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Abstract

A simple, flexible approach to creating expres-
sive priors in Gaussian process (GP) models
makes new kernels from a combination of basic
kernels, e.g. summing a periodic and linear ker-
nel can capture seasonal variation with a long
term trend. Despite a well-studied link between
GPs and Bayesian neural networks (BNNs),
the BNN analogue of this has not yet been ex-
plored. This paper derives BNN architectures
mirroring such kernel combinations. Further-
more, it shows how BNNs can produce periodic
kernels, which are often useful in this context.
These ideas provide a principled approach to
designing BNNs that incorporate prior knowl-
edge about a function. We showcase the practi-
cal value of these ideas with illustrative experi-
ments in supervised and reinforcement learning
settings. 1

1 INTRODUCTION

One of deep learning’s major achievements was mastering
Atari games to human level, with each of the 49 games
learnt using an identical algorithm, neural network (NN)
architecture, and hyperparameters (Mnih et al., 2015).

Conversely, Gaussian process (GP) modelling places great
emphasis on tailoring structure and hyperparameters to
individual tasks - four pages of the seminal GP text are
dedicated to the careful design of a kernel for a dataset
of just 545 datapoints (Rasmussen and Williams, 2006)
[p118-122]. Indeed this incorporation of relevant prior
knowledge is central to all Bayesian methods.

1Code for plots and experiments is available at:
https://github.com/TeaPearce
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Figure 1: BNN architecture determines our prior belief
about a function’s properties. In general BNNs provide
little flexibility in this regard - modifying only the activa-
tion function and length scale (‘Basic BNNs’). This paper
explores how to design BNNs to produce more expressive
prior functions (‘Combinations of Basic BNNs’). Two
prior draws are shown for each BNN architecture.

https://github.com/TeaPearce


Bayesian neural networks (BNNs) lie at the curious inter-
section between these two modelling philosophies. They
have strong theoretical links to GPs (Neal, 1997), yet
ultimately share architectures with deep learning models.

The majority of previous research on BNNs has focused
on developing methods for efficient inference (Neal, 1997;
Hernández-Lobato and Adams, 2015; Blundell et al.,
2015), and, more recently, how they can benefit learn-
ing frameworks (Gal et al., 2017; Nguyen et al., 2018).

Relatively little work has explored prior design in BNNs
- current wisdom takes an architecture expected to work
well in non-Bayesian NNs, and places distributions over
the weights. This can ignore significant prior informa-
tion humans bring to tasks (Dubey et al., 2018). The
observation that there seems little point in adopting a
Bayesian framework if we don’t, and can’t, specify
effective priors, forms the core motivation for this paper.

It is well known that BNNs converge to GPs (Neal, 1997).
Whilst correspondence is only exact for BNNs of infinite
width, this provides a useful lens through which to study
the relationship between BNN architecture and prior.

The paper begins with an overview of this connection,
discussing priors over functions produced by basic BNNs
(which we define as fully-connected feed-forward NNs
with iid Gaussian priors over parameters), and the effect
of their hyperparameters. Our major contribution then
follows in section 3: we consider porting an idea for prior
design in GPs to BNNs. A simple approach to building
expressive priors in GPs is to combine basic kernels to
form a new kernel. We derive BNN architectures mirror-
ing these effects. Figure 1 shows examples of priors that
can be expressed by basic BNNs, followed by the richer
class of priors that can be expressed using these combined
BNN architectures.

One situation where kernel combinations are useful is
for functions with imperfect periodicity. This property is
easily captured by combining a periodic kernel with some
other kernel. We explore periodicity in BNNs in section 4,
showing it is not enough to simply use cosine activations,
as might be expected. We develop an alternative approach
that precisely recovers a popular GP periodic kernel.

Illustrative experiments in section 5 showcase the practi-
cal value of our theoretical results both in supervised time
series prediction and in reinforcement learning (RL) on a
classic control task.

This paper is important from three perspectives.

1. As a theoretical result further linking GPs with
BNNs.

2. As a practical approach to creating more expressive

priors in Bayesian deep learning models.

