SUPPLEMENTARY MATERIALS AND/OR ALGORITHM

```
Algorithm 1: AOAS, a single probe
Require: A graphical model \(\mathcal{M}=(\mathbf{X}, \mathbf{D}, \mathbf{F})\) over
    \(X=\left\{X_{1}, \ldots, X_{n}\right\}\), a pseudo-tree \(\mathcal{T}\). An implicit
    AND/OR tree \(T_{\mathcal{T}}\) of \(\mathcal{M} . g(s)\) is the product of
    arc-costs from root to \(s\) and \(h(s)\) (heuristic function)
    An abstraction \(a . s_{0}\) is the root of the tree.
Ensure: A sampled subtree \(\tilde{T}_{\mathcal{T}}=(\tilde{N}, E, C)\) of \(T_{\mathcal{T}}\). Each
    \(n \in \tilde{N}\) is a pair \(n=<s, w(s)>\) where \(w(s)\) is a
    weight. Note that OR node weight is always 1 .
    initialize \(\left.\tilde{T}_{\mathcal{T}} \leftarrow\left\{<s_{0}, 1\right\rangle\right\}\),
    while \(O P E N\) is not empty do
        \(<s, w(s)>\leftarrow\) remove smallest \(a\) node in OPEN
        Expand \(s\), generating all its child nodes variables
        in the pseudo-tree \(\left\{X_{1}, \ldots X_{r}\right\}\), each yielding OR
        nodes denoted \(s_{1}, \ldots, s_{r}\left(\operatorname{var}\left(s_{j}\right)=X_{j}\right)\) and add
        them to \(\tilde{T}_{\mathcal{T}}\).
        for each OR child node \(s_{j}\) do
            expand \(s_{j}\), generating all its AND child nodes
            \(s_{j_{i}}=<X_{j}, x_{j_{i}}>, x_{j_{i}} \in D_{X_{j}}\) with \(w\left(s_{j_{i}}\right)=w(s)\).
            for each child \(s_{j_{i}}\) do
                if \(\tilde{T}_{\mathcal{T}}\) contains a representative \(<s_{\{k\}}, w_{\{k\}}>\)
                of abstraction \(\{k\}, a\left(s_{j_{i}}\right)=k\) that shares the
                same configuration up to its branching
                variable (i.e., obeys properness) then
                    \(p \leftarrow \frac{w\left(s_{j_{i}}\right) g\left(s_{j_{i}}\right) h\left(s_{j_{i}}\right)}{w\left(s_{j_{i}}\right) g\left(s_{j_{j}}\right) h\left(s_{j_{i}}\right)+w\{k\}\left(s_{\{k\}}\right) h\left(s_{\{k\}}\right)}\)
                    with probability \(p\) do:
                    remove \(s_{\{k\}}\) from \(\tilde{T}_{\mathcal{T}}\) and OPEN
                            add \(<s_{j_{i}}, \frac{w\left(s_{j_{i}}\right)}{p}>\) as a child of \(s_{j}\) in \(\tilde{T}_{\mathcal{T}}\)
                    representing \(\{k\}\) and add it to OPEN
                    else
                    \(w_{\{k\}} \leftarrow \frac{w_{\{k\}}}{1-p}\)
            else
                \(\operatorname{add}<s_{j_{i}}, w\left(s_{j_{i}}\right)>\) as a child of \(s_{j}\) in \(\tilde{T}_{\mathcal{T}}\)
                representing \(\{k\}\) and add it to OPEN.
    \(\tilde{T}_{\mathcal{T}}\) is the final tree generated.
    return \(\hat{Z} \leftarrow\) compute \(Z\) of \(\tilde{T}\) AOAS-Z-estimator
```


SUPPLEMENTARY MATERIALS EXTENDED UNBIASEDNESS PROOF

THEOREM 1 (unbiasedness) Given a weighted directed AND/OR search tree T derived from a graphical model, the estimate \hat{Z} generated by $A S$ is unbiased.

