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Abstract

We introduce a new decomposition method for
bounding the maximum expected utility of in-
fluence diagrams. While most current schemes
use reductions to the Marginal Map task over a
Bayesian Network, our approach is direct, aim-
ing to avoid the large explosion in the model
size that often results by such reductions. In
this paper, we extend to influence diagrams the
principles of decomposition methods that were
applied earlier to probabilistic inference, uti-
lizing an algebraic framework called valuation
algebra which effectively captures both multi-
plicative and additive local structures present
in influence diagrams. Empirical evaluation on
four benchmarks demonstrates the effectiveness
of our approach compared to reduction-based
approaches and illustrates significant improve-
ments in the upper bounds on maximum ex-
pected utility.

1 INTRODUCTION

An influence diagram (ID)[Howard and Matheson, 2005]
is a graphical model for sequential decision-making un-
der uncertainty that compactly captures the local structure
of the conditional independence of probability functions
and the additivity of utility functions. Its structure is
captured by a directed acyclic graph (DAG) over nodes
representing the variables (decision and chance variables).
The standard query on an ID is finding the maximum
expected utility (MEU) and an optimal policy, at each
decision subject to the history of observations and deci-
sions. Our focus is on computing an upper bound on the
MEU in a single agent sequential decision-making sce-
nario when we assume perfect recall. The computation of
upper bounds is desirable not only because exact compu-
tation is exponential in the number of variables appearing

in the history, but also because it can be used as a building
block of algorithmic frameworks such as heuristic search
and sampling.

Earlier work. One early work that yields bounds on
many inference tasks in an anytime manner is the mini-
bucket elimination (MBE) scheme that provides upper and
lower bounds of graphical model queries by enforcing
problem decomposition during the variable elimination
process [Dechter and Rish, 2003]. In particular, Dechter
[2000] presented an MBE algorithm for influence dia-
grams. A different principle for generating bounds on the
MEU is to relax the constraints imposed on the informa-
tion available at each stage and for each decision (thus
making more observations visible to each decision). This
information relaxation scheme relaxes the constraints im-
posed on the information available at each stage and it also
permits variable reordering during processing [Nilsson
and Hohle, 2001]. In particular, Yuan et al. [2010] pre-
sented an AND/OR depth-first branch and bound search
algorithm guided by upper bounds generated by such
flexible variable orderings.

An alternative set of schemes exploit translations be-
tween the maximum a posteriori inference (MMAP) in a
Bayesian network (BN) and the MEU inference in an ID
[Mauá, 2016]. The idea is to compute the upper bound of
the MMAP of the BN translated from an input ID. How-
ever, the number of auxiliary variables introduced by the
translation is exponential in the size of the history under
the perfect recall assumption. If all utility functions were
multiplicative, an ID could be treated as an unnormal-
ized distribution and MMAP inference would be applied
directly. Liu and Ihler [2012] presented a variational for-
mulation for computing the MEU and message passing
algorithms for such IDs where the additive utilities are
converted into multiplicative utilities by introducing a
latent selector variable. However, such a translation can
make it difficult to exploit decompositions present in the
additive utility functions.



Contributions. We develop a decomposition scheme
applied directly to IDs. It extends the decomposition
scheme for MMAP [Ping et al., 2015] to IDs to accommo-
date multiplicative and additive terms. In particular, the
upper bound is generated by relaxing the sequential struc-
ture of an ID to locally coupled decision subproblems.
Subsequently, we present a message passing algorithm
derived from the optimization framework that tightens the
upper bound over various parameters including the repa-
rameterization of both probability and utility functions.
In summary:
• We present a new graphical model decomposition

bound specialized for IDs called join graph decom-
position bounds for IDs (JGDID), and a message
passing algorithm that optimizes the bound.
• The proposed algorithm is compared empirically

with current schemes on four benchmarks, showing
a significant improvement in the quality of the upper
bounds.

2 PRELIMINARIES

2.1 INFLUENCE DIAGRAMS

An ID is a tupleM :“ xC,D,P,U,Oy of a set of dis-
crete random variables C “ tCi|i P ICu, a set of discrete
decision variables D “ tDi|i P IDu, a set of conditional
probability functions P “ tPi|Pi P IPu , and a set of
real-valued additive utility functions U “ tUi|Ui P IUu.
We use IS “ t0, 1, ¨ ¨ ¨ , |S| ´ 1u to denote the set of
indices of each element in a set S, where |S| is the car-
dinality of S. As illustrated in Figure 1(a), an ID can
be associated with a DAG of three types of nodes: the
chance nodes C drawn as circles, the decision nodes D
drawn as squares, and the value nodes U drawn as di-
amonds. There are also three types of directed edges:
edges directed into a chance node Ci from its parents
papCiq Ă CYD representing the conditional probabil-
ity function PipCi|papCiqq, edges directed into a value
node Ui denoting the utility function UipXiq from its
scope Xi Ă C Y D, and informational arcs (dashed
arrows in Figure 1(a)) directed from chance nodes to a
decision node. The set of parent nodes associated with
a decision node Di is called the information set Ii, and
denotes chance nodes that are assumed to be observed
immediately before making decision Di. The constrained
variable ordering O obeys a partial ordering which al-
ternates between information sets and decision variables
tI0 ăD0 ă ¨ ¨ ¨ă I|D|´1 ăD|D|´1 ă I|D|u. The partial
elimination ordering should ensure the regularity of the ID
(a decision can only be preceded by at most one decision),
and dictates the available information at each decision Di

so that the non-forgetting agent makes decisions in multi-
staged manner based on the history available at each stage

