ch  3 is a monotone increasing function of h in the 
interval (4.14). 

Proof Clearly, 
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3 3 4 1 
If  h>2hk, then bh >8bhk=~> ~. O n  the o ther  hand,  if h<6, then 
bh3>=3ch 4. [] 

(4.16) Corollary. Choose ~ as in (4.15). For 2hk <h<~, and k > k o ,  Ok(h)>d,)k(hk) 
1 2 +gbh k. 
In particular, the minimum of Ok(h) cannot be found among these h's, by 

(4.11). 

Proof. Es t ima te  as follows. 

Ok(h)>=(gk(h)-ch3- k by (4.9) 

3 d >~k(2hk)--C8hk--~ by (4.15) 

2 3 d >4~(hk)+bh~-c8h~-~ by  (4.3 a) 

+ ~bhk + rk, = G ( h k )  1 2 

where  

d _1 2 c8h~ Zk--gbhk --~ 

is posi t ive  for sufficiently large k, because  h k is of  o rde r  1/k 1/3. [] 
These b o u n d s  force the fol lowing conclus ions :  for large k the h's min imiz-  

ing 0 k ( ' )  are  to be found in the in terva l  hk+_A/kl/2; on that  whole  in terval  

Ok(h) = C~k(hk)+ O(1/k). This comple tes  the p r o o f  of  T h e o r e m  (1.6). 
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