3. For non-Bayesian deep learning, enabling proper
model specification for periodic and locally periodic
functions.

2 BACKGROUND

2.1 GAUSSIAN PROCESSES

A GP is a stochastic process, fully described by its mean
function, E[f(x)], and covariance function (or ‘kernel’),
K(x,x′). Any finite subset of a GP’s realisations follows
a multivariate Gaussian distribution, which makes many
analytical computations possible. They are considered a
Bayesian non-parametic model in machine learning - see
Rasmussen and Williams (2006) for a full introduction.
Duvenaud (2014) provides a reference for the below.

A GP’s mean function is often assumed zero, as it will
be throughout this work. The kernel then determines
the generalisation properties of the model. Informally,
a kernel is a function that describes how closely two
arbitrary data points, x & x′, are related. One might
expect that if data points are similar, their outputs should
also be similar. A common choice of kernel, squared
exponential (SE), captures such behaviour,

KSE(x, x
′) = σ2 exp

(
− ||x− x′||22

l2

)
, (1)

where, l, the length scale, provides some control over how
quickly similarity fades, and σ2 is a scaling parameter.

The behaviour implied by the SE kernel is not suitable
for all datasets. Data generated by a periodic function,
for instance, would not follow this simple similarity rule.
Here a periodic kernel is appropriate, e.g. the exponential
sine squared kernel (ESS), for the 1-D case is,

KESS(x, x
′) = σ2 exp

(
−

2 sin2(πp (x− x′))
l2

)
(2)

where, p, determines the period over which the function
repeats.

Many kernels are available, and selection of one that
encodes properties of the function being modelled can be
critical for good performance. By choosing kernels well
suited to a problem, we are specifying appropriate priors.

What if a dataset has properties not well described by any
of these kernels? A simple solution is to combine basic
kernels together to make a new kernel. One can be surpris-
ingly flexible in how this is done - directly multiplying or
adding kernels, or applying warping to inputs (Steinwart
and Christmann, 2008) [4.1]. This vastly increases the
expressiveness of possible priors.



Using the kernels from above for illustration, in order to
model the function, f(x) = sin(x)+x, one might choose,
K = KESS +KSE . For the function, f(x) = x sin(x),
a good choice might be, K = KESS ×KSE . In section
5 we model two time series with similar properties.

2.2 BNNs CONVERGE TO GPs

Here we reproduce the derivation of infinitely wide single-
layer BNNs as GPs (Williams, 1996; Neal, 1997).

Consider a single-layer NN, f(x) : Rd → R, with in-
put, x, weights, w1 & w2, biases b1, activation function,
ψ, and hidden units H , with no final bias (to unclutter
analysis),

f(x) =

H∑
i=1

w2iψ(w1ix+ b1i). (3)

If priors centered at zero are placed over the parameters,
we have a BNN with, E[f(x)] = 0, hence the mean
function is zero. Consider now the covariance of outputs
corresponding to two arbitrary inputs, x & x′. Denoting
for convenience ψi(x) := ψ(w1ix+ b1i),

K(x,x′) = E[f(x)f(x′)] (4)

= E
[( H∑

i=1

w2iψi(x)
)( H∑

j=1

w2jψj(x
′)
)]

(5)

= E
[
w2,1ψ1(x)w2,1ψ1(x

′) + w2,1ψ1(x)w2,2ψ2(x
′) + · · ·

w2,2ψ2(x)w2,1ψ1(x
′) + w2,2ψ2(x)w2,1ψ1(x

′) + · · ·
· · ·+ w2,HψH(x)w2,HψH(x′)

]
(6)

if parameter priors are independent, we find
the terms between separate hidden units
are zero, e.g. E[w2,1ψ1(x)w2,2ψ2(x

′)] =
E[w2,1]E[ψ1(x)]E[w2,2]E[ψ2(x

′)] = 0, so,

= E
[
w2,1ψ1(x)w2,1ψ1(x

′) + w2,2ψ2(x)w2,2ψ2(x
′) + · · ·

· · ·+ w2,HψH(x)w2,HψH(x′)
]

(7)

and if priors are identically distributed,

= HE
[
w2ψ(x)w2ψ(x

′)
]

(8)

= σ2
w2E

[
ψ(x)ψ(x′)

]
(9)

where w2 prior variance is scaled by width, 1/H .

