A MISSING PROOFS

Lemma 1. Let f be a L-smooth function over a convex compact domain \mathcal{D} , and define $\operatorname{diam}(\mathcal{D}) := \sup_{\mathbf{x}, \mathbf{y} \in \mathcal{D}} ||\mathbf{x} - \mathbf{y}||$. Then $\bar{C}_f \leq \operatorname{diam}^2(\mathcal{D})L$.

Proof. Let $\forall \mathbf{x}, \mathbf{s} \in \mathcal{D}, \gamma \in (0, 1]$, and $\mathbf{y} = \mathbf{x} + \gamma(\mathbf{s} - \mathbf{x})$. The smoothness of f implies that f is continuously differentiable, hence we have:

$$\begin{aligned} & \left| f(\mathbf{y}) - f(\mathbf{x}) - \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \right| \\ &= \left| \int_0^1 \left(\nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}) \right)^T (\mathbf{y} - \mathbf{x}) \, dt \right| & \text{(Mean-value theorem)} \\ &\leq \int_0^1 \left| \left(\nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x}) \right)^T (\mathbf{y} - \mathbf{x}) \right| \, dt & \text{(Triangle inequality)} \\ &\leq \int_0^1 ||\nabla f(\mathbf{x} + t(\mathbf{y} - \mathbf{x})) - \nabla f(\mathbf{x})|| \cdot ||\mathbf{y} - \mathbf{x}|| \, dt & \text{(Cauchy-Schwarz inequality)} \\ &\leq \int_0^1 t L \gamma^2 ||\mathbf{s} - \mathbf{x}||^2 \, dt \leq \frac{L \gamma^2}{2} \text{diam}^2(\mathcal{D}) & \text{(Smoothness assumption of } f) \end{aligned}$$

It immediately follows that

$$\bar{C}_f \leq \frac{2}{\gamma^2} \frac{L\gamma^2}{2} \operatorname{diam}^2(\mathcal{D}) = \operatorname{diam}^2(\mathcal{D})L$$

Theorem 2. Consider the problem 2 where f is a continuously differentiable function that is potentially nonconvex, but has a finite curvature constant C_f as defined by 10 over the compact convex domain \mathcal{D} . Consider running Frank-Wolfe (Algo. 1), then the minimal FW gap $\tilde{g}_T := \min_{0 \le t \le T} g_t$ encountered by the iterates during the algorithm after T iterations satisfies:

$$\tilde{g}_T \le \frac{\max\{2h_0\bar{C}_f, \sqrt{2h_0\bar{C}_f}\}}{\sqrt{T+1}}, \quad \forall T \ge 0$$
(11)

where $h_0 := f(\mathbf{x}^{(0)}) - \min_{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})$ is the initial global suboptimality. It thus takes at most $O(1/\varepsilon^2)$ iterations to find an approximate KKT point with gap smaller than ε .

Proof. Let $\mathbf{y} := \mathbf{x} + \gamma \mathbf{d}$, where $\mathbf{d} := \mathbf{s} - \mathbf{x}$ is the update direction found by the LMO in Alg. $\boxed{1}$ Using the definition of \overline{C}_f , we have:

$$f(\mathbf{y}) = f(\mathbf{y}) - f(\mathbf{x}) - \gamma \nabla f(\mathbf{x})^T \mathbf{d} + f(\mathbf{x}) + \gamma \nabla f(\mathbf{x})^T \mathbf{d}$$

$$\leq f(\mathbf{x}) + \gamma \nabla f(\mathbf{x})^T \mathbf{d} + \left| f(\mathbf{y}) - f(\mathbf{x}) - \gamma \nabla f(\mathbf{x})^T \mathbf{d} \right|$$

$$\leq f(\mathbf{x}) + \gamma \nabla f(\mathbf{x})^T \mathbf{d} + \frac{\gamma^2}{2} \bar{C}_f$$

Now using the definition of the FW gap $g(\mathbf{x})$ and for $\forall C \geq \bar{C}_f$, we get:

$$f(\mathbf{y}) \le f(\mathbf{x}) - \gamma g(\mathbf{x}) + \frac{\gamma^2}{2} \bar{C}_f, \quad \forall \gamma \in (0, 1]$$
 (15)

Depending on whether C > 0 or C = 0, the R.H.S. of (15) is a either a quadratic function with positive second order coefficient or an affine function. In the first case, the optimal γ^* that minimizes the R.H.S. is $\gamma^* = g(\mathbf{x})/C$. In the second case, $\gamma^* = 1$. Combining the constraint that $\gamma^* \le 1$, we have $\gamma^* = \min\{1, g(\mathbf{x})/C\}$. Thus we obtain:

$$f(\mathbf{y}) \le f(\mathbf{x}) - \min\left\{\frac{g^2(\mathbf{x})}{2C}, \left(g(\mathbf{x}) - \frac{C}{2}\right)\mathbb{I}_{g(\mathbf{x}) > C}\right\}$$
 (16)