(a) Factored MDP as Influence Diagram

(b) Computing Maximum Expected Utility

Figure 1: Influence Diagram Example. A 2-step factored MDP
is represented by an influence diagram, and the lower figure
shows a schematic trace of the variable elimination with the
valuation algebra.

i, HpDiq :“ Yik“0tDku Y Y
i
k“0Ii. The standard task of

solving Influence Diagrams is computing the maximum
expected utility Er

ř

UiPU
Ui|∆∆∆s and finding a set of op-

timal policies ∆∆∆ “ t∆i|∆i : RpDiq ÞÑ Di,@Di P Du,
where ∆i is a deterministic decision rule for Di and
RpDiq Ď HpDiq is the subset of history called requi-
site information to Di, namely, the only relevant history
for making a decision [Nielsen and Jensen, 1999].

2.2 COMPUTING EXPECTED UTILITY

Unlike probabilistic graphical models, Influence Dia-
grams hold two type of functions combined by different
operators: a product of probability functions, and a sum-
mation of utility functions. Jensen et al. [1994] presented
a variable elimination algorithm that avoids the complica-
tion of dealing with two types of functions by generalizing
the combination and marginalization operators such that
operators act on a pair of probability and utility functions
called a potential. The valuation algebra is an algebraic
framework for computing the expected utility values, or
values for short, based on the combination and marginal-
ization on potentials [Mauá et al., 2012]. Here, we briefly
summarize the essence of valuation algebra since it is
what we use for developing the decomposition scheme.
Let a valuation ΨpXq be a pair of probability and value
functions pP pXq, V pXqq over a set of variables X called
its scope. Occasionally, we will abuse the notation by
dropping the scope from a function, e.g., writing P1pX1q

as P1. The combination and marginalization operators



are defined as follows.

Definition 1. (combination of two valuations)
Given two valuations Ψ1pX1q:“pP1pX1q, V1pX1qq and
Ψ2pX2q:“pP1pX2q, V1pX2qq, the combination of the two
valuations over X1 YX2 is defined by

Ψ1pX1q bΨ2pX2q :“ pP1P2, P1V2 ` P2V1q.

Following Definition 1, the identity is p1, 0q and the in-
verse of pP pXq, V pXqq is p1{P pXq,´V pXq{P 2pXqq.

Definition 2. (marginalization of a valuation) Given a
valuation ΨpXq :“pP pXq, V pXqq, marginalizing over
Y Ď X by summation or maximization are defined by

ÿ

Y

ΨpXq :“ p
ÿ

Y

P pXq,
ÿ

Y

V pXqq,

max
Y

ΨpXq :“ pmax
Y

P pXq,max
Y

V pXqq.

An IDM can be compactly represented by the valuation
algebra asM1

:“ xX,ΨΨΨ,Oy, where X “ C Y D and
ΨΨΨ “ tpPi, 0q|Pi P Pu Y tp1, Uiq|Ui P Uu. The MEU
can be written as

ÿ

I0

max
D0

¨ ¨ ¨
ÿ

I|D|´1

max
D|D|´1

ÿ

I|D|

â

αPIΨ

ΨαpXαq, (1)

where Xα denotes the scope of Ψα.

The following example illustrates the variable elimination
algorithm with the valuation algebra.

Example 1. Figure 1(b) shows a schematic trace of the
variable elimination algorithm [Dechter, 1999] using the
valuation algebra. We use O : tD1, S2, S3, D0, S0, S1u

as a legal elimination ordering. The first eliminated vari-
able is D1, so the variable elimination algorithm collects
all valuations whose scope includes D1 in Bucket D1.
Then it generates the outgoing message pλD1 , ηD1q and
sends it to Bucket S2. Bucket S2 combines the preallo-
cated valuations and the incoming message, and gener-
ates the outgoing message pλS2 , ηS2q. This elimination
process continues until we obtain the MEU. We refer to
Mauá et al. [2012] for more details.

2.3 JOIN GRAPH DECOMPOSITION

A probabilistic graphical model G :“ xX,Fy is a tuple
of a set of discrete variables X and a set of non-negative
real valued functions F “ tFαpXαq|α P IFu, where
Xα Ă X is the scope of Fα. Graphical model inference
tasks can be viewed as eliminating a set of variables from
the joint function by either summation or maximization.
The MMAP task computes the mode of the marginal of
the joint function by

maxXM

ř

XS

ś

αPIF
FαpXαq, (2)

Figure 2: Join Graph Decomposition Example. Figure shows
a join graph of the influence diagram in Figure 1(a). The join
graph is generated by limiting the maximum cluster size from 4
to 3. The scope from a node labeling function χpCiq is shown
inside each nodeCi and functions (valuations) are also allocated
by ψpCiq. Separators SCi,Cj are shown next to edge (Ci, Cj).

where XM denotes the maximization variables and XS

denotes the summation variables. The relevance relation
between variables is captured by an undirected graph
Gp “ pV,Eq called primal graph, where the set of nodes
V represents variables, and an edge e P E connects two
nodes if both variables associated with those nodes appear
in the scope of some function. A tree decomposition of
Gp produces a tree of clusters that captures the underlying
structure of non-serial dynamic programming subject to
the sequence of variable elimination operations. Namely,
each cluster collects a set of functions that should be pro-
cessed together. The worst-case space and time complex-
ity of an inference query is exponential in the maximum
cluster size called induced width w of Gp.