Having derived expressions for mean and covariance, it
remains to show that the distribution is Gaussian. Eq. 3 is
a sum of iid random variables, hence, under mild condi-
tions, the CLT states that the distribution over functions
is normally distributed as H →∞.

2.3 ANALYTICAL BNN KERNELS

To derive analytical kernels for specific activations, ψ,
and priors, p(w1) & p(b1), eq. 9 must be evaluated.

K(x,x′) = σ2
w2

∫∫
ψ(x)ψ(x′)p(w1)p(b1)dw1db1

(10)
The integral is generally not trivial, and several papers
have focused on deriving analytical forms for popular
activation functions, usually with normally distributed
priors - ERF/probit (sigmoidal shape) and RBF (Williams,
1996), step function and ReLU (Cho and Saul, 2009),
Leaky ReLU (Tsuchida et al., 2018). In section 4 we
add to this list by considering cosine activations. Similar
results have been shown for convolutional BNNs (Novak
et al., 2019).

Naturally eq. 10 can be computed numerically where
analytical forms do not exist. Recurrent computation is
necessary for deeper BNNs, which also converge to GPs
(Lee et al., 2018).

2.4 HYPERPARAMETER INTUITION

Having shown a correspondence between GPs and BNNs,
we now provide, in intuitive terms, the effect of key BNN
hyperparameters on GP priors, which is useful when mod-
elling with BNNs - care should then be taken to select
hyperparameters that suit properties of the function being
modelled. We assume Gaussian priors on weights and
biases, see Nalisnick (2018) for an investigation of other
prior distributions.

• Activation function - Swapping activations effec-
tively swaps the parametric form of kernel. Basic
BNNs in figure 1 show example prior draws for
single-layer BNNs with ReLU and ERF activations,
as well as an RBF BNN.

• Prior variances - These have different effects de-
pending on the layer. Roughly speaking, variance of
first layer weights and biases controls how wiggly
the priors are (similar effect to length scale in the SE
kernel). Final layer weight variance simply scales
the output range of priors (similar effect to σ2 in the
SE kernel).

• Data noise variance - A level of data noise variance
(irreducible noise) must be specified to create a valid
likelihood function when implementing BNNs. Nor-
mally distributed homoskedastic data noise is often
assumed. Roughly speaking, data noise variance
determines how perfectly the data should be fitted.



3 KERNEL COMBINATIONS IN BNNs

This section considers how to design BNN architectures
such that, in the infinite width limit, they give rise to the
equivalent GP kernel combinations.

The kernel combination operations we consider are;

• Addition: K(x,x′) = KA(x,x
′) +KB(x,x

′)

• Multiplication: K(x,x′) = KA(x,x
′)KB(x,x

′)

• Polynomial: e.g. K(x,x′) = KA(x,x
′)2

• Warping: K(x,x′) = KA(u(x), u(x
′)) for a func-

tion, u : Rd → Rm

We begin by considering architectures that combine the
output of two BNNs. This turns out to be a valid way to
add kernels, but not to multiply kernels. We then consider
architectures that combine BNNs, point wise, at the final
hidden layer. This is valid for multiplicative kernels, but
produces a small artefact for additive kernels.

Having derived architectures mirroring additive and mul-
tiplicative kernels, section 3.3 examines using these in
more advanced ways.

3.1 COMBINING BNNs AT OUTPUT

A straightforward way to combine BNNs is to consider
some operation combining their outputs.

3.1.1 Additive

Consider two independent GPs denoted fA(x) & fB(x),
summed,

fadd(x) = fA(x) + fB(x). (11)

In general, it is known that fadd(x) will also be a GP with
kernel, Kadd(x,x

′) = KA(x,x
′) + KB(x,x

′), (Saul
et al., 2016).

