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Abstract

The Variational Auto-Encoder (VAE) is one
of the most used unsupervised machine learn-
ing models. But although the default choice
of a Gaussian distribution for both the prior
and posterior represents a mathematically con-
venient distribution often leading to competi-
tive results, we show that this parameterization
fails to model data with a latent hyperspheri-
cal structure. To address this issue we propose
using a von Mises-Fisher (vMF) distribution in-
stead, leading to a hyperspherical latent space.
Through a series of experiments we show how
such a hyperspherical VAE, or S-VAE, is more
suitable for capturing data with a hyperspheri-
cal latent structure, while outperforming a nor-
mal, N -VAE, in low dimensions on other data
types.

1 INTRODUCTION

First introduced by Kingma and Welling (2013); Rezende
et al. (2014), the Variational Auto-Encoder (VAE) is an
unsupervised generative model that presents a principled
fashion for performing variational inference using an auto-
encoding architecture. Applying the non-centered pa-
rameterization of the variational posterior (Kingma and
Welling, 2014), further simplifies sampling and allows to
reduce bias in calculating gradients for training. Although
the default choice of a Gaussian prior is mathematically
convenient, we can show through a simple example that in
some cases it breaks the assumption of an uninformative
prior leading to unstable results. Imagine a dataset on
the circle Z ⊂ S1, that is subsequently embedded in RN
using a transformation f to obtain f : Z → X ⊂ RN .
Given two hidden units, an autoencoder quickly discovers
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the latent circle, while a normal VAE becomes highly
unstable. This is to be expected as a Gaussian prior is con-
centrated around the origin, while the KL-divergence tries
to reconcile the differences between S1 and R2. A more
detailed discussion of this ‘manifold mismatch’ problem
will follow in subsection 2.3.

The fact that some data types like directional data are
better explained through spherical representations is long
known and well-documented (Mardia, 1975; Fisher et al.,
1987), with examples spanning from protein structure, to
observed wind directions. Moreover, for many modern
problems such as text analysis or image classification,
data is often first normalized in a preprocessing step to
focus on the directional distribution. Yet, few machine
learning methods explicitly account for the intrinsically
spherical nature of some data in the modeling process. In
this paper, we propose to use the von Mises-Fisher (vMF)
distribution as an alternative to the Gaussian distribution.
This replacement leads to a hyperspherical latent space
as opposed to a hyperplanar one, where the Uniform dis-
tribution on the hypersphere is conveniently recovered as
a special case of the vMF. Hence this approach allows
for a truly uninformative prior, and has a clear advantage
in the case of data with a hyperspherical interpretation.
This was previously attempted by Hasnat et al. (2017), but
crucially they do not learn the concentration parameter
around the mean, κ.

In order to enable training of the concentration parame-
ter, we extend the reparameterization trick for rejection
sampling as recently outlined in Naesseth et al. (2017) to
allow for n additional transformations. We then combine
this with the rejection sampling procedure proposed by
Ulrich (1984) to efficiently reparameterize the VAE 1.

We demonstrate the utility of replacing the normal dis-
tribution with the von Mises-Fisher distribution for gen-
erating latent representations by conducting a range of
experiments in three distinct settings. First, we show that

1 https://github.com/nicola-decao/s-vae

https://github.com/nicola-decao/s-vae


our S-VAEs outperform VAEs with the Gaussian varia-
tional posterior (N -VAEs) in recovering a hyperspherical
latent structure. Second, we conduct a thorough com-
parison with N -VAEs on the MNIST dataset through an
unsupervised learning task and a semi-supervised learning
scenario. Finally, we show that S-VAEs can significantly
improve link prediction performance on citation network
datasets in combination with a Variational Graph Auto-
Encoder (VGAE) (Kipf and Welling, 2016).

2 VARIATIONAL AUTO-ENCODERS

2.1 FORMULATION

In the VAE setting, we have a latent variable model for
data, where z ∈ RM denotes latent variables, x is a vector
of D observed variables, and pφ(x, z) is a parameterized
model of the joint distribution. Our objective is to op-
timize the log-likelihood of the data, log

∫
pφ(x, z)dz.