Join graph decomposition [Mateescu et al., 2010] is an
approximation scheme that further decomposes clusters
in a join tree into a possibly loopy graph of finer grained
clusters and, hence, it can control the complexity by lim-
iting the maximum number of variables that are allowed
to appear in cluster nodes.

Definition 3. (join graph decomposition) A join graph
decomposition of a graphical model G is a tuple D :“
xGJ , χ, ψy, where GJ “ pC,Sq is a graph with nodes C
and edges S, and χ and ψ are labeling function that χ
maps a node C P C to a set of variables χpCiq “ XC ,
and ψ allocates each function Fα exclusively to a node
C P C such that Xα Ď XC . An edge pCi, Cjq P S is
associated with a subset of variables shared between the
two clusters χpCiqXχpCjq, called separator SCi,Cj . The
labeling function should ensure the running intersection
property; for each variable Xi P X, the set tC P C|Xi P

ψpCqq induces a connect subgraph.

A valid join graph can be systematically structured from a
mini bucket tree produced by the MBE algorithm with the
bounding parameter i-bound that controls the maximum



cluster size [Dechter and Rish, 2003]. The following
example illustrates a join graph decomposition of the ID
shown in Figure 1(a).
Example 2. Figure 2 shows a join graph decomposition
D : xGJ , χ, ψy of the ID in Figure 1(a). The primal Gp of
an ID can be obtained by removing all informational arcs
before moralization and then removing the value nodes.
From the Gp and a legal variable elimination ordering
compatible with the MEU query, a join graph GJ can be
generated by standard methods. The labeling functions χ
and ψ are displayed inside nodes and separators SCi,Cj
are displayed next to edges. Compared with the join
tree shown in Figure 1(b), we see that the additional
cluster node C2 contains a function P pS3|D0, S0q that
was included in Bucket S3 in the join tree.

2.4 DECOMPOSITION BOUNDS

Decomposition methods for bounding graphical model
inference queries are based on two techniques. Namely,
the graphical model decomposition with some auxiliary
parameters and the optimization procedure that optimizes
the parameters to improve the bound. For example, dual
decomposition for MAP optimizes the dual variables, cor-
responding to Lagrange multipliers enforcing a set of
local consistency constraints defined on the factor graph
[Sontag et al., 2011]. Various decomposition bounds are
available in the literature depending on decomposition
schemes, methods of parameterization, and optimization
frameworks. The common characteristic of such decom-
position bounds is that they decompose the original graph-
ical model to a relaxed lower complexity model, compute
the global bound from decomposed local bounds and op-
timize the bound by additional local computations.

We review the generalized dual decomposition (GDD)
bound for MMAP [Ping et al., 2015] that our bounding
scheme is built upon. First, define a powered-sum elimi-
nation operator

řw
X by

řw
X fpXq “ r

ř

X |fpXq|
1{wsw, (3)

which generalizes maximization and summation with a
weight 0 ď w ď 1 for the variable X . Note that the
powered-sum elimination operator reduces to maximiza-
tion and summation when wÑ0 and w“1, respectively.
Given a graphical model G : xX,Fy, the MMAP task in
Eq. (2) can be expressed by the powered-sum elimination
operator as,

řw
X

ś

αPIF
FαpXαq, (4)

where each weight wi P w of a variable Xi P X is
assigned 0 for the maximization variables and 1 for the
summation variables. The bounding scheme of GDD is
based on the generalization of the Hölder’s inequality,

řw
X

ś

αPIF
FαpXαq ď

ś

αPIF

řwα

Xα
FαpXαq, (5)

where IF is the index set of functions F, w is the set of
weights that are either 0 or 1, wα is the set of non-negative
weights distributed to Xα such that wi “

ř

αPIF
wαi .

Note that the upper bound on the right-hand side of Eq. (5)
combines local MMAP values only computed from a sub-
set of variables Xα. The upper bounds of the MMAP in
Eq. (5) can be formulated as an optimization problem by
introducing cost-shifting parameters defined over a join
graph decomposition xGJpC,Sq, χ, ψy by the following
equation,

ź

CiPC

wCi
ÿ

XCi

r
ź

αPψpCiq

FαpXCiqsr
ź

pCi,CjqPS

δCi,Cj pSCi,Cj qs, (6)

where each cluster node Ci in the join graph GJ collects
a set of functions mapped by χpCiq, and the cost-shifting
parameters δCj ,CipSCi,Cj q and δCi,Cj pSCi,Cj q are intro-
duced on the separators SCi,Cj P S such that the costs
on the both sides cancel each other. The complexity of
computing the upper bound is bounded by the maximum
number of variables appearing in the cluster nodes. The
optimization framework takes Eq. (6) as an objective
function with weights wCi and cost-shifting functions
δCi,Cj pSCi,Cj q as optimization parameters. Since the
objective function is convex after taking log on Eq. (6),
efficient optimization procedures are available for tight-
ening the upper bound.