For two single-layer BNNs, this is recovered by a BNN
of architecture,

=

H∑
i=1

wA2iψAi(x) +

H∑
j=1

wB2jψBj(x). (12)

Since this converges to the sum of two independent GPs,
regardless of depth (section 2.2), the general GP result
applies, and suffices to show that independent BNNs (of
infinite width) summed at outputs reproduce a GP with
additive kernel.

3.1.2 Multiplicative

Two GPs multiplied together,

fmult(x) = fA(x)fB(x), (13)

do not generally produce a GP (Rasmussen and Williams,
2006) [4.2.4], even though there does exist a GP with
kernel, Kmult(x,x

′) = KA(x,x
′)KB(x,x

′). (Analo-
gously, the product of two normally distributed random
variables is not normally distributed.)

This means that independent BNNs multipled at outputs
(shown for the single layer case),

=

H∑
i=1

wA2iψAi(x)

H∑
j=1

wB2jψBj(x) (14)

do not produce a GP with multiplied kernel.

3.2 COMBINING BNNs AT HIDDEN LAYERS

Consider now combining BNNs by point wise operations
at their hidden layers.

3.2.1 Additive

Taking two single-layer BNNs, the additive case is,

f(x) =

H∑
i=1

w2i

(
ψAi(x) + ψBi(x)

)
, (15)

where ψA and ψB are hidden units for each sub-BNN.
As in section 3.1, neither hyperparameters nor activation
function need be shared, e.g. one could take a RBF and
ReLU BNN, ψA(x) = exp(−||x − wT

A1||22/σ2
g), and,

ψB(x) = max(wB1x + bB1, 0). We now derive the
equivalent GP for such an architecture.

Analysis precisely as in section 2.2 can be followed up to
eq. 9, leaving,

Kadd(x,x
′) =

σ2
w2E

[(
ψA(x) + ψB(x)

)(
ψA(x

′) + ψB(x
′)
)]

(16)

= σ2
w2E

[
ψA(x)ψA(x

′) + ψA(x)ψB(x
′)+

ψB(x)ψA(x
′) + ψB(x)ψB(x

′)
] (17)

by linearity of expectation, and noting ψA and ψB are
independent,

=σ2
w2E

[
ψA(x)ψA(x

′)] + σ2
w2E

[
ψB(x)ψB(x

′)
]
+

σ2
w2E

[
ψA(x)

]
E
[
ψB(x

′)
]
+ σ2

w2E
[
ψA(x

′)]E
[
ψB(x)

]
(18)



= KA(x,x
′) +KB(x,x

′)+

σ2
w2E

[
ψA(x)

]
E
[
ψB(x

′)
]
+ σ2

w2E
[
ψA(x

′)]E
[
ψB(x)

]
.

(19)

This is the additive kernel plus two extra terms. The
impact of these extra terms depends on the activation
function, and could be compensated for. If either ψ is
an odd function, E

[
ψodd(·)] = 0, the additive kernel

is exactly recovered. Alternatively, if both ψ’s are sig-
moids, E

[
ψsig(·)] = 0.5, which results in the kernel,

KA(x,x
′) +KB(x,x

′) + c, for some constant c. If ψ is
a ReLU, E

[
ψReLU (·)] is input dependent, making com-

pensation trickier (though still possible).

In general, summing point wise after hidden nodes is not
a valid way to reproduce an additive GP kernel, although
effects of the artefact terms could be compensated for.

3.2.2 Multiplicative

Following the same procedure for multiplication after
hidden nodes,

f(x) =

H∑
i=1

w2i

(
ψAi(x)ψBi(x)

)
(20)

Kmult(x,x
′) =

σ2
w2E

[(
ψA(x)ψB(x)

)(
ψA(x

′)ψB(x
′)
)]
(21)

BNN independence allows the rearrangement,

= σ2
w2E

[
ψA(x)ψA(x

′)
]
E
[
ψB(x)ψB(x

′)
]

(22)

= KA(x,x
′)KB(x,x

′) (23)

and hence multiplying point wise after hidden nodes is a
valid way to reproduce a multiplicative GP kernel.