When pφ(x, z) is parameterized by a neural network,
marginalizing over the latent variables is generally in-
tractable. One way of solving this issue is to maximize
the Evidence Lower Bound (ELBO)

log

∫
pφ(x, z)dz ≥ Eq(z)[log pφ(x|z)]+

−KL(q(z)||p(z)), (1)

where q(z) is the approximate posterior distribution, be-
longing to a family Q. The bound is tight if q(z) =
p(z|x), meaning q(z) is optimized to approximate the
true posterior. While in theory q(z) should be optimized
for every data point x, to make inference more scalable
to larger datasets the VAE setting introduces an inference
network qψ(z|x; θ) parameterized by a neural network
that outputs a probability distribution for each data point
x. The final objective is therefore to maximize

L(φ, ψ) = Eqψ(z|x;θ)[log pφ(x|z)]+

−KL(qψ(z|x; θ)||p(z)), (2)

In the original VAE both the prior and the posterior are
defined as normal distributions. We can further efficiently
approximate the ELBO by Monte Carlo estimates, using
the reparameterization trick (Kingma and Welling, 2013;
Rezende et al., 2014). This is done by expressing a sam-
ple of z ∼ qψ(z|x; θ), as z = h(θ, ε,x), where h is a
reparameterization transformation and ε ∼ s(ε) is some
noise random variable independent from θ.

2.2 THE LIMITATIONS OF A GAUSSIAN
DISTRIBUTION PRIOR

Low dimensions: origin gravity In low dimensions,
the Gaussian density presents a concentrated probability

mass around the origin, encouraging points to cluster in
the center. This is particularly problematic when the data
is divided into multiple clusters. Although an ideal latent
space should separate clusters for each class, the normal
prior will encourage all the cluster centers towards the
origin. An ideal prior would only stimulate the variance
of the posterior without forcing its mean to be close to
the center. A prior satisfying these properties is a uniform
over the entire space. Such a uniform prior, however, is
not well defined on the hyperplane.

High dimensions: soap bubble effect It is a well-
known phenomenon that the standard Gaussian distri-
bution in high dimensions tends to resemble a uniform
distribution on the surface of a hypersphere, with the vast
majority of its mass concentrated on the hyperspherical
shell. Hence it would appear interesting to compare the
behavior of a Gaussian approximate posterior with an
approximate posterior already naturally defined on the
hypersphere. This is also motivated from a theoretical
point of view, since the Gaussian definition is based on
the L2 norm that suffers from the curse of dimensionality.

2.3 BEYOND THE HYPERPLANE

Once we let go of the hyperplanar assumption, the pos-
sibility of a uniform prior on the hypersphere opens up.
Mirroring our discussion in the previous subsection, such
a prior would exhibit no pull towards the origin allowing
clusters of data to evenly spread over the surface with no
directional bias. Additionally, in higher dimensions, the
cosine similarity is a more meaningful distance measure
than the Euclidean norm.

Manifold mapping In general, exploring VAE mod-
els that allow a mapping to distributions in a latent
space not homeomorphic to RD is of fundamental in-
terest. Consider data lying in a small M -dimensional
manifoldM, embedded in a much higher dimensional
space X = RN . For most real data, this manifold will
likely not be homeomorphic to RM . An encoder can
be considered as a smooth map enc : X → Z = RD
from the original space to Z . The restriction of the en-
coder to M, enc|M : M → Z will also be a smooth
mapping. However sinceM is not homeomorphic to Z
if D ≤ M , then enc|M cannot be a homeomorphism.
That is, there exists no invertible and globally continuous
mapping between the coordinates ofM and the ones of
Z . Conversely if D > M then M can be smoothly
embedded in Z for D sufficiently large 2 , such that
enc|M : M → enc|M(M) =: emb(M) ⊂ Z is a
homeomorphism and emb(M) denotes the embedding of

2By the Whitney embedding theorem any smooth real M -
dimensional manifold can be smoothly embedded in R2M



(a) Original (b) Autoencoder (c) N -VAE (d) N -VAE, β = 0.1 (e) S-VAE

Figure 1: Plots of the original latent space (a) and learned latent space representations in different settings, where β is a
re-scaling factor for weighting the KL divergence. (Best viewed in color)

M. Yet, since D > M , when taking random points in
the latent space they will most likely not be in emb(M)
resulting in a poorly reconstructed sample.

The VAE tries to solve this problem by forcingM to be
mapped into an approximate posterior distribution that
has support in the entire Z . Clearly, this approach is
bound to fail since the two spaces have a fundamentally
different structure. This can likely produce two behaviors:
first, the VAE could just smooth the original embedding
emb(M) leaving most of the latent space empty, leading
to bad samples. Second, if we increase the KL term the
encoder will be pushed to occupy all the latent space,
but this will create instability and discontinuity, affecting
the convergence of the model. To validate our intuition
we performed a small proof of concept experiment using
M = S1, which is visualized in Figure 1. Note that as
expected the auto-encoder in Figure 1(b) mostly recovers
the original latent space of Figure 1(a) as there are no dis-
tributional restrictions. In Figure 1(c) we clearly observe
for the N -VAE that points collapse around the origin due
to the KL, which is much less pronounced in Figure 1(d)
when its contribution is scaled down. Lastly, the S-VAE
almost perfectly recovers the original circular latent space.
The observed behavior confirms our intuition.