3 DECOMPOSITION BOUNDS FOR
INFLUENCE DIAGRAMS

3.1 DECOMPOSING INFLUENCE DIAGRAMS

In this section, we develop a decomposition bound for
IDs based on the valuation algebra. First, we generalize
the powered-sum elimination operator in Eq. (3) to the
valuation algebra.
Definition 4. (powered-sum elimination for a valua-
tion) The powered-sum elimination operator for a val-
uation ΨpXq :“ pP pXq, V pXqq is defined by

pw,Aq
ÿ

X

ΨpXq:“p
w
ÿ

X

P pXq,
w
ÿ

X

hpP pXq, V pXq, Aqqbp1,́ Aq (7)

with the activation function h that adds an arbitrary
utility constant A to the normalized expected utility value
V pXq
P pXq and clips negative expected utility value as

hpP pXq,V pXq,Aq“

#

P pXqpV pXq
P pXq

`Aq if V pXq
P pXq

`Aą0

0, otherwise.
(8)

Since the powered-sum elimination applies to the ab-
solute values of a function, we introduce the activa-
tion function h so that the powered-sum elimination



on the value component converges to the usual sum-
elimination with a constant shift by A when weights w
are close to 1 and the value V pXq is negative. Namely,
r
řw
X hpP pXq, V pXqqsÑ

ř

X V pxq`A when wÑ1 and
A`minpV pXqP pXq qě0.

Next, we define the comparison operator for the valuation
algebra as a partial order as follows.

Definition 5. (comparison of two valuations) Given two
valuations Ψ1 :“ pP1, V1q and Ψ2 : pP2, V2q, we define
inequality Ψ1 ď Ψ2 iff. P1 ď P2 and V1 ď V2.

Equipped with the powered-sum elimination and com-
parison operator for the valuation algebra, we state the
decomposition bounds for IDs as follows.

Theorem 1. (decomposition bounds for IDs) Given an
IDM1

:“ xX,ΨΨΨ,Oy, the MEU can be bounded by

w
ÿ

O
bαPIΨΨΨ

ΨαpXαq ď bαPIΨΨΨ

pwα, Aq
ÿ

O
ΨαpXαq. (9)

The left-hand side is the MEU in Eq. (1), by rewriting the
sequence of elimination operators as the powered-sum

elimination operators
řwI0

I0

řwD0

D0
¨ ¨ ¨

řw
I|D|

I|D|
following

the partial ordering O, where the weights wIk are 1 for
the summation variables, and wDk are 0 for the maxi-
mization variables. The right-hand side switches the or-
der of the elimination and combination operators, hence
it combines fully eliminated local valuations to the global
valuation with weights wα that are distributed from w
such that wi “

ř

αPIΨ
wαi , where wi is the weight of

Xi P X and wαi is the weight of Xi at Ψα.

Proof. The decomposition bound can be obtained by ap-
plying Minkowski’s inequality in Eq. (10) and Hölder’s
inequality in Eq. (11) to the probability and value func-
tions of the valuations.

řw
X fpXq ` gpXq ď

řw
X fpxq `

řw
X gpXq (10)

řw
X fpXqgpXq ď

řw1

X fpxq
řw´w1

X gpXq (11)

The probability component in the left-hand side of Eq. (9)
can be bounded by applying Hölder’s inequality as shown
in Eq. (12).

řw
O

ś

iPIΨΨΨ
Pi ď

ś

iPIΨΨΨ

řwi

O Pi. (12)

The value component can be bounded by the following
steps. We rewrite the MEU by introducing constant util-
ities Ai as shown in Eq. (13), and bound the MEU by
the activation function hi defined in Eq. (8) as shown in
Eq. (14). The non-constant term in Eq. (14) can be further
bounded by applying Minowski’s inequality and Hölder’s

Figure 3: Optimization Parameters for Join Graph Decom-
position Bounds. Figure shows the optimization parameters
introduced in Proposition 1. The cost-shifting valuations are dis-
played next to the separators SCi,Cj as pλCi,Cj , ηCi,Cj q, and
utility constants ACi are attached next to each cluster node Ci.

inequality as shown in Eq. (15) and (16), respectively.
řw

O
ř

iPIΨΨΨ
rVi ` PipAi ´Aiqsr

ś

j‰i Pjs (13)

ď

w
ÿ

O

ÿ

iPIΨΨΨ

hipPi, Vi, Aiqr
ź

j‰i

Pjs ´
ÿ

iPIΨΨΨ

Ai (14)

ď
ÿ

iPIΨΨΨ

r

w
ÿ

O
hipPi, Vi, Aiqsr

ź

j‰i

Pjs ´
ÿ

iPIΨΨΨ

Ai (15)

ď
ÿ

iPIΨΨΨ

r

wi
ÿ

O
hipPi, Vi, Aiqr

ź

j‰i

wj
ÿ

O
Pjs ´

ÿ

iPIΨΨΨ

Ai (16)

Note that the weights wi assigned to each valuation Ψi

in Eq. (12) and Eq. (16) are the same. The final result
can be obtained by combining the upper bound on the
probability component in Eq. (12) and the upper bound
on the value component in Eq. (16) as a valuation with the
powered-sum elimination operator for a valuation.

