
MYA '98 IAPR Workshop on Machine Vision Applications, Nov. 17-19, 1998, Makuhari, Chiba Japan

13-1
A Comparison of Linear Processor Arrays for Image Processing

Matthijs van der Molen Pieter Jonker
matthijs@ph.tn.tudelft.nl pieter@ph.tn.tudelft.nl

Pattern Recognition Group
Delft University of Technology *

Abstract

This paper describes a comparison of the perform-
ance and usability of three Linear Processor Arrays
for image processing purposes. The study covered
the NEC IMAP-VISION card [I], the AS1 CNAPS
card [2] and the SYMPHONIE of the CEA-LETI[3].
The manufacturers of these card have made different
design decisions regarding the number of processing
elements (PEs) and their complexity. It was found
that for image processing many simple PEs are more
useful than few powerful processors.

1 Introduction

The invention of ever faster and more complex
computers makes more and more applications of di-
gital signal processing possible. And in turn, new
application areas require increasingly more compu-
tational power. One of the most computationally in-
tensive areas is that of (real-time) image processing,
due to the amount of data involved and the oper-
ations needed to extract information from complex
real-world images.

To overcome the limitations imposed on the
power of a single processor by waver size, paral-
lel computer systems have been designed and built.
By the nature of the data (many pixels which un-
dergo the same treatment) Single Instruction, Mul-
tiple Data (SIMD) processors are the most natural
choice for image processing applications. It has been
shown by Komen [4] and later by Jonker [5] that
a Linear Processor Array (LPA) is the best inter-
connection model for an SIMD image processor. In
this study three LPAs which are, or will soon be,
commercially available are compared with respect
to performance and possibilities/limitations.

2 The Cards

Each LPA is an add-on card, which is connec-
ted to a host computer. The processing algorithms

are coded and compiled on the host, using a lan-
guage and software proper to the card. The host
will then upload the binary program to the cards
program memory and launch it. Communication
between the host and the card happens over a data
bus and through interrupts. The cards consist of
three principle components:

The Control Processor (CP) The CP is a single
microprocessor or DSP which handles the com-
munication with the host. hrthermore it con-
trols the program flow, once a program has been
launched by the host,. Finally it controls data
110 over the data bus.

The Data bus In order to do real-time image pro-
cessing, not only fast calculations are required,
but also a high data throughput. A dedicated
data bus has been put in place in the cards
in order to assure this. In the IMAP-VISION,
this bus is connected to Video Digital-to-Analog
(DAC) and Analog-to-Digital (ADC) Convert-
ers, allowing the card to be connected directly
to a camera and a monitor/TV.

The Processing Elements (PEs) Probably the
most important element is the array of PEs. It
is a set of microprocessors, each connected to
two other processors, called its left and right
neighbors. It are these processors which do
the data processing. Probably the most im-
portant decision when designing an LPA is the
complexity and number of PEs to be put in
place. Due to limitations on chip surface and
on the number of transistors per unit chip sur-
face, more making the PEs more complex (=
more powerful) means less PEs can be placed
on the card. A lack of experimental knowledge
about the effect of the decision on the perform-
ance of the card has led the three manufacturers
of the cards used in this study to make different
choices.

Address: Lorentzweg 1, 2628 CJ Delft, the Netherlands The main characteristics of each of the cards are:

430

2.1 The IMAP-VISION or stack-processing [7][8] algorithms, which do run-
time region-of-interest (ROI) calcula.tion.

NEC's Pattern Recognition Laboratory, now
called Incubation Center, has developed the IMAP-
VISION. The IMAP-VISION is available in a PC1
and a VME bus version. The card comprises the
aforementioned video 1 / 0 interface. It is controlled
by a 16-bit microprocessor, containing an adder, a
shifter and a multiplier. This CP executes its in-
structions for data I/O, program flow control and
host communication in parallel with the data pro-
cessing by the PEs. The P E array consists of 256
processors, containing an 8-bit adder and shifter
each, plus some hardware for accelerated multiplic-
ation (in 8 clock-cycles) and 1 kilobyte (kB) of in-
ternal memory. Finally they have an interface to
an additional 64 kB of external memory. In the
programming model the memory is regarded as a
common, 256-byte wide, two-dimensional plane of
memory, of which each column is treated by one PE.