To solve this problem the best option would be to directly
specify a Z homeomorphic toM and distributions onM.
However, for real data discovering the structure of M
will often be a difficult inference task. Nevertheless, we
believe this shows investigating VAE architectures that
map to posterior distributions defined on manifolds differ-
ent than the Euclidean space is a topic worth exploring.

3 REPLACING GAUSSIAN WITH VON
MISES-FISHER

3.1 VON MISES-FISHER DISTRIBUTION

The von Mises-Fisher (vMF) distribution is often seen

as the Normal Gaussian distribution on a hypersphere.
Analogous to a Gaussian, it is parameterized by µ ∈
Rm indicating the mean direction, and κ ∈ R≥0 the
concentration around µ. For the special case of κ = 0, the
vMF represents a Uniform distribution. The probability
density function of the vMF distribution for a random unit
vector z ∈ Rm (or z ∈ Sm−1) is then defined as

q(z|µ, κ) = Cm(κ) exp (κµT z), (3)

Cm(κ) =
κm/2−1

(2π)m/2Im/2−1(κ)
, (4)

where ||µ||2 = 1, Cm(κ) is the normalizing constant, and
Iv denotes the modified Bessel function of the first kind
at order v.

3.2 KL DIVERGENCE

As previously emphasized, one of the main advan-
tages of using the vMF distribution as an approxi-
mate posterior is that we are able to place a uniform
prior on the latent space. The KL divergence term
KL(vMF(µ, κ)||U(Sm−1)) to be optimized is:

κ
Im/2(k)

Im/2−1(k)
+ log Cm(κ)− log

(
2(πm/2)

Γ(m/2)

)−1
, (5)

see Appendix B for complete derivation. Notice that
since the KL term does not depend on µ, this parameter
is only optimized in the reconstruction term. The above
expression cannot be handled by automatic differentia-
tion packages because of the modified Bessel function in
Cm(κ). Thus, to optimize this term we derive the gradient
with respect to the concentration parameter:

∇κKL(vMF(µ, κ)||U(Sm−1)) =
1

2
k

(Im/2+1(k)

Im/2−1(k)
+

−
Im/2(k)

(
Im/2−2(k) + Im/2(k)

)
Im/2−1(k)2

+ 1

)
,

(6)



Algorithm 1 vMF sampling
Input: dimension m, mean µ, concentration κ
sample v ∼ U(Sm−2)

sample ω ∼ g(ω|κ,m) ∝ exp(ωκ)(1 − ω2)
1
2 (m−3)

{acceptance-rejection sampling}
z′ ← (ω; (

√
1− ω2)v>)>

U ← Householder(e1, µ) {Householder transform}
Return: Uz′

where the modified Bessel functions can be computed
without numerical instabilities using the exponentially
scaled modified Bessel function.

3.3 SAMPLING PROCEDURE

To sample from the vMF we follow the procedure of
Ulrich (1984), outlined in Algorithm 1. We first sam-
ple from a vMF q(z|e1, κ) with modal vector e1 =
(1, 0, · · · , 0). Since the vMF density is uniform in
all the m − 2 dimensional sub-hyperspheres {x ∈
Sm−1 | e>1 x = ω}, the sampling technique reduces
to sampling the value ω from the univariate density
g(ω|κ,m) ∝ exp(κω)(1 − ω2)(m−3)/2, ω ∈ [−1, 1],
using an acceptance-rejection scheme. After getting a
sample from q(z|e1, κ) an orthogonal transformation
U(µ) is applied such that the transformed sample is dis-
tributed according to q(z|µ, κ). This can be achieved
using a Householder reflection such that U(µ)e1 = µ. A
more in-depth explanation of the sampling technique can
be found in Appendix A.

It is worth noting that the sampling technique does not
suffer from the curse of dimensionality, as the acceptance-
rejection procedure is only applied to a univariate distri-
bution. Moreover in the case of S2, the density g(ω|κ, 3)
reduces to g(ω|κ, 3) ∝ exp(kω)1[−1,+1](ω) which can
be directly sampled without rejection.