3.2 OPTIMIZING THE UPPER BOUNDS

The following Proposition 1 presents the parameterized
decomposition bounds based on the Theorem 1 by intro-
ducing optimization parameters relative to a join graph
decomposition. Then, the partial derivatives of the param-
eterized decomposition bounds are derived to be used in
the first order optimization framework.
Proposition 1. (parameterized decomposition bounds
for IDs) Given an ID M1

:“ xX,ΨΨΨ,Oy and its join
graph decomposition D :“ xGJpC,Sq, χ, ψy, the decom-
position bounds in Theorem 1 can be parameterized rela-
tive to a join graph decomposition GJ as a pair of upper
bounds on the probability component and the value com-
ponent pLMMAP, LMEUq as follows.

LMMAP“
ś

CiPC
řwCi

O P 1Ci , (17)

LMEU“
ÿ

CiPC
r

wCi
ÿ

O
hCipP

1
Ci , V

1
Ciqsr

ź

Cj‰Ci

w
Cj

ÿ

O
P 1Cj ś ACi . (18)



In Proposition 1, the P 1Ci and V 1Ci are probability and
value functions after incorporating cost-shifting parame-
ters that can be written as

P 1Ci “ PCi
ś

pCi,CjqPS λCi,Cj , (19)

V 1Ci “ P 1Cir
VCi
PCi

`
ř

pCi,CjqPS
ηCi,Cj
λCi,Cj

s. (20)

Each node CiPC of the GJ collects the probability and
value functions by the labeling function ψ, and each
edge pCi, CjqPS introduces a cost-shifting parameters
δCi,Cj“pλCi,Cj , ηCi,Cj q over the variables SCi,Cj such
that δCi,Cj b δCj ,Ci“p1, 0q. The utility constant param-
eters ACi is introduced through the activation function
hCi , and the weight parameters wCi are distributed from
w such that wX “

ř

CiPC w
Ci
X for all X P χpCiq. Note

that the reparameterized decomposition bound for IDs
subsumes the GDD bound for MMAP in Eq. (6) at the
probability component, LMMAP, and the new parameter-
ized upper bound for the MEU at the value component,
LMEU. Note that the LMEU in Eq. (20) is non-convex.

The following example illustrates the optimization param-
eters for the ID shown in Figure 1(a).
Example 3. Figure 3 illustrates the optimization pa-
rameters introduced by the join graph decomposition
D :“ xGJpC,Sq, χ, ψy of Example 2. The valuations
at each node Ci P C is displayed inside each node and
the utility constant ACi is attached next to the node. The
cost-shifting valuation pλCi,Cj , ηCi,Cj q is shown next to
the directed edges from Ci to Cj implying that the cost
is moving from Ci to Cj , and hence δCi,Cj and δCj ,Ci
cancel each other.

Next, we present the first-order optimization procedures
for tightening the parameterized decomposition bounds,
LMEU in Eq. (18). For efficiency and simplicity, we ap-
ply a block coordinate method that cycles through a sub-
set of optimization parameters associated with the nodes
and edges of the join graph GJ , which we call the in-
ner optimization problems. To optimize cost-shifting
parameters tδCi,Cj |pCi, Cjq P Su and utility constants
tACi |Ci P Cu, we use gradient descent with line search
[Wright and Nocedal, 1999] by

xt`1 “ xt ´ s ¨ r∇fpxtqs, (21)

where f is the objective function, s is the step size, xt

is the optimization parameter at the t-th iteration. The
weights twCi |Ci P Cu are updated by exponentiated gra-
dient descent [Kivinen and Warmuth, 1997] by

wCi,t`1 “
wCi,t expr´s¨r∇

wCi
LMEUpw

Ci,tqss
ř

CiPC
wCi,t expr´s¨r∇

wCi
LMEUpwCi,tqss

. (22)

Now, we define pseudo marginals and some useful expres-
sions before deriving the gradients of each subset of the
optimization parameters.

Definition 6. (pseudo marginals) Given a non-negative
real-valued function Z0pX1:nq over a set of variables
X1:n“tX1 ,̈ ¨ ¨ ,Xnu, and the weights w “ tw1, ¨ ¨ ¨ , wnu
associated with X1:n, we define a partial powered-sum
elimination of variables X1:i from Z0pX1:nq by

ZipXi`1:nq “
řwi
xi
Zi´1pXi:nq.

The pseudo marginal of Z0pX1:nq is defined by

ΛpZ0pX1:nqq “ r
Zn´1pXnq

Zn
s1{wn ¨ ¨ ¨ r

Z0pX1:nq

Z1pX2:nq
s1{w1 .

Note that ΛpZ0pX1:nqq is a normalized distribution over
X1:n, and each rZi´1pXi:nq

ZipXi`1:nq
s1{wi is a conditional distribu-

tion over Xi given Xi`1:n.