Proof. (sketch) Clearly, for any node in the AND/OR tree the partition function it roots can be expressed recursively by: $Z(n)=$ $\prod_{n^{\prime} \in c h(n)} \sum_{n^{\prime \prime} \in \operatorname{ch}\left(n^{\prime}\right)} c\left(n^{\prime}, n^{\prime \prime}\right) Z\left(n^{\prime}\right), \quad Z(n)=1$

```
Algorithm 2: AOAS-Z-estimator
Require: A graphical model \(\mathcal{M}=(\mathbf{X}, \mathbf{D}, \mathbf{F})\) over
    \(X=\left\{X_{1}, \ldots, X_{n}\right\}\), a pseudo-tree \(\mathcal{T}\). An AND/OR
    tree \(T_{\mathcal{T}}\) of \(\mathcal{M}\); its subtree \(\tilde{T}_{\mathcal{T}}=(\tilde{N}, E, C)\) of \(T_{\mathcal{T}}\).
    \(c(s)\) is the cost of an OR-to-AND arc
    (parent \((s), s)\) in \(T_{\mathcal{T}}\).
Ensure: An estimate \(\hat{Z}\) of the partition function \(Z\).
    1: Compute an estimate for each node in \(\tilde{T}_{\mathcal{T}}\), bottom
    up, with the following rules
        For leaf node \(<s, w(s)>\), its value is
    \(\hat{Z}(s)=w(s) c(s)\).
    3: For internal OR node \(s\), its value is
    \(\hat{Z}(s)=\sum_{c \in c h(s)} \hat{Z}(c)\).
    4: For internal AND node \(<s, w(s)>\), its value is
    \(\hat{Z}(s)=\frac{w(s)}{w(\text { parent }(s))} c(s) \prod_{c \in c h(s)} \hat{Z}(c)\).
    5: return Value of the root node \(\hat{Z}(r)\).
```

if n is a leaf AND node. At each step, the algorithm maintains the current, partially generated, AND/OR tree denoted $\tilde{T}^{(t)}$ where t index the algorithm's steps. The partial tree $\tilde{T}^{(t)}$ is a stochastic subtree of T whose nodes are assigned weights by the algorithm.

Let $O P E N$ be the set of AND leaf nodes of the partial tree $\tilde{T}^{(t)}$ and let $C L O S E D$ be the rest of the nodes in $\tilde{T}^{(t)}$. We define an intermediate estimator of Z at step t denoted $\hat{Z}^{(t)}(n)$, over $\tilde{T}^{(t)}$ recursively as follows. For an AND node $n \in \tilde{T}^{(t)}$.
$\hat{Z}^{(t)}(n)=\left\{\begin{array}{rr}\text { if } n \in O P E N \\ \prod_{n^{\prime} \in c h(n)} \sum_{n^{\prime \prime} \in c h\left(n^{\prime}\right)} w\left(n^{\prime \prime}\right) c\left(n^{\prime}, n^{\prime \prime}\right) \hat{Z}^{(t)}\left(n^{\prime \prime}\right) \\ \text { if } n \in C L O S E D\end{array}\right.$

This recursive estimate combines information from the sampled nodes and estimated weights in $\tilde{T}^{(t)}$ with exact values of Z for the nodes in OPEN at time t. We can show that at any step $t, E\left(\hat{Z}^{(t+1)}(r)-\hat{Z}^{(t)}(r) \mid \tilde{T}^{t}\right)=0$, where r is the root. Consequently the expected value of our successive approximation at the end of sampling is equal to its initial value: $\hat{Z}^{(0)}(r)=Z(r)=Z$. (For more details see supplement.)

DEFINITION 1 (recursive function on AND/OR trees) Given a weighted directed AND/OR tree, having costs, c, labeling its OR to AND arcs. We define a recursive value function denoted $Z(n)$ for an AND node by:

$$
\begin{equation*}
Z(n)=\prod_{n^{\prime} \in c h(n)} \sum_{n^{\prime \prime} \in c h\left(n^{\prime}\right)} c\left(n^{\prime}, n^{\prime \prime}\right) Z\left(n^{\prime}\right) \tag{2}
\end{equation*}
$$

The initial value for leaves: $Z(n)=1$ if n is a leaf $A N D$ node.

