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Abstract 

This paper describes a finctionatly-Distributed (FD) 
hand tmcking method for hand-gesture-based wearable 
visual interfaces. The method is an extension of the 
Distributed Monte Carlo (DMC) tracking method which 
we have developed. The method provides coarse but 
rapid hand tracking results with the lowest possible 
number of samples on the wearable side, and can re- 
duce latency which causes a decline in  usability and per- 
formance of gesture-based interfaces. The method also 
provides the adaptive tracking mechanism by using the 
suficient number of samples and the hand-color model- 
ing on the infmstructure side. This paper also describes 
three promising applications of the hand-gesture-based 
wearable visual interfaces implemented on our wearable 
systems. 

1 Introduction 

Computer vision is a key technology for providing post- 
WIMP interfaces such as AR interfaces and PUIs. 
In recent years, a significant number of attempts 
have been made to develop hand-gesture (HG) based 
interfaces especially for mobile or wearable systems 
[7, 10, 11, 12, 13, 14, 15, 16, 181. However, many of 
them are often sensitive to changes in lighting condi- 
tions and background, or computationally intensive for 
stand-alone wearable computers whose computational 
resources and battery power are often limited by their 
size necessary for ensuring the wearability. 

We previously developed a client/server type of 
vision-based wearable system to compensate for lack of 
the computational power of wearable systems [8,9, lo]. 
In the systems, the wearable client processes only I/O 
tasks such as capturing/decoding/encoding images and 
displaying information, and the server processes all 

computer-vision tasks with image data transmitted 
through a wireless LAN. However, although such a 
server can handle many intensive tasks a t  high through- 
put, it is quite difficult to respond to the wearable client 
via a wireless network with minimum latency. In addi- 
tion, such systems can easily stall when the wireless 
connection is unstable due to roaming, interference, 
and noise. 

In this paper, we propose a Functionally-Distributed 
(FD) hand tracking method for Wearable Visual 
Interfaces (Weavy) [I]. The method provides coarse 
but rapid hand tracking results based on the ConDen- 
sation algorithm [2] with the lowest possible number of 
samples on the wearable side. As a result, it can reduce 
latency which causes a decline in usability and perfor- 
mance of gesture-based interfaces. The method also 
provides the adaptive tracking mechanism by using the 
sufficient number of samples and the hand-color mod- 
eling on the infrastructure side. The adaptive tracking 
mechanism is considerably intensive for the wearable- 
side modules, but it needs not to be processed in real 
time. Therefore, we can design this task as one of the 
XML web services on the infrastructure-side modules, 
and color models prefetched on the wearable-side mod- 
ules are used until updated color models are received. 
This paper also describes three promising applications 
of the HG-based Weavy implemented on our wearable 
systems: a virtual universal remote control, a secure 
password input, and a real world OCR. These applica- 
tion tasks are also implemented on the infrastructure- 
side modules as the XML Web services. 

2. Funct ionally-Distributed Hand 
Tracking 

Figure 1 is the diagram of the Functionally-Distributed 
(FD) hand tracking method which we propose in this 
paper. The method consists of tracking tasks based on 



the Distributed Monte Carlo (DMC) tracking method 
[5] and an adaptive color modeling task based on the 
color histogram approximation by means of a Gaus- 
sian mixture model (GMM) [lo, 181. Each task of 
the FD tracking method is assigned to wearable-side 
modules which are the modules worn by the wearer, or 
infrastructure-side modules which are all other mod- 
ules. 

In [5, 61, the DMC tracking method was used to 
track the target person by controlling a wearable ac- 
tive camera (WAC) with minimum latency and also 
was used to obtain accurate position and shape of the 
face. In this paper, we apply the method to HG-based 
Weavy, since the latency of response should be cut 
down to prevent a decline of usability and the a d a p  
tation to environmental changes should be satisfied for 
such interfaces. 

Figure 1: Diagram of the FD hand tracking method. 

2.1 The DMC Tracking Method 
The DMC tracking method [5] is an extension of the 
ConDensation algorithm [2] for distributed architec- 
tures. The iterative process of the ConDensation al- 
gorithm consists of the following three steps: 

1. Select each sample s'fn)(= s?Jl) with the weight 
( j )  r t - ~  (n,j= 1 ,.., N ) .  

2. Predict by sampling from the dynamical model 
p(XtlXt- l  = s'fn)) to generate each sfn). 

3. Weight each sin) by means of observed features Zt :  
,Tin) = p(Zt lXt  = sfn)) .  
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Figure 2: Diagram of the DMC tracking method. 
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Figure 3: State transition diagram of the DMC track- 
ing method. 
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Since the ConDensation algorithm or sequential 
Monte Carlo tracking methods have plural hypothe- 
ses represented with a discrete probability density 
{S?) ,A~(~) ) ,  they track the target object robustly even 
if the object is in clutter. However, we need a large 
number of samples to fully bring out the performance. 
To solve this problem, the DMC tracking method uses 
different numbers of samples and different dynamical 
models on the wearable side and infrastructure side re- 
spectively so as to obtain the tracking result. with the 
minimum latency on the wearable side and to accu- 
rately estimate the state of the object on the infras- 
tructure side. 