3.4 N-TRANSFORMATION
REPARAMETERIZATION TRICK

While the reparameterization trick is easily imple-
mentable in the normal case, unfortunately it can only
be applied to a handful of distributions. However a recent
technique introduced by Naesseth et al. (2017) allows to
extend the reparameterization trick to the wide class of dis-
tributions that can be simulated using rejection sampling.
Dropping the dependence from x for simplicity, assume
the approximate posterior is of the form g(ω|θ) and that
it can be sampled by making proposals from r(ω|θ). If
the proposal distribution can be reparameterized we can
still perform the reparameterization trick. Let ε ∼ s(ε),
and ω = h(ε, θ), a reparameterization of the proposal dis-
tribution, r(ω|θ). Performing the reparameterization trick

for g(ω|θ) is made possible by the fundamental lemma
proven in (Naesseth et al., 2017):

Lemma 1. Let f be any measurable function and ε ∼

π(ε|θ) = s(ε)
g(h(ε, θ)|θ)
r(h(ε, θ)|θ)

the distribution of the ac-

cepted sample. Then:

Eπ(ε|θ)[f(h(ε, θ))] =

∫
f(h(ε, θ))π(ε|θ)dε

=

∫
f(ω)g(ω|θ)dω = Eg(ω|θ)[f(ω)], (7)

Then the gradient can be taken using the log derivative
trick:

∇θEg(ω|θ)[f(ω)] = ∇θEπ(ε|θ)[f(h(ε, θ))] =

Eπ(ε|θ)[∇θf(h(ε, θ))]+

+ Eπ(ε|θ)
[
f(h(ε, θ))∇θ log

g(h(ε, θ)|θ)
r(h(ε, θ)|θ)

]
, (8)

However, in the case of the vMF a different procedure
is required. After performing the transformation h(ε, θ)
and accepting/rejecting the sample, we sample another
random variable v ∼ π2(v), and then apply a transfor-
mation z = T (h(ε, θ),v; θ), such that z ∼ qψ(z|θ) is
distributed as the approximate posterior (in our case a
vMF). Effectively this entails applying another reparame-
terization trick after the acceptance/rejection step. To still
be able to perform the reparameterization we show that
Lemma 1 fundamentally still holds in this case as well.

Lemma 2. Let f be any measurable function and ε ∼

π1(ε|θ) = s(ε)
g(h(ε, θ)|θ)
r(h(ε, θ)|θ)

the distribution of the ac-

cepted sample. Also let v ∼ π2(v), and T a trans-
formation that depends on the parameters such that if
z = T (ω, v; θ) with ω ∼ g(ω|θ), then ∼ q(z|θ):

E(ε,v)∼π1(ε|θ)π2(v) [f (T (h(ε, θ),v; θ))] =∫
f(z)q(z|θ)dz = Eq(z|θ)[f(z)], (9)

Proof. See Appendix C.

With this result we are able to derive a gradient expression
similarly as done in equation 8. We refer to Appendix D
for a complete derivation.

3.5 BEHAVIOR IN HIGH DIMENSIONS

The surface area of a hypersphere is defined as

S(m− 1) = rm
2(πm/2)

Γ(m/2)
, (10)



(a) R2 latent space of the N -VAE. (b) Hammer projection of S2 latent space of the S-VAE.

Figure 2: Latent space visualization of the 10 MNIST digits in 2 dimensions of both N -VAE (left) and S-VAE (right).
(Best viewed in color)

where m is the dimensionality and r the radius. Notice
that S(m − 1) → 0, as m → ∞. However, even for
m > 20 we observe a vanishing surface problem (see
Figure 6 in Appendix E). This could thus lead to unstable
behavior of hyperspherical models in high dimensions.

4 RELATED WORK

Extending the VAE The majority of VAE extensions
focus on increasing the flexibility of the approximate
posterior. This is usually achieved through normalizing
flows (Rezende and Mohamed, 2015), a class of invertible
transformations applied sequentially to an initial repa-
rameterizable density q0(z0), allowing for more complex
posteriors. Normalizing flows can be considered orthogo-
nal to our approach. While allowing for a more flexible
posterior, they do not modify the standard normal prior
assumption. In (Gemici et al., 2016) a first attempt is
made to extend normalizing flows to Riemannian mani-
folds. However, as the method relies on the existence of a
diffeomorphism between RN and SN , it is unsuited for
hyperspheres.