Let’s define a selector FCj |Ci that selects a probability or
a value component depending on the indices i and j by

FCj |Ci“

#

hCj pP
Cj , V Cj q, if j “ i

PCj , otherwise.
(23)

By using Eq. (23), the upper bound of the expected utility
value at Ci can be expressed by

ΘCi “
ś

CjPC
řw

Cj

O FCj |Ci . (24)

In the following, we summarize the gradients of LMEU,
∇LMEU with respect to subsets of parameters.

∇LMEUpw
Ci
k q“

ÿ

CjPC
ρCjHpXk|Xi`1:|O|;FCj |Ciq (25)

∇LMEUpACiq“ΘCi

ÿ

XCizSCi,Cj

PCiΛphCipP
Ci , V Ciqq

hCipP
Ci , V Ciq

´ 1 (26)

∇LMEUpλCi,Cj q“
ÿ

CkPC
ΘCk r

ÿ

XCj
zSCi,Cj

ΛpFCi|Ck q´

ÿ

XCizSCi,Cj

ΛpFCj |Ck qs (27)

∇LMEUpηCi,Cj q“ΘCj

ÿ

XCjzSCi,Cj

PCjΛphCj pP
Ci , V Cj qq

hCj pP
Ci , V Cj q

´

ΘCi

ÿ

XCizSCi,Cj

PCiΛphCipP
Ci , V Ciq

hCipV
Ciq

(28)

The term HpXk|Xi`1:|O|;FCj |Ciq in Eq. (25) is the con-
ditional entropy HpXk|Xi`1:|O|q of the pseudo marginal
of the function selected by FCj |Ci .

3.3 MESSAGE PASSING ALGORITHM

Applying the parameterized decomposition bounds for
IDs and the first order optimization procedures described
in Section 3.2, we develop an iterative message passing al-
gorithm that updates the optimization parameters defined
relative to a join graph decomposition.



Algorithm 1 Join Graph Decomposition for IDs (JGDID)
Require: Influence diagram M1

“ xX,ΨΨΨ,Oy, initial weights
wi associated with a variable Xi P X, i-bound, total itera-
tion limit M1, iteration limit M2 for updating weights and
costs before updating utility constants.

Ensure: an upper bound of the MEU, LMEU,
1: generate a join graph decomposition D “ xGJpC,Sq, χ, ψy

by MBE with i-bound and assign valuations to nodes by
labeling function ψ.

2: execute single pass cost-shifting by messages generated by
MBE algorithm based on the valuation algebra (MBE-VA)

3: initialize weights wCi ,@Ci P C by uniform weights.
4: iter=0, LMEU “ inf
5: while iter ăM1 or LMEU is not converged do
6: for each variable Xi P X do
7: LMEU Ðmin(LMEU, UPDATE-WEIGHTS(GJ , Xi))
8: end for
9: for each edge pCi, Cjq P S do

10: LMEU Ðmin(LMEU, UPDATE-COSTS(GJ , tCi, Cju))
11: end for
12: if iter ąM2 then
13: for each node Ci P C do
14: LMEU Ðmin(LMEU, UPDATE-UTIL-CONST(GJ , Ci))
15: end for
16: end if
17: iter “ iter ` 1
18: end while

Algorithm 1 outlines the procedure for updating the
parameters, the Join Graph Decomposition Bound for
IDs (JGDID). Given an input ID M1 :“ xX,ΨΨΨ,Oy,
we first generate a join graph decomposition D “

xGJpC,Sq, χ, ψy by executing the MBE algorithm with
an input i-bound. For details on how to structure a join
graph decomposition, see Mateescu et al. [2010]. Then,
we assign valuations to the nodes in C by labeling func-
tion ψ and run a single pass cost-shifting over the join
graph using the messages generated by the MBE algo-
rithm [Dechter and Rish, 2003] based on valuation algebra
(MBE-VA). In our empirical evaluation, this preliminary
step significantly improves the speed of convergence and
the quality of the upper bound. The initial weights wCi

at each node Ci P C for the summation variables are
uniform, and a small constant ε « 10´6 initializes the
weights for the maximization variables.

The block coordinate method updates the subset of the pa-
rameters by solving inner optimization problems follow-
ing the structure of GJ . The UPDATE-WEIGHTS routine
in line 7 updates the weights wCji for a variable Xi over
@Cj P C by Eq. (22) with the gradient in Eq. (25), the
UPDATE-COSTS routine in line 10 updates cost-shifting
valuations δCi,Cj over each edge pCi, Cjq P S by the gra-
dient descent with the gradients in Eq. (27) and in Eq. (28),
and the UPDATE-UTIL-CONST routine in line 14 up-
dates the utility constants ACi for each node Ci P C by
the gradient descent with the gradient in Eq. (26). Since

Table 1: Benchmark statistics. Table shows the minimum,
median, and maximum instance statistics from 10 instances. n
is the number of chance and decision variables, f is the number
of probability and utility functions, k is the maximum domain
size, s is the maximum scope size, and w is the induced width.