3.3 EXTENSIONS

Whilst the previous results were explicitly shown for two
single-layer BNNs, it is straightforward to extend them to
a variety of situations. Following, we provide examples
of useful constructions.

Additive and Multiplicative

Kernel:

K(x,x′) = KA(x,x
′) +KB(x,x

′)KC(x,x
′)KD(x,x

′)
(24)

Basic BNN, ERF[0 : 1] ERF[0] + ERF[1]

Periodic[0]+ ReLU[1] Periodic[0]× ReLU[0 : 1]

Figure 2: Prior draws for a 2-D input. Square brackets
designate which dimension(s) each kernel is applied to.

BNN architecture:

f(x) =

H∑
i=1

w2iψAi(x)+

H∑
j=1

w2jψBj(x)ψCj(x)ψDj(x)

(25)

Polynomials

Kernel:
K(x,x′) = KA(x,x

′)2 (26)
BNN architecture:

f(x) =

H∑
i=1

w2iψA1i(x)ψA2i(x) (27)

Where ψA1 and ψA2 are separate nodes sharing common
hyperparameters.

Warping

Kernel:
K(x,x′) = K(u(x), u(x′)) (28)

BNN architecture:

f(x) =

H∑
i=1

w2iψi(u(x)) (29)

Separation of Inputs

It can be useful to consider multiple kernels taking subsets
of inputs, combined through either addition or multiplica-
tion (Duvenaud, 2014) [2.3, 2.4], as visualised in figure
2.

Kernel:

K(x,x′) = KA(x1, x
′
1) +KB(x2, x

′
2) (30)

BNN architecture:

f(x) =

H∑
i=1

w2iψAi(x1) +

H∑
j=1

w2jψBj(x2) (31)



Kernel:

K(x,x′) = KA(x1, x
′
1)KB(x2, x

′
2). (32)

BNN architecture:

f(x) =

H∑
i=1

w2iψAi(x1)ψBi(x2). (33)

Deeper BNNs

Out of convenience, constructions have been shown for
single-layer BNNs. These could be replaced by deep
BNNs, which equally correspond to GP kernels (section
2.3).

4 PERIODIC BNN KERNELS

This section considers how BNNs can be designed to
model periodic functions. To our knowledge this analysis
is entirely novel. We define a periodic function as, f(x) =
f(x+ p), for some scalar period, p ∈ R+.

We find that cosine activations do not produce a peri-
odic kernel, but applying warping to inputs followed by
standard activations functions, does.

4.1 COSINE ACTIVATIONS

Consider a single-layer BNN with cosine activation func-
tions; intuition might suggest this leads to a periodic ker-
nel. (Note such activations have been explored in other
contexts (Parascandolo et al., 2017; Ramachandran et al.,
2017).)

f(x) =

H∑
i=1

w2i cos(w1ix+ b1i) (34)

Following the usual GP kernel derivation in section 2.2,

Kcos(x,x
′) =

σ2
w2

∫∫
cos(w1x+ b1) cos(w1x

′ + b1)p(w1)p(b1)dw1db1

(35)

Assuming priors, p(w1) ∼ N (0, σ2
w1I), and, p(b1) ∼

N (0, σ2
b1), we find,2

=
σ2
w2

2

(
exp

(
−||x− x′||22

2/σ2
w1

)
+exp

(
−||x+ x′||22

2/σ2
w1

+ 2σ2
b1

))
.

(36)
2Rewrite cos(A) cos(B) = 1

2
[cos(A−B) + cos(A+B)],

then use, E[cos(xw)] = exp(− 1
2
xT Σx), if w ∼ N (0,Σ).

Slightly counter-intuitively, the kernel is not periodic.
Rather it is the sum of the SE kernel (eq. 1), and an-
other term.