One approach to obtain a more flexible prior is to use a
simple mixture of Gaussians (MoG) prior (Dilokthanakul
et al., 2016). The recently introduced VampPrior model
(Tomczak and Welling, 2018) outlines several advantages
over the MoG and instead tries to learn a more flexible
prior by expressing it as a mixture of approximate pos-
teriors. A non-parametric prior is proposed in Nalisnick
and Smyth (2017), utilizing a truncated stick-breaking
process. Opposite to these approaches, we aim at using a
non-informative prior to simplify the inference.

The closest approach to ours is a VAE with a vMF distri-
bution in the latent space used for a sentence generation

task by (Guu et al., 2018). While formally this approach
is cast as a variational approach, the proposed model does
not reparameterize and learn the concentration parameter
κ, treating it as a constant value that remains the same
for every approximate posterior instead. Critically, as
indicated in Equation 5, the KL divergence term only
depends on κ therefore leaving κ constant means never
explicitly optimizing the KL divergence term in the loss.
The method then only optimizes the reconstruction error
by adding vMF noise to the encoder output in the latent
space to still allow generation. Moreover, using a fixed
global κ for all the approximate posteriors severely limits
the flexibility and the expressiveness of the model.

Non-Euclidean Latent Space In Liu and Zhu (2018),
a general model to perform Bayesian inference in Rieman-
nian Manifolds is proposed. Following other Stein-related
approaches, the method does not explicitly define a poste-
rior density but approximates it with a number of particles.
Despite its generality and flexibility, it requires the choice
of a kernel on the manifold and multiple particles to have
a good approximation of the posterior distribution. The
former is not necessarily straightforward, while the latter
quickly becomes computationally unfeasible.

Another approach by Nickel and Kiela (2017), capital-
izes on the hierarchical structure present in some data
types. By learning the embeddings for a graph in a
non-euclidean negative curvature hyperbolical space, they
show this topology has clear advantages over embedding
these objects in a Euclidean space. Although they did not
use a VAE-based approach, that is, they did not build a
probabilistic generative model of the data interpreting the
embeddings as latent variables, this approach shows the
merit of explicitly adjusting the choice of latent topology
to the data used.



Table 1: Summary of results (mean and standard-deviation over 10 runs) of unsupervised model on MNIST. RE and KL
correspond respectively to the reconstruction and the KL part of the ELBO. Best results are highlighted only if they
passed a student t-test with p < 0.01.

Method N -VAE S-VAE
LL L[q] RE KL LL L[q] RE KL

d = 2 -135.73±.83 -137.08±.83 -129.84±.91 7.24±.11 -132.50±.73 -133.72±.85 -126.43±.91 7.28±.14

d = 5 -110.21±.21 -112.98±.21 -100.16±.22 12.82±.11 -108.43±.09 -111.19±.08 -97.84±.13 13.35±.06

d = 10 -93.84±.30 -98.36±.30 -78.93±.30 19.44±.14 -93.16±.31 -97.70±.32 -77.03±.39 20.67±.08

d = 20 -88.90±.26 -94.79±.19 -71.29±.45 23.50±.31 -89.02±.31 -96.15±.32 -67.65±.43 28.50±.22

d = 40 -88.93±.30 -94.91±.18 -71.14±.56 23.77±.49 -90.87±.34 -101.26±.33 -67.75±.70 33.50±.45

A Hyperspherical Perspective As noted before, a dis-
tinction must be made between models dealing with the
challenges of intrinsically hyperspherical data like omni-
directional video, and those attempting to exploit some
latent hyperspherical manifold. A recent example of the
first can be found in Cohen et al. (2018), where spherical
CNNs are introduced. While flattening a spherical im-
age produces unavoidable distortions, the newly defined
convolutions take into account its geometrical properties.

The most general implementation of the second model
type was proposed by Gopal and Yang (2014), who intro-
duced a suite of models to improve cluster performance of
high-dimensional data based on mixture of vMF distribu-
tions. They showed that reducing an object representation
to its directional components increases clusterability over
standard methods like K-Means or Latent Dirichlet Allo-
cation (Blei et al., 2003).

Specific applications of the vMF can be further found
ranging from computer vision, where it is used to infer
structure from motion (Guan and Smith, 2017) in spheri-
cal video, or structure from texture (Wilson et al., 2014),
to natural language processing, where it is utilized in text
analysis (Banerjee et al., 2003, 2005) and topic modeling
(Banerjee and Basu, 2007; Reisinger et al., 2010).

Additionally, modeling data by restricting it to a hyper-
sphere provides some natural regularizing properties as
noted in (Liu et al., 2017). Finally Aytekin et al. (2018)
show on a variety of deep auto-encoder models that
adding L2 normalization to the latent space during train-
ing, i.e. forcing the latent space on a hypersphere, im-
proves clusterability.