Domain n f k s w

FH-MDP 25, 110, 170 30, 143, 170 2, 3, 5 4, 7, 9 5, 25, 43
FH-POMDP 15, 51, 96 18, 61, 140 2, 2, 3 3, 5, 9 10, 27, 47
RAND 22, 57, 91 22, 57, 91 2, 2, 2 3, 3, 3 6, 18, 41
BN 54, 100, 115 54, 100, 115 2, 2, 2 6, 8, 10 18, 28, 45

the optimization objective function LMEU is non-convex,
the block coordinate method with our first-order optimiza-
tion procedures is not guaranteed to provide a globally
minimum bound, yet often performs well in practice.

In our empirical evaluation, we set the hyperparameters
for the number of gradient updates for the inner optimiza-
tion to 10, and the number of updates M2 for the weights
and costs before updating utility constants to 20 and 50,
which yielded a good convergence behavior.

4 EXPERIMENTS

We empirically compare the performance of our proposed
algorithm JGDID with earlier approaches for bounding
the MEU on four problem domains.

Benchmarks. The benchmarks are generated as follows.
(1) Factored FH-MDP instances are generated from two
stage factored MDP templates by controlling the num-
ber of state and action variables, the scope of functions,
and the time horizon. (2) Factored FH-POMDP instances
are generated similarly to FH-MDP instances, but we
incorporate partial observability. (3) Random influence
diagram (RAND) instances are generated by randomly
generating influence diagram topology given the number
of chance, decision, and value nodes. (4) BN instances
are converted to ID from existing Bayesian networks used
in the UAI-2006 probabilistic inference competitions by
adding utility functions and randomly selecting decision
variables. We generated 10 instances for each bench-
mark with increasing difficulty; Table 1 summarizes the
instance statistics of the 4 benchmarks.

Algorithms. The first approach we compare against is
the upper bounding algorithms for MMAP using the re-
duction from ID to MMAP. The reduction of Mauá [2016]
generates standard MMAP instances, while Liu and Ih-
ler [2012] generates MMAP instances with interleaved
max and sum operators, which we call mixed MMAP.
For the standard MMAP instances, we applied weighted
mini-bucket with moment matching (WMBMM) [Liu and
Ihler, 2011; Marinescu et al., 2014], and for the mixed
MMAP instances, we applied GDD [Ping et al., 2015].

The second set of algorithms are applied directly to the In-



Table 2: Instance statistics of MMAP translation. Table shows
the minimum, median, and maximum instance statistics of the
standard MMAP reduction (MM) and the mixed MMAP reduc-
tion (MI).

Domain Trans n k w

FH-MDP ID 25, 110, 170 2, 3 ,5 5, 25, 43
MI 26, 111, 171 10, 27, 80 15, 86, 160
ID 15, 51, 96 2, 3, 2 10, 27, 47

FH-POMDP MM 28, 188, 5277 6, 16, 48 14, 141, 5192
MI 16, 52, 97 6, 16 ,48 10, 28, 48
ID 22, 57, 91 2, 2, 2 6, 18, 41

RAND MM 29, 79, 142 2, 8, 21 8, 25, 58
MI 23, 58, 92 2, 8, 21 6, 20, 42
ID 54, 100, 115 2, 2, 2 18, 28, 45

BN MM 69, 126, 202 3, 6, 12 20, 40, 92
MI 55, 101, 116 3, 6, 12 19, 29, 46

fluence Diagram. One scheme is based on the mini-bucket
idea which bounds the induced width by the i-bound, and
then applies variable elimination using valuation algebra,
yielding algorithm MBE-VA. The second is an informa-
tion relaxation scheme, which relaxes the constrained
variable ordering, denoted IR-SIS. [Nilsson and Hohle,
2001; Yuan et al., 2010]. The information relaxation is
orthogonal to approximate elimination, and so both can
be applied together; when we apply MBE-VA and JGDD
together with the relaxed ordering of IR-SIS we call the
hybrid algorithms MBE-VA+IR-SIS ad JGDID-IR-SIS.

In summary, we evaluated 6 algorithms. We have JGDID
and MBE-VA applied directly to the input IDs assuming
only constrained ordering. We have JGDID+IR-SIS and
MBE-VA+IR-SIS applied to the IDs but allowing relaxed
ordering by IR-SIS, and finally we have WMBMM and
GDD that are applied to MMAP reductions from IDs.

Performance measure. We report the quality of upper
bounds for individual instances, and the average quality of
the upper bounds by the mean of the ratio between the best
upper bound found by all configurations (6 algorithms
with i-bounds 1 and 15) and the upper bound of each
under comparison; the closer the value to 1.0, the better
the quality.

4.1 COMPARING AGAINST MMAP
TRANSLATIONS

Next, we compare our JGDID approach with WMBMM
and GDD bounds based on MMAP translations.

Impact of MMAP translation. Table 2 summarizes the
changes in the number of variables, the maximum domain
size, and the induced widthw due to the translation. When
computing the induced width, we used the randomized
min-fill algorithm. The reduction from ID to MMAP
for the FH-MDP benchmark is not shown in the table
because the translation was not feasible for most of the
instances. Note that the standard MMAP reduction (MM)

Table 3: Average Quality of Upper Bounds.