THEOREM 2 Given a weighted directed AND/OR search tree T derived from a graphical model, and a value function $Z(n)$ defined recursively over T and given a proper abstraction function over T, the estimate generated by AOAS and AOAS-Z-estimator, $\hat{Z}(r)$, is unbiased. Namely $E \hat{Z}(r)=Z(r)$, when r is the dummy root AND node of T.

Proof. At each step, the algorithm maintains the current, partially generated, AND/OR tree denoted $\tilde{T}^{(t)}$ (we drop the subscript of the pseudo-tree for simplicity), where t index the algorithm's steps in generating the sampled tree. The partial tree $\tilde{T}^{(t)}$ is a stochastic subgraph of T whose nodes are assigned weights by the algorithm. Let $O P E N$ be the set of AND leaf nodes of the partial tree $\tilde{T}^{(t)}$ and let $C L O S E D$ be the rest of the nodes in $\tilde{T}^{(t)}$.

We define an intermediate estimator of Z at step t denoted $\hat{Z}^{(t)}(n)$, over $\tilde{T}^{(t)}$ recursively as follows. For an AND node $n \in \tilde{T}^{(t)}$.
$\hat{Z}^{(t)}(n)=\left\{\begin{array}{rr}Z(n) & \text { if } n \in O P E N \\ \prod_{n^{\prime} \in \operatorname{ch}(n)} \sum_{n^{\prime \prime} \in \operatorname{ch}\left(n^{\prime}\right)} w\left(n^{\prime \prime}\right) c\left(n^{\prime}, n^{\prime \prime}\right) \hat{Z}^{(t)}\left(n^{\prime \prime}\right) \\ \text { if } n \in C L O S E D\end{array}\right.$

This recursive estimate combines information from the sampled nodes and estimated weights in $\tilde{T}^{(t)}$ with exact values of Z for the nodes in OPEN at time t.

We will show that at any step $t, E\left(\hat{Z}^{(t+1)}(r)-\right.$ $\left.\hat{Z}^{(t)}(r) \mid \tilde{T}^{t}\right)=0$. Consequently the expected value of our successive approximation at the end of sampling is equal to its initial value: $\hat{Z}^{(0)}(r)=Z(r)=Z$.

Deterministic changes. The algorithm performs deterministic steps of node expansions. These operations grow $\tilde{T}^{(t)}$ but do not change the value of the estimator at all. According to EQ. (3), when the algorithm performs node expansion, namely expanding an AND node whose current estimate is $Z(n)$ to its children and grandchildren and re-evaluate the resulting estimate at n, we will get back $Z(n)$ because the recursion obeys the recursive definition of $Z(n)$ (see EQ. (2) when $w=1$, which are the initial weights). So, since the estimate does not change at the leaves of $\tilde{T}^{(t)}$, no change will be propagated up the tree, to the root. In other words in thos cases we need no expectation. We have that: $\left(\hat{Z}^{(t+1)}(r)-\hat{Z}^{(t)}(r) \mid \tilde{T}^{t}\right)=0$.
Stochastic changes. The only stochastic change occurs when an AND node, u, is examined (step 9) and the algorithm identifies a representative AND node v having the same abstraction in OPEN. We denote by s the first common ancestor of u and v in $\tilde{T}^{(t)}$ through an OR tree. Since the abstraction is proper, the subtree of $\tilde{T}^{(t)}$ rooted
at s, denoted by $\tilde{T}_{s}^{(t)}$, is an OR tree. Therefore, there would be no product in the second expression of EQ. (3) and we can see that the estimate at node s can be expressed by a sum over all paths from s to each leaf node in $\tilde{T}_{s}^{(t)}$. Noting explicitly the leaf nodes u and v we get, from recursing EQ. (3),

$$
\begin{align*}
& \hat{Z}^{(t)}(s)=\sum_{\{n \neq u, v \mid \text { leafs }} \hat{Z}^{(t)}(n) \cdot \prod_{\left.\tilde{T}_{s}^{(t)}\right\}} w(q) c(q) \\
& \quad+\underset{q \in \operatorname{path}(s . . n)}{ } w(u) \prod_{q \in \operatorname{path}(s . . u)} w(q) c(q)+\underset{q \in \operatorname{path}(s . . v)}{Z(v) \prod w(q) c(q)}
\end{align*}
$$