5 EXPERIMENTS

In this section, we first perform a series of experiments
to investigate the theoretical properties of the proposed
S-VAE compared to theN -VAE. In a second experiment,
we show how S-VAEs can be used in semi-supervised

tasks to create a better separable latent representation to
enhance classification. In the last experiment, we show
that the S-VAE indeed presents a promising alternative to
N -VAEs for data with a non-Euclidean latent representa-
tion of low dimensionality, on a link prediction task for
three citation networks. All architecture and hyperparam-
eter details are given in Appendix F.

5.1 RECOVERING HYPERSPHERICAL
LATENT REPRESENTATIONS

In this first experiment we build on the motivation devel-
oped in Subsection 2.3, by confirming with a synthetic
data example the difference in behavior of the N -VAE
and S-VAE in recovering latent hyperspheres. We first
generate samples from a mixture of three vMFs on the
circle, S1, as shown in Figure 1(a), which subsequently
are mapped into the higher dimensional R100 by applying
a noisy, non-linear transformation. After this, we in turn
train an auto-encoder, a N -VAE, and a S-VAE. We fur-
ther investigate the behavior of the N -VAE, by training a
model using a scaled down KL divergence.

Results The resulting latent spaces, displayed in Figure
1, clearly confirm the intuition built in Subsection 2.3. As
expected, in Figure 1(b) the auto-encoder is perfectly ca-
pable to embed in low dimensions the original underlying
data structure. However, most parts of the latent space are
not occupied by points, critically affecting the ability to
generate meaningful samples.

In theN -VAE setting we observe two types of behaviours,
summarized by Figures 1(c) and 1(d). In the first we
observe that if the prior is too strong it will force the
posterior to match the prior shape, concentrating the sam-
ples in the center. However, this prevents the N -VAE to
correctly represent the true shape of the data and creates
instability problems for the decoder around the origin. On
the contrary, if we scale down the KL term, we observe
that the samples from the approximate posterior maintain



Table 2: Summary of results (mean accuracy and standard-deviation over 20 runs) of semi-supervised K-NN on MNIST.
Best results are highlighted only if they passed a student t-test with p < 0.01.

Method 100 600 1000
N -VAE S-VAE N -VAE S-VAE N -VAE S-VAE

d = 2 72.6±2.1 77.9±1.6 80.8±0.5 84.9±0.6 81.7±0.5 85.6±0.5

d = 5 81.8±2.0 87.5±1.0 90.9±0.4 92.8±0.3 92.0±0.2 93.4±0.2

d = 10 75.7±1.8 80.6±1.3 88.4±0.5 91.2±0.4 90.2±0.4 92.8±0.3

d = 20 71.3±1.9 72.8±1.6 88.3±0.5 89.1±0.6 90.1±0.4 91.1±0.3

d = 40 72.3±1.6 67.7±2.3 88.0±0.5 87.4±0.7 90.3±0.5 90.4±0.4

a shape that reflects the S1 structure smoothed with Gaus-
sian noise. However, as the approximate posterior differs
strongly from the prior, obtaining meaningful samples
from the latent space again becomes problematic.

The S-VAE on the other hand, almost perfectly recovers
the original dataset structure, while the samples from the
approximate posterior closely match the prior distribution.
This simple experiment confirms the intuition that having
a prior that matches the true latent structure of the data, is
crucial in constructing a correct latent representation that
preserves the ability to generate meaningful samples.

5.2 EVALUATION OF EXPRESSIVENESS

To compare the behavior of the N -VAE and S-VAE on a
data set that does not have a clear hyperspherical latent
structure, we evaluate both models on a reconstruction
task using dynamically binarized MNIST (Salakhutdinov
and Murray, 2008). We analyze the ELBO, KL, negative
reconstruction error, and marginal log-likelihood (LL) for
both models on the test set. The LL is estimated using
importance sampling with 500 sample points (Burda et al.,
2016).

Results Results are shown in Table 1. We first note that
in terms of negative reconstruction error the S-VAE out-
performs theN -VAE in all dimensions. Since the S-VAE
uses a uniform prior, the KL divergence increases more
strongly with dimensionality, which results in a higher
ELBO. However in terms of log-likelihood (LL) the S-
VAE clearly has an edge in low dimensions (d = 2, 5, 10)
and performs comparable to the N -VAE in d = 20. This
empirically confirms the hypothesis of Subsection 2.2,
showing the positive effect of having a uniform prior in
low dimensions. In the absence of any origin pull, the
data is able to cluster naturally, utilizing the entire latent
space which can be observed in Figure 2. Note that in Fig-
ure 2(a) all mass is concentrated around the center, since
the prior mean is zero. Conversely, in Figure 2(b) all
available space is evenly covered due to the uniform prior,

resulting in more separable clusters in S2 compared to
R2. However, as dimensionality increases, the Gaussian
distribution starts to approximate a hypersphere, while
its posterior becomes more expressive than the vMF due
to the higher number of variance parameters. Simultane-
ously, as described in Subsection 3.5, the surface area of
the vMF starts to collapse limiting the available space.