Algorithm FH-MDP FH-POMDP RAND BN
JGDID+IR-SIS(i=1) NA 0.88 0.87 0.99
JGDID+IR-SIS(i=15) NA 0.76 0.85 0.64
JGDID(i=1) 0.88 0.38 0.86 0.89
JGDID(i=15) 0.49 0.38 0.85 0.64
MBE-VA+IR-SIS(i=1) NA 0.03 0.01 0.00
MBE-VA+IR-SIS(i=15) NA 0.54 0.46 0.15
MBE-VA(i=1) 0.00 0.00 0.00 0.00
MBE-VA(i=15) 0.40 0.29 0.46 0.17
GDD(i=1) 0.87 0.03 0.11 0.24
GDD(i=15) 0.22 0.11 0.15 0.05
WMBMM(i=1) 0.00 0.00 0.01 0.01
WMBMM(i=15) 0.01 0.23 0.35 0.24

inflates all input statistics. The number of variables is
exponential in the size of the largest information set, the
maximum domain size is increased to the total number
of utility functions, and the induced width also increased
significantly higher than input IDs. The mixed MMAP
translation (MI) increases the number of variables by 1
which has domain size equal to the total number of utility
functions. The induced width is increased by 1 except for
the FH-MDP domain.

Upper bounds from individual instances. Figure 4 il-
lustrates the quality of the obtained upper bounds for
instances having the largest induced width in each bench-
mark. We ran JGDID and GDD algorithms up to 2000
iterations or until convergence. We can see from Figure
4 that JGDID dominates GDD and WMBMM on all in-
stances except pomdp8. Comparing the upper bounds
across i-bounds, JGDID and GDD do not show notable
improvement on the speed of convergence with higher
i-bounds due to the large overhead of a single iteration.
We see that JGDID shows the step-wise improvement of
upper bounds when it optimizes the utility constants.

Average quality of upper bounds. Table 3 shows the
average quality of upper bounds. We see that the average
quality of JGDID dominates both GDD and WMBMM
in all benchmarks. Comparing JGDID and GDD, both
generated upper bounds with similar quality on average
in the FH-MDP benchmark. However, bounds from GDD
are significantly worse than JGDID in other benchmarks.
The upper bounds from WMBMM(i=1) is so large that
the average ratios for all instances are close to 0.0.

4.2 COMPARING AGANIST DIRECT
ALGORITHMS

In this section we compare JGDID, MBE-VA, JGDID+IR-
SIS, and MBE-VA+IR-SIS that are applied directly to IDs.
They are all obtained by relaxing the input IDs either by
decomposing graphical model or information relaxation.

Impact of IR-SIS. The IR-SIS relaxation often produces



(a) n=99, f=120, wc=43 wmi=81 (b) n=94, f=140, wc=47, wmm=2057, wmi=48, wr=26

(c) n=91, f=91, wc=41, wmm=58, wmi=42, wr=42 (d) n=115, f=115, wc=45, wmm=92, wmi=46, wr=54

Figure 4: Upper Bounds of the MEU. Each plot shows the convergence of upper bounds over time. We draw horizontal lines for the
bounds computed by non-iterative algorithms. The wc, wmm, wmi, and wr are the induced width of the input ID, standard MMAP
reduction, mixed MMAP reduction, and relaxed ID with IR-SIS, respectively.

IDs with a lower induced width by reordering the vari-
ables in the information sets. It is shown to be very ef-
fective for FH-POMDP instances because IR-SIS trans-
forms POMDP instances to MDP. The minimum, the
median and the maximum induced width of FH-POMDP
instances decreased from 10 to 3, 27 to 14, and 47 to 35,
respectively via this relaxation. In other benchmarks, the
improvement was negligible and often IR-SIS increased
induced width.

Upper bounds from individual instances. Figure 4 il-
lustrates also upper bounds obtained by direct algorithms.
Comparing JGDID with MBE-VA, we see in the figure
that JGDID improved the quality of the upper bound sig-
nificantly in all instances. IR-SIS often significantly im-
proves the quality of the bounds when the upper bounds
from decomposition methods is still weak. In case of
pomdp8, we see that the JGDID+IR-SIS improved the
upper bound significantly compared to JGDID.

Average quality of upper bounds. Table 3 also shows
the average quality of the upper bounds for the 4 direct
algorithms. We see that the average quality of JGDID
dominates MBE-VA. The average quality of the upper
bounds obtained from MBE-VA(i=1) are so weak that
their value is closed to 0.0 in all benchmarks. Both JG-
DID and MBE-VA improve the average quality of the
upper bounds when they are combined with IR-SIS, and

JGDID+IR-SIS presents the best average quality overall.

5 CONCLUSIONS

We present a new algorithm, Join Graph Decomposition
for solving Influence Diagrams, called JGDID, using the
valuation algebra. Our scheme subsumes the decomposi-
tion bounds for marginal MAP, and also provide a bound
for the MEU. Our experiments show the effectiveness of
the translation free approach and the significant improve-
ment in the quality of upper bounds compared with earlier
state-of-the-art approaches. We also demonstrate that a
join graph decomposition scheme can be combined with
information relaxation scheme to yield superior bounds.
The principle of decomposing a sequence of decision
problems to a collection of weakly coupled subproblems
can be further developed by incorporating advanced opti-
mization frameworks, and the resulting, effective upper
bounding schemes can be applied to probabilistic plan-
ning and stochastic programming.
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