The first term in EQ. (4) is not affected by the stochastic process. We denote this term by B :

Once node u is processed, the resulting graph $\tilde{T}^{(t+1)}$ depends on the stochastic choice made. If u is selected, (which occurs with probability $1-p$) we get

$$
\hat{Z}^{(t+1)}(s)=B+\frac{w(u)}{1-p} Z(u) c(u) \prod_{q \in \operatorname{path}(s . . \operatorname{par}(u))} w(q) c(q)
$$

else, v is selected with probability p then we get

$$
\hat{Z}^{(t+1)}(s)=B+\frac{w(u)}{p} Z(v) c(v) \prod_{\substack{q \in \operatorname{path}(s . . \operatorname{par}(v))}} w(q) c(q)
$$

By simple algebraic manipulation it is possible to show that for node s we get: $E\left(\hat{Z}^{(t+1)}(s)-\hat{Z}^{(t)}(s) \mid \tilde{T}^{(t)}\right)=$ 0 . Since at all the leaf nodes of $\tilde{T}^{(t+1)}$, excluding s and its subtree, $\hat{Z}^{(t+1)}(n)-\hat{Z}^{(t)}(n)=0$, and since at s, we proved no change in expectation between the successive approximations. We get also at the root $E\left(\hat{Z}^{(t+1)}(r)-\right.$ $\left.\hat{Z}^{(t)}(r) \mid \tilde{T}^{(t)}\right)=0$.

SUPPLEMENTARY MATERIALS - FULL EXPERIMENTAL RESULTS

Table 1: Mean Error Aggregated Over Benchmark for a Given Scheme, Time and Abstraction Level $\left(a_{0}, a_{1}, a_{2}\right)$. a_{0} is 0 -level abstraction, $\left(a_{1}, a_{2}\right)$ are: OR-RelCB: $(4,8)$, OR-RandCB: $(16,256)$, AO-RelCB: $\left(1,2 _5\right)$, AO-RandCB: $\left(2,4 _5\right)$. (\#inst, $\bar{n}, \bar{w}, \bar{k},|\bar{F}|, \bar{s})$ are number of instances and averages of number of variables, induced width, max domain size, number of functions, max scope size.