In Figure 7 and 8 of Appendix G, we present randomly
generated samples from the N -VAE and the S-VAE, re-
spectively. Moreover, in Figure 9 of Appendix G, we
show 2-dimensional manifolds for the two models. Inter-
estingly, the manifold given by the S-VAE indeed results
in a latent space where digits occupy the entire space and
there is a sense of continuity from left to right.

5.3 SEMI-SUPERVISED LEARNING

Having observed the S-VAE’s ability to increase clus-
terability of data points in the latent space, we wish to
further investigate this property using a semi-supervised
classification task. For this purpose we re-implemented
the M1 and M1+M2 models as described in (Kingma
et al., 2014), and evaluate the classification accuracy of
the S-VAE and the N -VAE on dynamically binarized
MNIST. In the M1 model, a classifier utilizes the latent
features obtained using a VAE as in experiment 5.2. The
M1+M2 model is constructed by stacking the M2 model
on top of M1, where M2 is the result of augmenting the
VAE by introducing a partially observed variable y, and
combining the ELBO and classification objective. This
concatenated model is trained end-to-end 3.

This last model also allows for a combination of the two
topologies due to the presence of two distinct latent vari-
ables, z1 and z2. Since in the M2 latent space the class
assignment is expressed by the variable y, while z2 only
needs to capture the style, it naturally follows that the

3It is worth noting that in the original implementation by
Kingma et al. (2014) the stacked model did not converge well
using end-to-end training, and used the extracted features of the
M1 model as inputs for the M2 model instead.



(a) R2 latent space of the N -VGAE. (b) Hammer projection of S2 latent space of the S-VGAE.

Figure 3: Latent space of unsupervisedN -VGAE and S-VGAE models trained on Cora citation network. Colors denote
documents classes which are not provided during training. (Best viewed in color)

N -VAE is more suited for this objective due to its higher
number of variance parameters. Hence, besides compar-
ing the S-VAE against the N -VAE, we additionally run
experiments for the M1+M2 model by modeling z1, z2
respectively with a vMF and normal distribution.

Results As can be see in Table 2, for M1 the S-VAE
outperforms the N -VAE in all dimensions up to d = 40.
This result is amplified for a low number of observed
labels. Note that for both models absolute performance
drops as the dimensionality increases, since K-NN used
as the classifier suffers from the curse of dimensionality.
Besides reconfirming superiority of the S-VAE in d <
20, its better performance than the N -VAE for d = 20
was unexpected. This indicates that although the log-
likelihood might be comparable(see Table 1) for higher
dimensions, the S-VAE latent space better captures the
cluster structure.

In the concatenated model M1+M2, we first observe in
Table 3 that either the pure S-VAE or the S+N -VAE
model yields the best results, where the S-VAE almost
always outperforms the N -VAE. Our hypothesis regard-
ing the merit of a S+N -VAE model is further confirmed,
as displayed by the stable, strong performance across
all different dimensions. Furthermore, the clear edge
in clusterability of the S-VAE in low dimensional z1 as
already observed in Table 2, is again evident. As the
dimensionality of z1, z2 increases, the accuracy of the
N -VAE improves, reducing the performance gap with the
S-VAE. As previously noticed the S-VAE performance
drops when dim z2

= 50, with the best result being ob-
tained for dim z1

= dim z2
= 10. In fact, it is worth

noting that for this setting the S-VAE obtains comparable
results to the original settings of (Kingma et al., 2014),
while needing a considerably smaller latent space. Finally,
the end-to-end trained S+N -VAE model is able to reach

a significantly higher classification accuracy than the orig-
inal results reported by Kingma et al. (2014), 96.7±.1.

The M1+M2 model allows for conditional generation.
Similarly to (Kingma et al., 2014), we set the latent vari-
able z2 to the value inferred from the test image by the
inference network, and then varied the class label y. In
Figure 10 of Appendix H we notice that the model is able
to disentangle the style from the class.

Table 3: Summary of results of semi-supervised model
M1+M2 on MNIST.