(16) holds for each iteration in Alg. 1 A cascading sum of (16) through iteration step 1 to T+1 shows that:

$$f(\mathbf{x}^{(T+1)}) \le f(\mathbf{x}^{(0)}) - \sum_{t=0}^{T} \min\left\{\frac{g^2(\mathbf{x}^{(t)})}{2C}, \left(g(\mathbf{x}^{(t)}) - \frac{C}{2}\right) \mathbb{I}_{g(\mathbf{x}^{(t)}) > C}\right\}$$
 (17)

Define $\tilde{g}_T := \min_{0 \le t \le T} g(\mathbf{x}^{(t)})$ be the minimal FW gap in T+1 iterations. Then we can further bound inequality (17) as:

$$f(\mathbf{x}^{(T+1)}) \le f(\mathbf{x}^{(0)}) - (T+1) \min \left\{ \frac{\tilde{g}_T^2}{2C}, \left(\tilde{g}_T - \frac{C}{2} \right) \mathbb{I}_{\tilde{g}_T > C} \right\}$$

$$\tag{18}$$

We discuss two subcases depending on whether $\tilde{g}_T > C$ or not. The main idea is to get an upper bound on \tilde{g}_T by showing that \tilde{g}_T cannot be too large, otherwise the R.H.S. of (18) can be smaller than the global minimum of f, which is a contradiction. For the ease of notation, define $h_0 := f(\mathbf{x}^{(0)}) - \min_{\mathbf{x} \in \mathcal{D}} f(\mathbf{x})$, i.e., the initial gap to the global minimum of f.

Case I. If $\tilde{g}_T > C$ and $\tilde{g}_T - \frac{C}{2} \leq \frac{\tilde{g}_T^2}{2C}$, from (18), then:

$$0 \le f(\mathbf{x}^{(T+1)}) - \min_{\mathbf{x} \in \mathcal{D}} f(\mathbf{x}) \le f(\mathbf{x}^{(0)}) - \min_{\mathbf{x} \in \mathcal{D}} f(\mathbf{x}) - (T+1)(\tilde{g}_T - \frac{C}{2}) = h_0 - (T+1)(\tilde{g}_T - \frac{C}{2})$$

which implies

$$C < \tilde{g}_T \le \frac{h_0}{T+1} + \frac{C}{2} \Rightarrow \tilde{g}_T \le \frac{2h_0C}{T+1} = O(1/T)$$

On the other hand, solving the following inequality

$$C - \frac{C}{2} \le \tilde{g}_T - \frac{C}{2} \le \frac{\tilde{g}_T^2}{2C} \le \frac{4h_0^2 C^2}{(T+1)^2} \frac{1}{2C}$$

we get

$$T+1 \le 2h_0$$

This means that \tilde{g}_T decreases in rate O(1/T) only for at most the first $2h_0$ iterations.

Case II. If $\tilde{g}_T \leq C$ or $\tilde{g}_T - \frac{C}{2} > \frac{\tilde{g}_T^2}{2C}$. Similarly, from (18), we have:

$$0 \le f(\mathbf{x}^{(T+1)}) - \min_{\mathbf{x} \in \mathcal{D}} f(\mathbf{x}) \le f(\mathbf{x}^{(0)}) - \min_{\mathbf{x} \in \mathcal{D}} f(\mathbf{x}) - (T+1) \frac{\tilde{g}_T^2}{2C} = h_0 - (T+1) \frac{\tilde{g}_T^2}{2C}$$

which yields

$$\tilde{g}_T \le \sqrt{\frac{2h_0C}{T+1}}$$

Combining the two cases together, we get $\tilde{g}_T \leq \frac{2h_0C}{T+1}$ if $T+1 \leq 2h_0$; otherwise $\tilde{g}_T \leq \sqrt{\frac{2h_0C}{T+1}}$. Note that for $T \geq 0$, $\sqrt{T+1} \leq T+1$, thus we can further simplify the upper bound of \tilde{g}_T as:

$$\tilde{g}_T \le \frac{\max\{2h_0C, \sqrt{2h_0C}\}}{\sqrt{T+1}}$$

Lemma 3. Let $f(W) = \frac{1}{4}||P - WW^T||_F^2$ and define $\nabla^2 f(W) := \partial \operatorname{vec} \nabla f(W)/\partial \operatorname{vec} W$. Then:

$$\nabla^2 f(W) = W^T W \otimes I_n + I_k \otimes (WW^T - P) + (W^T \otimes W) K_{nk}$$
(12)

where K_{nk} is a commutation matrix such that K_{nk} vec $W = \text{vec } W^T$.