The boxes with bold lines in the diagram of the 
FD hand tracking method (Figure 1) correspond to 
the DMC tracking method, and Figure 2 explains the 
detail. The iterative process on the infrastructure 

for the infrastructure side ~ ~ d ~ ~ ~ ~ ~ w ~ o ~  



side generates new samples sf(n) from both the new q + lelnCl if XI > Tx 
but sparse sample-set received from the wearable side 

~ ( z t l x t )  0: { otherwise 

{ew(n) t I r t  W(n)) and the old but dense sample-set on where XI is the first eigenvalue of G ,  Tx is a threshold of 

the infrastructure side {s:~),T~$)}. A sample mix- Xi, nc is the normal vector of P C ,  and q is a constant 

ture parameter a in Figure 2 controls the selection ra- to survive a transitory failure of observations due to 

tio of sr(j) to sf? according to the wireless network OcclusiOn the tracked 

and ~(x:Ix:-,) are used respectively for the wearable (a) Pointing [y = 0] (b) Clicking [y = 11 

side and infrastructure side. dx:Ixy) is a d ~ -  Figure 4: A simple hand shape model. This model has 
namical model. However, unlike with the above two 

21 observation points on the contour. dynamical models, this model is used to generate new 
samples from the results obtained at  the same frame 
(time t), so we call p ( ~ : l ~ r )  the dynamical model 
for repetitive observation. 

2.2 Shape Representation and Obser- 
vation 

We use a simple 2-D contour model for hand shape Frame 44 Frame 82 

representation as shown in Figure 4 and employ the 
following seven parameters to describe the state: 

Xt = (Ot,tz,t, k t ,  St, 4z,t,4y,t,Yt), 
where Ot is the rotation angle, (t,,t, t,,t) is the center 
position of the hand shape, s,,t is the scaling param- 
eter, and (+,,t, +,,t) is the shear parameter. The pos- 
ture parameter yt(0 5 .yt 5 1) controls the hand shape Frarric: 121 Frame 129 
from the pointing posture (Figure 4 (a)) to the clicking 
posture (Figure 4 (b)) the same way as image morph- Figure 5: Selecting a rectangle by dragging. 
ing. By using these postures, the user can interact Gith 
wearable appliances as shown in Figure 5. 

The dimensionality of the shape space is much 
higher compared with the number of samples that 2.3 and Observa- 
can be used on the wearable side. To follow the t ion 
large motion of the hand, we design the As described in [5], we use color before 

P ( X ~  I x r l )  that each sample is distributed shape b w d  on importance sampling [3,17] 
and Over a wide range except the shear pa- not only to reduce in the background but a$o 

rameter. On the other hand, P(x:IxLT) is designed to reduce the mmputational cost of shape observation. 
to estimate all parameters of Xt accurately. We use a Gaussian distribution as a parametric color 

k t  el be the first eigenvmtor of the covariance ma- representation. The model is estimated on the inbas- 
trix of the image gradient (gZ, gy) around an tructure side as described in 2.4 and uploaded the 
vation point P ~ ( c  = 1, .., C )  on the contour. In our im- wearable side when connection is available, so 
plementation, the likelihood of each sample for shape the prefetched color model is used for color 
observation is defined as tion. For color observation, each Gaussian distribution 

c of samples is obtained inside each hand-shape contour 

~ ( Z t l X t  = sl")) = J-Jp(rtl~t) and the similarity of the two distributions is evaluated 

c=l using the Mahalanobis distance. 



2.4 Color Modeling 

Instead of using predefined hand-color models, we dy- 
namically construct hand- and background-color mod- 
els based on the hand-color-segmentation method pro- 
posed in [lo]. The method uses a GMM to approximate 
the color histogram of each input image. The GMM is 
estimated by the restricted Expectation-Maximization 
(EM) algorithm in which the standard EM algorithm 
was modified to make the first Gaussian distribution 
an approximation of the hand-color distribution [18]. 
Not only to obtain the estimated mean of hand color 
necessary for the restricted EM algorithm that esti- 
mates the GMM but to classify hand pixels based on 
the Bayes decision theory, we need a spatial probability 
distribution of hand pixels. In this study, we use the 
hand shape estimated by the DMC tracking method 
as the distribution. This hand-color modeling task is 
assigned on the infrastructure side, and the first Gaus- 
sian distribution of the GMM is send to the wearable 
side as described the above. 