2.2 The SYMPHONIE

At the moment the SYMPHONIE does not yet
exist as a card. Its characteristics have been studied
using a software simulator, furnished by the LETI.
The card will have a 32-bit CP containing an ad-
der and shifter. It has not yet been decided if the
data bus will be connected to the PCI-bus host inter-
face, or to a dedicated data interface. A single card
will contain 64 PEs, but multiple cards can be con-
nected to form a single system of up to 1024 PEs.
The PEs are 32-bit super-scalar processors, mean-
ing they consist of an adder and a shifter/multiplier
which can operate in parallel. Unlike the IMAP-
VISION the CP and PEs can not operate in par-
allel. The PEs are connected by a complex inter-
connection network which can operate in different
modes: dat,a on all PEs can be shifted 1 P E to
the right or left, data on 1 P E can be broadcast
to all other PEs and 1 PE can write directly in the
memory of 1 ot,her P E (DMA mode). The PEs will
have access to 16 kB internal memory and 64 kB
external memory, but the latter is not yet docu-
mented or implemented in the simulator. A pecu-
liarity of the SYMPHONIE is the memory distri-
bution. The memory is viewed as a 16-bit 1024 by
512 byte 2-dimensional plane of which the elements
are distributed over the PEs helicGdally: instead of
each P E having one column or one line of memory,
each has a diagonal. Thus there is parallelism for
both column and line operations. A disadvantage
however is that the programmer has to do a lot more
thinking, about where a specific pixel resides, and for
many algorithms precious clock-cycles are lost cal-
culating a t which P E a certain pixel is located. This
is especially true for so called bucket-processing [6]

2.3 The CNAPS

The CNAPS holds the middle as far as PEs are
concerned: a CNAPS board can contain from 16 to
512 PEs in VME-bus version and 64 or 128 PEs in
PCI-bus version. The card we used contains 128
PEs. Each P E is a 16-bit microprocessor, contain-
ing an adder and a shifter/multiplier. They can
not work in parallel independently, but it is possible
to perform a multiply-and-accumulat,e in one clock-
cycle. The CP is a 32-bit DSP, which can not be
programmed explicitly. Only some predefined con-
trol operations exist for data 110. Global data ma-
nipulation has to be done on one of the PEs, leav-
ing the others inactive. Contrary to the other cards
there is no unified memory view. The card is con-
sidered to have N independent memories. This has
the advantage that data can be distributed accord-
ing to the type of data and operations. The disad-
vantage however is that all data 1 / 0 has to be done
sequentially via the CP. Data can be transferred us-
ing the host interface or a dedicated I/O path, called
Direct-I/O. A third possibility is a set of data paths
each connected to a subset of PEs, called Quick-I/O,
allowing a certain extend of parallel data 110. A ma-
jor disadvantage is that the PEs are only connected
through a 4-bit bus (2 in, 2 out) to each of its neigh-
bors. Thus data would have to be sent to a neigh-
bor two bits at a time, which is only possible in the
card's assembly language. In the high-level language
the only solution would be to have the PEs output
their value(s) to the CP sequentially, and have them
read it in a different order. This makes the CNAPS
not very suitable for image processing, because that
requires almost always neighborhood operations.

3 The comparison

The cards were compared using a number of more
or less standard image processing algorithms, known
from literature. They were chosen so as to represent
most of the categories described by Kyo and Sato [7],
covering different levels of mathematical complexity
and different amounts of communicat,ion. They all
operate on &bit gray-level images. Unfortunately
no timings are included for the CNAPS, since the
card could not be made to work in our laboratory
environment. The algorithms used art::

Binarization (Point Operation) This
very simple algorithm, also called thresholding,
compares the value of each pixel to a threshold.
If the value is greater or equal, the correspond-
ing pixel in the output image is set to 255, else

it is set to 0. This 8-bit operation, which re- even though the SYMPHONIE can use its spe-
quires no (neighborhood-) communication tests cia1 interconnection network to send data to an-
the "raw" speed of the cards. The IMAP- other P E in the background. The algorithm
VISION clearly comes out fastest (see Table 1). used on the IMAP-VISION could not be used

Sobel filter (Local Neighborhood Operation)
This operation applies both a horizontal and a
vertical Sobel edge detection filter, and sums
and thresholds the absolute values of both res-
ults, in order to find strong edges in the image.
It uses the values of all 8 neighbor pixels to
do some very simple calculations, so it mainly
measures neighbor-PE communication speed.
For this algorithm, the IMAP-VISION is still
about twice as fast as the SYMPHONIE, but
the difference is less then for thresholding, be-
cause 16-bit operations are used, which take
two clock-cycles on the IMAP-VISION. Also
the SYMPHONIE can profit some more of the
internal parallelism of the PEs.