We further considered using Laplace and uniform distri-
butions for priors, which did result in kernels containing
trigonometric functions, but the forms were untidy and
not apparently useful.

Note that our analysis is from the perspective of equivalent
GP kernels. It is possible to consider narrow BNNs with
cosine activations that would produce periodic predictive
distributions. If initialised suitably, these may be of some
use.

4.2 INPUT WARPING

Whilst modifying the activation function failed to produce
periodic kernels, applying a warping to inputs was more
successful.

The most common periodic kernel used in GP modelling
is the ESS kernel (Duvenaud, 2014) [p. 25], as shown in
eq. 2. Having established its value in periodic modelling,
we wanted to reproduce this as closely as possible with
a BNN. Surprisingly, an exact recovery is possible as
follows.

Apply a warping to a 1-D input, x →
(cos( 2πxp ), sin( 2πxp )), followed by a single-layer
RBF BNN taking this 2-D warping as input.

In general, an infinitely wide single-layer RBF BNN pro-
duces the following GP kernel (Williams, 1996),

KRBFBNN
(x,x′) =

(
σe
σu

)d
exp

(
− xTx

2σ2
m

)
exp

(
− ||x− x′||22

2σ2
s

)
exp

(
− x′Tx′

2σ2
m

)
(37)

where, 1/σ2
e = 2/σ2

g + 1/σ2
u, σ2

s = 2σ2
g + σ4

g/σ
2
u, and

σ2
m = 2σ2

u + σ2
g . If the discussed warping is first applied,

for the 1-D case this becomes,

KRBFPerBNN
(x,x′) =(

σe
σu

)2

exp

(
−

cos2( 2πxp ) + sin2( 2πxp )

2σ2
m

)

exp

(
−
(
cos( 2πxp )− cos( 2πx

′

p )
)2

2σ2
s

+

(
sin( 2πxp )− sin( 2πx

′

p )
)2

2σ2
s

)
exp

(
−

cos2( 2πx
′

p ) + sin2( 2πx
′

p )

2σ2
m

)
.

(38)
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Figure 3: Two time series with seasonal fluctuations and long term trends. ReLU and periodic BNNs are separately
unable to capture these patterns (first and second from left). However, they succeed when combined in BNN architectures
as proposed in this paper (third from left), closely approximating the predictive distributions of exact GP inference with
the equivalent kernel combinations (right).

Noting,
(
cos( 2πxp ) − cos( 2πx

′

p )
)2

+
(
sin( 2πxp ) −

sin( 2πx
′

p )
)2

= 4 sin2(πp (x − x′)), and also, cos2(·) +
sin2(·) = 1, this reduces to,

=

(
σe
σu

)2

exp

(
− 1

σ2
m

)
exp

(
−

2 sin2(πp (x− x′))
σ2
s

)
(39)

which is of the same form as the periodic ESS kernel.
Indeed there is a connection to the derivation of the ESS
kernel, which used the same warping followed by the SE
kernel (MacKay, 1998).

It is equally plausible to apply the same warping followed
by BNNs of other architectures. For example, the single-
layer ReLU case results in,

KReLUPer(x,x
′) =

σ2
w2

π
(sinω + (π − ω) cosω) (40)

where,

ω = cos−1
(
σ2
b1

+ σ2
w1

cos( 2πp (x− x′))
σ2
b1

+ σ2
w1

)
. (41)

This is equally suited to periodic modelling, and perhaps
more convenient in BNNs given the prevalence of ReLUs.

5 ILLUSTRATIVE EXPERIMENTS

This section provides examples of where, all things be-
ing equal, BNNs designed to incorporate suitable prior
knowledge can deliver a performance boost over basic
BNNs. These gains should be independent of learning

algorithm or inference method, but are necessarily task
specific. Hence, experiments are framed as illustrative
rather than exhaustive.

We showcase situations benefiting simultaneously from
both of the ideas introduced in this paper - combinations
of BNNs and periodic function modelling, although either
can also be used separately.