Benchmark \#inst, $\bar{n}, \bar{w}, \bar{k},\|\bar{F}\|, \bar{s}$	scheme	\#nodes per probe a_{0}, a_{1}, a_{2}	$\begin{gathered} 1 \mathrm{~min} \\ a_{0}, a_{1}, a_{2} \end{gathered}$	$\begin{gathered} 20 \mathrm{~min} \\ a_{0}, a_{1}, a_{2} \end{gathered}$	$\begin{gathered} 60 \mathrm{~min} \\ a_{0}, a_{1}, a_{2} \end{gathered}$
$\begin{aligned} & \text { DBN-small } \\ & 60,70,30,2,16950,2 \end{aligned}$	OR-RelCB	141, 1963, 22687	1.18, 1,93, 2.58	0.88, 1.86, 1.77	0.78, 1.43, 1.65
	OR-RandCB-1	141, 1611, 13449	1.18, 1.04, 0.81	0.88, 0.71, 0.63	0.78, 0.42, 0.54
	OR-RandCB-2	141, 1624, 12656	1.18, 2.15, 1.77	$0.88,1.42,1.23$	$0.78,1.17,1.07$
	OR-RandCB-3	141, 1684, 14579	1.18, 1.34, 0.84	0.88, 1.05, 0.77	0.78, 0.78, 0.61
	WMB-IS		9.40	5.69	3.27
	IJGP-SS				1.22
$\begin{aligned} & \text { Grids-small } \\ & 7,271,24,2,791,2 \end{aligned}$	OR-RelCB	180, 2774, 42184	6.68, 5.19, 5.07	6.06, 4.71, 4.25	4.94, 4.31, 3.39
	OR-RandCB-1	180, 2755, 34101	$6.68,5.05,1.97$	$6.06,4.10,1.55$	4.94, 3.83, 1.41
	OR-RandCB-2	180, 2746, 33650	6.68, 4.29, 2.77	6.06, 3.98, 1.93	4.94, 3.27, 2.02
	OR-RandCB-3	180, 2748, 33898	6.68, 4.23, 3.27	6.06, 4.04, 3.38	4.94, 3.34, 2.24
	AO-RelCB	224, 13388, 91154	5.46, 3.84, 4.70	5.43, 3.68, 3.74	4.83, 2.97, 3.83
	AO-RandCB-1	224, 9418, 65423	5.46, 1.97, 4.27	5.43, 1.72, 3.36	$4.83,0.84,2.77$
	AO-RandCB-2	224, 8938, 84428	5.46, 3.16, 3.87	5.43, 3.10, 3.81	4.83, 2.82, 3.48
	AO-RandCB-3	224, 11291, 82649	5.46, 4.28, 3.77	5.43, 3.43, 3.41	$4.83,3.23,3.50$
	WMB-IS		2.94	1.94	1.21
	IJGP-SS				38.81
$\begin{array}{\|l\|} \hline \text { Pedigree-small } \\ 22,917,26,5,917,4 \end{array}$	OR-RelCB	270, 6115, 271925	0.17, 0.19, 0.26	0.17, 0.17, 0.19	0.17, 0.17, 0.16
	OR-RandCB-1	270, 4967, 75980	0.17, 0.20, 0.25	0.17, 0.17, 0.19	0.17, 0.17, 0.19
	OR-RandCB-2	270, 4967, 75841	0.17, 0.20, 0.25	0.17, 0.18, 0.18	0.17, 0.16, 0.16
	OR-RandCB-3	270, 4975, 76055	$0.17,0.19,0.20$	0.17, 0.17, 0.18	0.17, 0.17, 0.16
	AO-RelCB	294, 10286025, 337777	0.18, 0.47, 0.21	0.15, 0.36, 0.17	0.16, 0.20, 0.16
	AO-RandCB-1	294, 1171192, 92627	0.18, 0.24, 0.18	0.15, 0.19, 0.16	0.16, 0.18, 0.16
	AO-RandCB-2	294, 725005, 93194	0.18, 0.20, 0.18	$0.15,0.20,0.17$	$0.16,0.17,0.16$
	AO-RandCB-3	294, 2292328, 82475	0.18, $0.21,0.18$	0.15, 0.18, 0.16	0.16, 0.18, 0.16
	WMB-IS		-	-	1.06
	IJGP-SS				11.10
$\begin{array}{\|l} \hline \text { Promedas-small } \\ 41,666,26,2,674,3 \end{array}$	OR-RelCB	115, 1091, 12801	0.68, 0.77, 1.59	0.33, 0.44, 0.70	0.16, 0.34, 0.47
	OR-RandCB-1	115, 2174, 28712	0.69, 0.69, 0.62	$0.33,0.28,0.38$	0.16, 0.15, 0.21