SDGD (Local Neighborhood Operation) For
a kernel size of 3x3 the Second Derivative in the
Gradient Direction uses only neighbor pixels,
but it involves a lot more computation than the
Sobel filter. For each pixel 6 integer (1Bbit)
multiplications and one long (32-bit) division
are computed. Therefore the results for this al-
gorithm are more or less an average of compu-
tational power and neighbor connection speed.
It is found that for this algorithm the SYM-
PHONIE beats the IMAP-VISION, because of
its larger word-size and hardware multiplier.
Also quite a1 lot of internal parallelism is used.
It is possible that the CNAPS would have been
the fastest card for this algorithm. The lack
of neighbor-PE connections can be overcome
by loading overlapping stripes of three image
columns on each PE. The CNAPS can do all
16-bit operations in one clock-cycle, using its
hardware multiplier, and it has twice as many
PEs as the SYMPHONIE. On the other hand
it has a lower clock frequency.

Rotation over 90 degrees (Point Operation)
This algorithm involves no computation, only
communication: pixels have to be sent to an-
other processor. On the IMAP-VISION a smart
algorithm by Kyo [7] is used. On the SYM-
PHONIE it uses the DMA mode, which is
easy to implement, but not very fast. On the
CNAPS an image in its common, so called file
memory, can be rotated in 0.0 ms: you simply
change the way of distributing it over the PEs.
However an image already in P E memory has to
be sent to the CP and back to the PEs pixel by
pixel. It can be seen that the rotation is done
much more efficiently on the IMAP-VISION,

on the SYMPHONIE because it only works if
there are as many PEs as image columns.

Histogram (Statistical Operation)
A histogram is a table in which each element
contains the number of pixels that have a gray
value equal to the index of the element. It is cal-
culated by counting pixels in parallel and then
combining the counting results of each PE, us-
ing an algorithm by Kyo [7]. Even though the
final result is a 16-bit array, most of the com-
putation is done is 8-bit, so the IMAP-VISION
is faster, thanks to its larger number of PEs.

SDT (Recursive Neighborhood Operation)
The Strumpford Distance Transform is an al-
gorithm which, for every pixel in an image, cal-
culates an approximation of the Euclidean Dis-
tance (in pixels) to the nearest object pixel. It
has been implemented both in the form of a re-
cursive neighborhood operation (RNO) and us-
ing distributed bucket (/stack) processing. It
has has been shown by Olk that the distrib-
uted bucket algorithm is faster if four or more
RNO-scans are performed over the image. Al-
though the SDT only needs two scans, the dis-
tributed bucket algorithm has also been imple-
mented because it allows the speed of the cards
for this type of algorithms to be compared.
On the IMAP-VISION the distributed bucket-
processing algorithm is much slower than the
RNO-scans. Remarkably this is not the case
for the SYMPHONIE. The overhead involved
for the RNO algorithm causes it to be slower,
even though only two scans over the image are
made.

Hough Transform (Global Operation)
The Hough transform is an algorithm for de-
tecting geometrical shapes in an image, in this
case lines. For a predefined set of values for
the parameters describing the shape, here the
slope and the offset of the line, the shape is su-
perimposed on the image. Then the element
in parameter space, corresponding to that par-
ticular combination of values is incremented
for each pixel lying on the shape which has a
value higher than a certain threshold. This is
the only algorithm implemented for which the
SYMPHONIE is clearly much faster than the
IMAP-VISION. This is due to the very high
amount of multiplications, which are done in
16-bit. On this algorithm the CNAPS may do
very well, because the only type of communic-

ation is broadcasting, and it can do the 16-bit
multiplications in one clock-cycle.

FFT (Global Operation) The FFT is a fast al-
gorithm for calculating t,he spectrum of an im-
age. A 2D-FFT can be decomposed in the 1D-
FFT over the rows of the result of a ID-FFT
over the columns of the image. Thus, if an
image is distributed column-wise over the PEs,
each P E performs a ID-FFT over the column(s)
it has in its memory. Then the image is ro-
tated over 90 degrees, the same 1D-FFT al-
gorithm is applied over the rows (which are now
columns) and the image is rotated back. On the
IMAP-VISION swapping to external memory
had to be used during the calculation, because
not enough internal memory is available to hold
all data. On the SYMPHONIE the memory dis-
tribution is a problem. Because the PEs neither
have a line nor a column in memory a lot of
communication is needed for both ID-FFTs. It
turned out to be faster to redistribute the im-
age such that each column resides on one PE.
It turns out that this pre- and post processing,
together with the much slower rotation, make
the FFT on the SYMPHONIE slower than on
the IMAP-VISION, despite the 16-bit x 16-bit
multiplications used.