All experiments used BNN widths of 50 hidden nodes.
Their success supports our claim that, despite the theory
presented in this paper being exact only for infinite-width
BNNs, it provides sound principles for building expres-
sive BNN models of finite width.

5.1 SUPERVISED LEARNING: TIME SERIES

Time series data often have seasonal fluctuations com-
bined with longer term trends. These experiments show
that where basic BNNs struggle to capture such patterns,
simple combinations of these basic BNNs produce appro-
priate priors.

We considered two prediction tasks: CO2 levels recorded
at a Hawaiian volcano (Mauna), and numbers of air-
line passengers flying internationally (Airline). For both
datasets we used ten years of monthly recordings, then
deleted data between years 3-5 to create a gap in the
series. Below, we qualitatively assess the predictive dis-
tribution in both the interpolation region (3-5 years) and
an extrapolation region (10-20 years).

In Mauna, seasonal variations appear to be of constant am-
plitude, suggesting an additive relationship between trend



and period, whilst Airline shows increasing amplitudes,
suggesting a multiplicative relationship.

Figure 3 shows the two datasets and the predictive distri-
butions produced by four types of model (shading gives
±3 standard deviations). Inference was performed with
HMC for BNNs (Neal, 1997), and analytically for GP.

1. ReLU BNN - single-layer BNN with ReLU activa-
tions. There are two possibilities with this model
- a long length scale, as shown for Mauna, which
captures the long term trend but does not fit the sea-
sonal variations. Alternatively, a short length scale
allows better fitting of the training data, but at the
expense of extrapolations - in Airline this produces
a nonsensical 10-20 year forecast.

2. Periodic BNN - single-layer BNN with cos/sin warp-
ing applied, followed by RBF activations. This is
the structure derived earlier, with equivalent kernel
in eq. 39. Since these BNNs output pure periodic
functions they are unable to fit the data well.

3. Combined BNN - these models combined the ReLU
& Periodic BNNs from 1. and 2. above. For Mauna,
an addition operation at outputs was applied, whilst
for Airline, hidden nodes were multiplied point wise.
Note that the main characteristics of the datasets
are captured. This creates sensible interpolation
and extrapolation predictions. Importantly, uncer-
tainty increases with the time horizon.

4. Combined GP - the GPs corresponding to the com-
bined BNNs in 3. were implemented. This enables
verification that the BNN architectures produce a pre-
dictive distribution corresponding to the GP’s (which
could be thought of as the ‘ground truth’). The slight
differences could be put down to the finite width of
the BNNs, and imperfect inference procedure.

5.2 REINFORCEMENT LEARNING:
PENDULUM SWING UP

We considered the pendulum swing
up task; an agent applies torque to a
bar on a pivot, maximising rewards
by controlling the bar to be verti-
cally upright. Observations consist
of angle, θ, and angular velocity, θ̇.

We used a slightly modified version
of the task. Actions were discre-
tised so that torque ∈ {−1, 0,+1}. Dynamics were also
modified - usually the update rule for θ is,

θt = θt−1 + θ̇tdt, (42)
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Figure 4: Learning for three different BNN architectures
on the pendulum task. The BNN incorporating a suitable
prior for task, ‘Periodic×TanH’, outperforms basic BNNs.
Mean ± 1 standard error, three runs.

where t is time, and θ̇ is a function of the applied torque
and gravity. We modified this to,

θt = θt−1 +
2

1− e−θt−1/3
θ̇tdt. (43)

This effectively introduces a frictional force that varies
according to the absolute value of θ. Crucially this means
that as the bar spins, slightly different dynamics are ex-
perienced - this could arise from the bar spinning along a
thread.

A priori, we therefore know that the function is locally
periodic. This makes the task challenging for basic BNN
architectures - enforcing exact periodicity is just as inap-
propriate as ignoring it entirely.

We tested three BNN architectures on the task.

1. ReLU: a two-layer ReLU BNN with raw angle, θ,
and angular velocity, θ̇, as input. Priors: σ2

w1 =
σ2
b1 = 1, σ2

w2 = σ2
b2 = 1/50, σ2

w2 = σ2
b2 = 10.0.