Proof. Using the theory of matrix differential calculus, the Hessian of a matrix-valued matrix function is defined as:

$$\nabla^2 f(W) := \frac{\partial \operatorname{vec} \nabla f(W)}{\partial \operatorname{vec} W}$$

Using the differential notation, we can compute the differential of $\nabla f(W)$ as:

$$d\nabla f(W) = d(WW^T - P)W = (dW)W^TW + W(dW)^TW + WW^TdW - PdW$$

Vectorize both sides of the above equation and make use of the identity that $vec(ABC) = (C^T \otimes A) vec B$ for A, B, C with appropriate shapes, we get:

$$\operatorname{vec} \operatorname{d} \nabla f(W) = (W^T W \otimes I_n) \operatorname{vec} \operatorname{d} W + (W^T \otimes W) \operatorname{vec} \operatorname{d} W^T + (I_k \otimes (WW^T - P)) \operatorname{vec} \operatorname{d} W$$

Let K_{nk} be a commutation matrix such that K_{nk} vec $W = \text{vec } W^T$. We can further simplify the above equation as:

$$\operatorname{vec} d\nabla f(W) = (W^T W \otimes I_n + (W^T \otimes W)K_{nk} + I_k \otimes (WW^T - P))\operatorname{vec} dW$$
(19)

It then follows from the first identification theorem [Magnus and Neudecker, 1985]. Thm. 6] that the Hessian is given by

$$\nabla^2 f(W) = (W^T W \otimes I_n + I_k \otimes (WW^T - P) + (W^T \otimes W)K_{nk}) \in \mathbb{R}^{nk \times nk}$$

As a sanity check, the first two terms in $\nabla^2 f(W)$ are clearly symmetric. The third term can be verified as symmetric as well by realizing that $K_{nk}^{-1} = K_{nk}^T$, and

$$W \otimes W^T = K_{nk}(W^T \otimes W)K_{nk}$$

Lemma 4. $\sup_{W1_k=1_n} ||W^T W||_2 = n.$

Proof. $\forall W \geq 0$, if $W \mathbf{1}_k = \mathbf{1}_n$, then by the Courant-Fischer theorem:

$$\begin{split} ||W^TW||_2 &:= \max_{\substack{\mathbf{v} \in \mathbb{R}^k, \\ ||\mathbf{v}||_2 = 1}} ||W^TW\mathbf{v}||_2 \\ &= \max_{\substack{\mathbf{v} \in \mathbb{R}^k_+, \\ ||\mathbf{v}||_2 = 1}} ||W^TW\mathbf{v}||_2 \\ &\leq \max_{\substack{\mathbf{v} \in \mathbb{R}^k_+, \\ ||\mathbf{v}||_\infty \leq 1}} ||W^TW\mathbf{v}||_2 \\ &= ||W^T\mathbf{1}_n||_2 \\ &\leq ||W^T\mathbf{1}_n||_1 = n \end{split} \qquad (Courant-Fischer theorem)$$

To achieve this upper bound, consider $W = \mathbf{1}_n e_1^T$, where e_1 is the first column vector of the identity matrix I_k . In this case $W^TW = e_1\mathbf{1}_n^T\mathbf{1}_ne_1^T = ne_1e_1^T$, which is a rank one matrix with a positive eigenvalue n. Hence $\sup ||W^TW||_2 = n$.

Lemma 5. Let
$$c := ||P||_2$$
. $f = \frac{1}{4}||P - WW^T||_F^2$ is $(3n + c)$ -smooth on $\mathcal{D} = \{W \in \mathbb{R}_+^{n \times k} \mid W\mathbf{1}_k = \mathbf{1}_n\}$.