Summary The following table gives the timing res-
ults of the described algorithms for the IMAP-
VISION and the SYMPHONIE.

Algorithm

Binarisation
Sobel filter
SDGD
R.otation
- +90°
- -90"
Histogram
SDT
- RNO scans
- buckets
Hough Transform
FFT
- 1-Dimensional
- 2-Dimensional

[table 11 Timings of
fastest card).

IMAP-VISION SYMPHONIE

* 0.03 ms 0.21 ms
* 0.56 ms 1.13 ms

6.56 ms * 5.48 ms

the algorithms (* indicates the

4 Conclusions and recommendations

When comparing the results for the IMAP-
VISION and the SYMPHONIE, it can be seen that

the IMAP-VISION is almost always faster, some-
times by far. And for the algorithms for which it
is slower, the difference is often small. This can be
explained by Amdahl's Law. Imagine an algorithm
which contains 20% multiplications. Using a card
with hardware multipliers can do those multiplica-
tions 8 times faster than one without. This gives
an overall speed-up of the algorithm of 100 / (80 +
(20/8)) = 1.21 . If, instead of adding a multiplier,
twice as many PEs where used, the overall speed-
up whould be around 2. This holds especially for
the IMAP-VISION, because it executes sequential
code on the CP a t the same time as the parallel
code on the PEs. This means the PEs are active
almost all of the time. Thus for image processing
applications more PEs are preferable over complex
PEs. However this may no longer hold if the num-
ber of PEs exceeds the number of columns (rows) in
the image. Furthermore it was found that "smart"
hardware, like the SYMPHONIE's interconnection
network and memory distribution, are often more of
a nuicance than of help. In many cases the problems
they are intended to solve can be attacked just as
well, or even better, by smart programming. More
details about the algorithms, the results and a dis-
cussion on the validity of the results can be found in

191.

5 Acknowledgments

The authors would like to thank the following per-
sons for their support and hospitality:

Sholin Kyo and Yoshihiro Fujita
Incubation Center
NEC Research Laboratories

Jean Franqois Larue and Patrick Arnoul
Laboratoire d'Electronique, de Technologie
et d7Instrumentation
Commissariat a l'knergie Atomique

References

[I] Y. F'ujita, e.a., "A 10 GIPS SIMI) Processor for
PC-based Real-Time Vision Applications - Ar-
chitecture, Algorithm Implementation and Lan-
guage Support -" , Computer Architecture for
Machine Perception (CAMP), pp.22-32, 1997.

[2] D.W. Hammerstrom, D.P. Lulich, "Image Pro-
cessing using One-dimensional Processor arrays",
Proc. IEEE, Vol. 84, No. 7, pp.1005-1018, 1996.

[3] D. Juvin, e.a., "SYMPHONIE: Calculateur Massive-
ment Parall&le, Modklisation et Rtialisation" , Journkes
Adkquation Algorithmes Archtectures, Toulouse,
1996.

[4] E.R. Komen, "Low-level Image Processing Ar-
chitectures Compared for some Non-linear Re-
cursive Neighborhood Operations", Ph.D. Thesis,
Faculty of Applied Physics, Delft University of
Technology, Delft 1990.

[5] P.P. Jonker, "Why Linear Processor Arrays are
Bet,ter Image Processors", International Confer-
ence on Pattern Recognition (ICPR), Vo1.3, pp.
334-338, 1994.

[6] J.G.E. Olk, P.P. Jonker, "Bucket Processing: a
Paradigm for Image Processing", International
Conference on Pattern Recognition (ICPR), 1996.

[7] S. Kyo, K. Sato, "Efficient Implementation of
Image Processing Algorithms on Linear Processor
Arrays using the Data Parallel Language lDCn,
Machine Vision and Applications (MVA), pp. 160-
165, 1996.

[8] S. Kyo, e.a., "A Parallelizing Method for Imple-
menting Image Processing Tasks on SIMD Lin-
ear Processor Arrays", Computer Architecture
for Machine Perception (CAMP), pp.180-184,
1997.

[9] M.W. van der Molen, "A Comparison of Linear
Processor Arrays for Image Processing", M.Sc.
Thesis, Faculty of Applied Physics, Delft Uni-
versity of Technology, Delft, 1998.