2. Periodic: cos/sin input warping applied to θ, raw
angular velocity, θ̇, followed by a two-layer ReLU
BNN. Prior variances as for 1.

3. Periodic×TanH: takes the Periodic BNN as in 2.,
multiplied by a single-layer TanH BNN (taking only
θ as input) with long length scale, σ2

w1 = σ2
b1 = 0.2.

This combines multiplication, warping and separa-
tion of inputs from section 3.

Note that the benefits of BNN architecture should be inde-
pendent of the learning algorithm and inference method.



Here we used Bayesian Q-learning (Dearden et al., 1998),
similar to regular Q-learning, but with Q-values modelled
as distributions rather than point estimates, with BNNs as
the function approximators.

It was important that a scalable technique be used for
inference. Q-learning is sample inefficient, and the expe-
rience buffer accumulates hundreds of thousands of data
points (2, 000 episodes × 200 time steps). Both GPs and
HMC struggle with data of this size. We used Bayesian
ensembles (Pearce et al., 2018, 2019) for inference - a
recently proposed scalable, easily implementable tech-
nique.

Figure 4 shows cumulative rewards for the three different
architectures over 2,000 episodes. Periodic×TanH clearly
outperforms other models, both in terms of learning speed
and quality of final policy. This is an example of the bless-
ing of abstraction at work - the more structure we account
for, the less data we need (Duvenaud, 2014) [p13]. The
Periodic BNN has similar learning speed early on, but
plateaus since it does not have the flexibility to fully cap-
ture system dynamics. ReLU, meanwhile, learns slowly,
but has enough flexibility to capture closer to the true
dynamics, and eventually surpasses the Periodic BNN.

Figure 5 provides evidence for these comments. It shows
the dynamics learnt for three revolutions of the pendulum
for each BNN. The Periodic and ReLU BNNs are only
able to approximate the optimum dynamics found by
Periodic×TanH.

6 RELATED WORK

Two recent works proposed methods to overcome the lim-
ited expressivity of BNN priors. Flam-Shepherd et al.
(2017) trained a BNN to output GP priors before run-
ning inference on a task. Sun et al. (2019) had a similar
approach that did not require pretraining.

Both methods operate roughly in a supervised learning
fashion, training BNNs to match the output of some GP,
on training data augmented with sampled data points. In
contrast, our approach directly incorporates priors into
the model structure.

Several other works are of relevance. Ma et al. (2019)
propose variational implicit processes for BNNs. Gaier
and Ha (2019) could be interpreted as fixing a posterior
over parameters, and using evolutionary search to find a
BNN architecture producing suitable posterior functions.

An orthogonal line of work to ours considers how to
improve the scalability of GPs over the default O(N3),
e.g. (Snelson and Ghahramani, 2006). There also exist
other techniques for creating expressive priors in GPs, e.g.
(Wilson and Adams, 2013).
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Figure 5: Q-values learnt for the action, torque = 0,
conditioned on observations of θ̇ = 0, and input angle,
θ, varied on x-axis. Periodic×TanH captures the local
periodicity of the function.

7 CONCLUSION

Expressive priors can be created in GPs by combining
basic kernels into a new kernel. Noting the equivalence
between GPs and infinitely-wide BNNs, this paper ported
the idea to BNNs, deriving architectures that mirror such
kernel combinations. Furthermore, we advanced the mod-
elling of periodic functions with BNNs, which are often
useful in this context.

These ideas are of practical benefit when some property is
known about a function a priori, and basic BNNs do not
model this well. We showcased two scenarios for which
this was the case; time series modelling, and a RL task
involving a locally periodic function.

In many learning tasks, a function’s properties may be
unknown or difficult to interpret, e.g. how does one spec-
ify priors in an Atari game learning from pixels? Impact
of our ideas could be amplified by research into automa-
tion of BNN design (Duvenaud et al., 2013; Steinruecken
et al., 2018), and into how priors could be specified at a
more abstract level.
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