3. Experiments 
We evaluated the accuracy of hand tracking using an 
image sequence taken with a head-worn camera. The 
sequence has 227 frames which includes pointing and 
clicking postures. In this experiment, the estimated 
hand state was obtained using the weighted mean of 
samples {sp),  rLn)). 

Figure 6 shows the average pointing errors for var- 
ied numbers of samples and for the wearable and in- 
frastructure sides. The results consist of the distance 
along the x axis, the distance along the y axis, and 
the Euclidean distance between the estimated position 
of the thumb's tip and the ground-truth position mea- 
sured manually. These results are normalized so that 
the width and the height of input image are 1.0 respec- 
tively. It is self-evidence that the pointing accuracy 
was improved as the number of samples increases. 

Figure 7 graphs posture classification error and also 
graphs false positive and false negative in estimating 
the existence of the hand. We classified each hand 
shape as pointing or clicking by simply using a thresh- 
old of 7t and we estimated the existence of the hand 
by using the likelihood of color and shape observation 
(Figure 8). The performance of posture recognition 
was improved as the number of samples increases, al- 
though the false positive was not. However, since many 
of the false positive errors occur just after disappear- 
ing the hand, we can reduce such errors by using some 
simple sequential filters. 

Considering a balance of the computational resource 
and the tracking accuracy, we currently set the number 

of samples to 300 for the wearable side (CPU: Crusoe 
867MHz) and to 1000 for the infrastructure side (CPU: 
Pentium IV-M 2.2GHz). Figure 9 is an example of the 
trajectory of thumb's tip on the wearable side (N=300) 
and Figure 5 is example output based on results of this 
experiment. 
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Figure 6: The average pointing errors for varied num- 
bers of samples and for the wearable and infrastructure 
sides. 
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Figure 7: Posture classification error and false positive 
and false negative in determining the existence of the 
hand. 

4. Applications 
We have developed several types of wearable systems 
provided with Weavy, called Wyvern [I]. Figure 10 
indicates the distributed software architecture of the 
Wyvern including the HG-based interface. In this sec- 
tion, we will introduce three applications of the HG- 
based Weavy implemented on the Wyvern (Figure 12). 

4.1. Virtual Universal Remote Control 
The personal positioning method which we developed 
[8] can obtain the wearer's position and direction by 
using image registration and sensor-data fusion tech- 
niques, and display video frames overlaid with 2-D 



Figure 8: Likelihood a t  each frame. Bold line shows 
whether the hand exist in each image or not. 

Figure 9: aajectory of the pointer from frame 9 to 
170. 

annotations related to  the wearer's view. Using this 
method, for instance, the system can show the wearer 
the virtual control panel of some appliance which is in 
its field of view, so that the wearer can operate the 
appliances with its own hand as shown in Figure 12 
(a). 

4.2. Secure Password Input 
Figure 12 (b) shows some example output of the secure- 
password-input application with the HG-based Weavy. 
Since the position and the shape of each key in soft 
keyboard are randomly changed a t  every input, it is 
very difficult for anybody to steel the password, even 
if it observes the wearer's hand motion very carefully. 

4.3. Real-World OCR 
The scene text detection method [4] provides several 
candidate regions to  process an OCR task. Just se- 
lecting one of those candidates with the wearer's hand, 
text information in the real world is acquired and can 
be used for various purposes such as translation, navi- 
gation service based on signboards, web search, and so 
on (Figure 11). Figure 12 (c) is some example output 
of the Real World OCR (RWOCR) and three rectan- 
gles in Figure 12 (d) show the text regions which were 

Figure 10: Distributed software architecture of the 
Wyvern system. 

Figure 11: Overview of RWOCR. 

automatically detected. 

5. Conclusions 
We proposed the FD hand tracking method based on 
the DMC tracking method and the color modeling with 
the GMM. The method not only provides coarse but 
rapid hand tracking results with the lowest possible 
number of samples on wearable side but provides the 
adaptive tracking mechanism with the sufficient num- 
ber of samples and the hand-color modeling on the in- 
frastructure side. With this distributed framework, the 
wearable side is capable of continuing to track the hand 
by itself even when it is unable to communicate with 
the infrastructure side. Furthermore, more accurate 
results and the learning data are obtained when it is 
able to communicate with the infrastructure side. 
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