Proof. Recall that the spectral norm $||\cdot||_2$ is sub-multiplicative and the spectrum of $A\otimes B$ is the product of the spectrums of A and B. Using (12), we have:

$$\begin{split} ||\nabla^2 f(W)||_2 &= ||W^T W \otimes I_n + I_k \otimes (WW^T - P) + (W^T \otimes W)K_{nk}||_2 \\ &\leq ||W^T W \otimes I_n||_2 + ||I_k \otimes (WW^T - P)||_2 + ||(W^T \otimes W)K_{nk}||_2 & \text{(Triangle inequality)} \\ &= ||W^T W||_2 ||I_n||_2 + ||I_k||_2 ||WW^T - P||_2 + ||W^T \otimes W||_2 ||K_{nk}||_2 & \text{(submultiplicativity of } || \cdot ||_2) \\ &= ||W^T W||_2 + ||WW^T - P||_2 + ||W^T \otimes W||_2 & \text{(} ||I_n||_2 = ||I_k||_2 = ||K_{nk}||_2 = 1) \\ &\leq 3||W^T W||_2 + ||P||_2 & \text{(Triangle inequality)} \\ &\leq 3n + c & \text{(Lemma 4)} \end{split}$$

The result then follows from Lemma 2

Lemma 6. Let $\mathcal{D} = \{W \in \mathbb{R}^{n \times k}_+ \mid W \mathbf{1}_k = \mathbf{1}_n\}$. Then $\operatorname{diam}^2(\mathcal{D}) = 2n$ with respect to the Frobenius norm.

Proof.

$$\begin{aligned} \text{diam}^2(\mathcal{D}) &= \sup_{W,Z \in \mathcal{D}} ||W - Z||_F^2 \\ &= \sup_{W,Z \in \mathcal{D}} \sum_{ij} (W_{ij} - Z_{ij})^2 = \sup_{W,Z \in \mathcal{D}} \sum_{ij} W_{ij}^2 + Z_{ij}^2 - 2W_{ij}Z_{ij} \\ &\leq \sup_{W,Z \in \mathcal{D}} \sum_{W,Z \in \mathcal{D}} W_{ij}^2 + Z_{ij}^2 \leq \sup_{W,Z \in \mathcal{D}} \sum_{W,Z \in \mathcal{D}} W_{ij} + Z_{ij} \\ &= 2n \end{aligned}$$

Note that choosing $W = \mathbf{1}e_1^T$ and $Z = \mathbf{1}_n e_2^T$ make all the equalities hold in the above inequalities. Hence $\operatorname{diam}^2(\mathcal{D}) = 2n$.

Lemma 7.
$$\inf_{\substack{W \geq 0, \\ W \mathbf{1}_k = \mathbf{1}_n}} ||\nabla^2 f(W)||_2 \geq n/k^2 - c.$$

Proof. For a matrix A, we will use $\sigma_i(A)$ to mean the ith largest singular value of A and $\lambda_{max}(A)$, $\lambda_{min}(A)$ to mean the largest and smallest eigenvalues of A, respectively. Recall $\nabla^2 f(W) = W^T W \otimes I_n + I_k \otimes (WW^T - P) + (W^T \otimes W)K_{nk}$. For $W \geq 0$, $W \mathbf{1}_k = \mathbf{1}_n$, let $r = \operatorname{rank}(W)$. Clearly $r \geq 1$. We have the following inequalities hold:

$$\begin{split} ||\nabla^2 f(W)||_2 &= ||W^T W \otimes I_n + I_k \otimes (WW^T - P) + (W^T \otimes W)K_{nk}||_2 \\ &\geq \lambda_{max} \left(WW^T \otimes I_n + (W^T \otimes W)K_{nk}\right) + \lambda_{min} \left(I_k \otimes (WW^T - P)\right) \\ &\geq \lambda_{max} (WW^T \otimes I_n) + \lambda_{min} \left((W^T \otimes W)K_{nk}\right) + \lambda_{min} \left(I_k \otimes (WW^T - P)\right) \\ &= \lambda_{max} (WW^T) + \lambda_{min} (W^T \otimes W) + \lambda_{min} (WW^T - P) \\ &\geq \lambda_{max} (WW^T) + \lambda_{min} (W^T \otimes W) + \lambda_{min} (WW^T) - \lambda_{max} (P) \\ &= \sigma_1^2(W) + 2\sigma_r^2(W) - \lambda_{max} (P) \\ &\geq \sigma_1^2(W) - c \\ &\geq \frac{1}{r} ||W||_F^2 - c \\ &\geq \frac{1}{r} ||W||_F^2 - c \\ &\geq \frac{1}{k} ||W||_F^2 - c \\ &\geq \frac{1}{k} \sum_{i=1}^n \sum_{j=1}^k W_{ij}^2 - c \\ &\geq \frac{1}{k} \sum_{i=1}^n \sum_{j=1}^k W_{ij}^2 - c \\ &\geq \frac{1}{k} \sum_{i=1}^n \sum_{j=1}^k W_{ij}^2 - c \\ &\geq \frac{1}{k} \sum_{i=1}^n \left(\frac{\sum_{j=1}^k W_{ij}}{k} \right)^2 - c \end{aligned} \tag{Cauchy ineq.}$$

where the first three inequalities all follow from Weyl's inequality.