Method 100
dim z1

dim z2
N+N S+S S+N

5
5 90.0±.4 94.0±.1 93.8±.1

10 90.7±.3 94.1±.1 94.8±.2

50 90.7±.1 92.7±.2 93.0±.1

10
5 90.7±.3 91.7±.5 94.0±.4

10 92.2±.1 96.0±.2 95.9±.3

50 92.9±.4 95.1±.2 95.7±.1

50
5 92.0±.2 91.7±.4 95.8±.1

10 93.0±.1 95.8±.1 97.1±.1

50 93.2±.2 94.2±.1 97.4±.1

5.4 LINK PREDICTION ON GRAPHS

In this experiment, we aim at demonstrating the ability of
the S-VAE to learn meaningful embeddings of nodes in a
graph, showing the advantages of embedding objects in
a non-Euclidean space. We test hyperspherical reparam-
eterization on the recently introduced Variational Graph
Auto-Encoder (VGAE) (Kipf and Welling, 2016), a VAE
model for graph-structured data. We perform training on



a link prediction task on three popular citation network
datasets (Sen et al., 2008): Cora, Citeseer and Pubmed.

Dataset statistics and further experimental details are sum-
marized in Appendix F.3. The models are trained in an un-
supervised fashion on a masked version of these datasets
where some of the links have been removed. All node
features are provided and efficacy is measured in terms
of average precision (AP) and area under the ROC curve
(AUC) on a test set of previously removed links. We use
the same training, validation, and test splits as in Kipf and
Welling (2016), i.e. we assign 5% of links for validation
and 10% of links for testing.

Table 4: Results for link prediction in citation networks.

Method N -VGAE S-VGAE

Cora AUC 92.7±.2 94.1±.1

AP 93.2±.4 94.1±.3

Citeseer AUC 90.3±.5 94.7±.2

AP 91.5±.5 95.2±.2

Pubmed AUC 97.1±.0 96.0±.1

AP 97.1±.0 96.0±.1

Results In Table 4, we show that our model outperforms
the N -VGAE baseline on two out of the three datasets
by a significant margin. The log-probability of a link is
computed as the dot product of two embeddings. In a hy-
persphere, this can be interpreted as the cosine similarity
between vectors. Indeed we find that the choice of a dot
product scoring function for link prediction is problematic
in combination with the normal distribution on the latent
space. If embeddings are close to the zero-center, noise
during training can have a large destabilizing effect on the
angle information between two embeddings. In practice,
the model finds a solution where embeddings are ”pushed”
away from the zero-center, as demonstrated in Figure 3(a).
This counteracts the pull towards the center arising from
the standard prior and can overall lead to poor modeling
performance. By constraining the embeddings to the sur-
face of a hypersphere, this effect is mitigated, and the
model can find a good separation of the latent clusters, as
shown in Figure 3(b).

On Pubmed, we observe that the S-VAE converges to a
lower score than the N -VAE. The Pubmed dataset is sig-
nificantly larger than Cora and Citeseer, and hence more
complex. TheN -VAE has a larger number of variance pa-
rameters for the posterior distribution, which might have
played an important role in better modeling the relation-
ships between nodes. We further hypothesize that not all
graphs are necessarily better embedded in a hyperspher-

ical space and that this depends on some fundamental
topological properties of the graph. For instance, the
already mentioned work from Nickel and Kiela (2017)
shows that hyperbolical space is better suited for graphs
with a hierarchical, tree-like structure. These considera-
tions prefigure an interesting research direction that will
be explored in future work.

6 CONCLUSION

With the S-VAE we set an important first step in the
exploration of hyperspherical latent representations for
variational auto-encoders. Through various experiments,
we have shown that S-VAEs have a clear advantage over
N -VAEs for data residing on a known hyperspherical
manifold, and are competitive or surpassN -VAEs for data
with a non-obvious hyperspherical latent representation in
lower dimensions. Specifically, we demonstrated S-VAEs
improve separability in semi-supervised classification and
that they are able to improve results on state-of-the-art link
prediction models on citation graphs, by merely changing
the prior and posterior distributions as a simple drop-in
replacement.

We believe that the presented research paves the way for
various promising areas of future work, such as exploring
more flexible approximate posterior distributions through
normalizing flows on the hypersphere, or hierarchical
mixture models combining hyperspherical and hyperpla-
nar space. Further research should be done in increasing
the performance of S-VAEs in higher dimensions; one
possible solution of which could be to dynamically learn
the radius of the latent hypersphere in a full Bayesian
setting.
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