	OR-RandCB-2	115, 2172, 28850	$0.68,0.64,0.65$	$0.33,0.28,0.30$	0.16, 0.13, 0.21
	OR-RandCB-3	115, 2172, 29017	0.68, 0.59, 0.73	0.33, 0.28, 0.36	0.16, 0.15, 0.19
	AO-RelCB	110,825, 5818	0.56, 0.59, 0.66	0.30, 0.34, 0.40	$0.15,0.23,0.23$
	AO-RandCB-1	110, 753, 6162	0.56, 0.32, 0.28	0.30, 0.19, 0.15	$0.15,0.10,0.10$
	AO-RandCB-2	110, 769, 6453	$0.56,0.43,0.39$	$0.30,0.17,0.20$	$0.15,0.12,0.15$
	AO-RandCB-3	110,753, 6218	0.56, 0.36, 0.29	0.30, 0.19, 0.16	$0.15,0.11,0.10$
	WMB-IS		-	1.77	1.15
	IJGP-SS				3.06
$\begin{aligned} & \text { DBN-large } \\ & 48,216,78,2,66116,2 \end{aligned}$	OR-RelCB	434, 6586, 91881	366.77, 368.29, 369.59	365.32, 366.49, 367.44	363.93, 365.04, 366.20
	OR-RandCB-1	434, 4858, 71545	366.77, 365.56, 365.14	365.32, 364.04, 363.53	363.93, 363.14, 362.88
	OR-RandCB-2	434, 4804, 71036	366.77, 365.58, 364.49	365.32, 364.19, 363.02	$363.93,363.17,362.53$
	OR-RandCB-3	434, 4774, 70421	366.77, 365.70, 364.04	365.32, 363.84, 362.97	$363.93,363.20,362.36$
	WMB-IS		-	-	
	IJGP-SS				356.91
Grids-large$19,3432,117,2,10244,2$	OR-RelCB	2827, 45112, 719763	966.46, 925.86, 927.60	933.64, 900.71, 909.37	928.35, 889.53, 894.59
	OR-RandCB-1	2827, 45104, 710675	966.46, 945.98, 918.19	933.64, 912.19, 907.30	928.35, 900.01, 894.15
	OR-RandCB-2	2827, 45097, 711566	966.46, 938.20, 917.92	933.64, 904.34, 910.19	928.35, 897.03, 895.12
	OR-RandCB-3	2827, 45100, 709978	966.46, 937.50, 923.23	933.64, 909.52, 915.99	928.35, 898.47, 890.60
	AO-RelCB	3326, 5485338, 2849697	949.25, 875.81, 910.60	925.85, 863.23, 892.96	918.74, 854.53, 885.18
	AO-RandCB-1	3326, 3896561, 2826722	949.25, 860.66, 885.97	925.85, 845.20, 876.74	918.74, 841.84, 871.05
	AO-RandCB-2	3326, 3846042, 2820388	949.25, 853.83, 880.27	925.85, 843.66, 874.03	918.74, 840.39, 868.61
	AO-RandCB-3	3326, 4276589, 2818713	949.25, 865.29, 882.50	925.85, 846.33, 871.89	918.74, 842.33, 865.49
	WMB-IS		-	-	-
	IJGP-SS				-
Promedas-large 88, 962, 48, 2, 974, 3	OR-RelCB	194, 2092, 25156	-, -, -	30.29, -, -	29.54, 30.28, 31.89
	OR-RandCB-1	194, 3586, 54901	-, -, 30.24	$30.29,-, 29.27$	29.54, 29.26, 28.59
	OR-RandCB-2	194, 3587, 54904	-, -, -	$30.29,-, 29.36$	29.54, 29.47, 28.47
	OR-RandCB-3	194, 3585, 54859	-, -, 30.21	30.29, 30.50, 29.20	29.54, 29.35, 28.55
	AO-RelCB	158, 1561, 10840	-, 30.45, 30.55	30.00, 29.31, 29.32	29.06, 28.67, 28.44
	AO-RandCB-1	158, 1319, 12082	-, 29.23, 28.97	30.00, 28.47, 28.06	29.06, 27.89, 27.66
	AO-RandCB-2	158, 1259, 11381	-, 29.24, 28.81	30.00, 28.56, 28.11	29.06, 27.96, 27.66
	AO-RandCB-3	158, 1377, 11704	-, 29.50, 28.82	30.00, 28.45, 28.07	29.06, 27.83, 27.68
	WMB-IS UJGP-SS		-	-	35.50

