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Abstract

In this paper we study an optimal stopping
policy for a multi-agent delegated sequential
matching system with fairness constraints. We
consider a setting where a mediator/decision
maker matches a sequence of arriving assign-
ments to multiple groups of agents, with agents
being grouped according to certain sensitive
attributes that needs to be protected. The deci-
sion maker aims to maximize total rewards that
can be collected from above matching process
(from all groups), while making the matching
fair among groups. We discuss two types of
fairness constraints: (i) each group has a cer-
tain expected deadline before which the match
needs to happen; (ii) each group would like
to have a guaranteed share of average reward
from the matching. We present the exact char-
acterization of fair optimal strategies. Example
is provided to demonstrate the computation ef-
ficiency of our solution.

1 INTRODUCTION

We consider a delegated multi-agent sequential matching
problem [Derman et al., [1972] Moscarini} 2005, [Le Ny
et al., 2000], where the decision maker (mediator) helps
decide on matching a set of sequentially arriving assign-
ments to a set of arriving groups of agents. This setting
can model various application scenarios in a sequential
and dynamical system:

e Ride sharing: UBER matches arriving ride requests
to drivers from different groups (according to race,
gender, neighborhood, income etc.)

e Job matching: On employment market, the media-
tor matches arriving job opportunities to job candi-

dates from different groups (again race, gender, or
social status, background etc).

Serving as the proxy mediator, the decision maker re-
ceives reward from each successful matching, which re-
alization depends on the quality of matching. For exam-
ple, the proxy extracts subsidies proportionally from the
payments issued for each matched and completed task.

This decision making problem for sequential matching
has been studied and has been shown to be solvable el-
egantly under an optimal stopping rule solution frame-
work [Ferguson, [2006]. This line of works typically fo-
cus on finding the optimal stopping strategy by matching
agents with assignments judiciously such that the total
average reward (over time) being collected is maximized.
The optimal matching policy is shown to have a stopping
structure, with the core idea of skipping certain match-
ing if the observed reward realization is low. Often the
optimal stopping policy has a simple threshold structure
w.r.t. the reward realization.

Recently fairness issues have raised a lot of discussions
and concerns on designing and implementing different
decision making policies, e.g., see discussion of fairness
in social decision making [Radke et al., [2012], algorith-
mic bias in data mining [Hajian et al., 2016, fairness
in a bandit decision making framework [Joseph et al.,
2016|], and fair action within a Markovian decision mak-
ing framework [Jabbari et al., 2016]. Our problem set-
ting shares similar concerns. For example, when differ-
ent groups (differ in sensitive features, such as gender,
race etc) of agents have different chances of seeing a high
reward matching, the decision maker may bias towards
not matching such agents. Or consider another exam-
ple where different agents may have different matching
constraints that are supposed to be protected under cer-
tain policy. Yet from technical perspectives, much less
results has been developed towards understanding the is-
sue of fairness constraints for this multi-agent optimal
sequential matching problems.



In this paper we set out to explore this topic. We will de-
vote more to the algorithmic aspects of such a problem,
rather than the policy level in that we will characterize
the optimal stopping policy under a set of given fairness
constraints within the optimal stopping rule’s framework.
Specifically we consider the following fair multi-agent
matching problem. Suppose there are multiple groups
of agents trying to be matched with a sequence of arriv-
ing assignments in discrete time slots. Agents’s avail-
abilities follow an IID process. The available agent will
be allowed to be matched to an assignment. Over the
successful matches both the decision maker and agents
will accumulate rewards. Rewards follow certain dis-
tribution and are generated according to an IID process
over matching periods. Therefore due to the fact that the
reward statistics vary dynamically, the decision maker
needs to decide whether to match or not when facing the
opportunity depending on the currently observed reward
of the potential matching, in order to improve the total re-
wards collected. For this classical stopping rule setting,
we are going to show that the optimal matching strategy
gives up matching opportunity when the observed reward
statistics is low, and individual groups of agents may suf-
fer from losing matching opportunities. We consider two
fairness constrained versions of above problem. For the
first one, each group of agents has a deadline, which the
group’s expected matching time cannot go beyond of. In
the second case, each group of agents would like a cer-
tain amount of average reward (over the waiting time) to
be guaranteed from the matching.

1.1 OUR RESULTS AND CONTRIBUTIONS

Our contributions summarize as follows. (1) We for-
mulate the fairness constrained multi-agent sequential
matching problems into a set of constrained optimal stop-
ping ones, and show their equivalences with a set of con-
strained optimization problems. (2) We characterize the
fair optimal stopping policy under delay and reward con-
straints respectively. Our characterization also reveals
the fundamental limits in fair optimal stopping problems,
e.g. our results help characterize the feasible region w.r.t.
individual fairness constraints. Properties of the derived
optimal strategies are also studied. (3) We demonstrate
the efficiency of computing the optimal stopping strat-
egy within our solution framework. To our best knowl-
edge, none of the existing works has tackled this type of
matching/stopping problem with groups of agents facing
individual fairness constraints.

1.2 RELATED WORKS

Fairness issues in decision making and machine learn-
ing systems, or more generally in Artificial Intelligence,

have attracted an increasing amount of attentions re-
cently [Hardt, 2011, Dwork et al., 2012} |Radke et al.,
2012, Joseph et al., 2016} [Kleinberg et al., 2017]. More
specifically, [Radke et al.,[2012] studied the effect of fair-
ness concerns in social decision making processes, while
[Joseph et al.l |2016] analyzed fairness in candidate op-
tion selection within the classical Multi-Armed Bandit
decision making framework. While a growing number of
works [Hardt, 2011}, Dwork et al., 2012, |Chouldechova,
2017, Hardt et al.l 2016| have studied the fairness issues
for one-shot decision making problems, much less has
been understood for a fair decision making process. Our
results try to fill in this direction.

On a higher level, our matching problem can also be
viewed as a multi-agent scheduling problem. [Ferguson,
2006, |Xu et al) [2013| Zheng et al.| 2009] have estab-
lished the equivalence between a large category of such
a multi-agent scheduling problem with the classical opti-
mal stopping rule problem, where the optimal policy has
proven to have a simple characterizable threshold struc-
ture. [Ferguson,|2006] gives a good summary of the stop-
ping rule problems for different types (e.g., selfish v.s.
collaborative) of agents/users. In [Kennedy, 1982] an op-
timal stopping problem for multi-agents under delay con-
straint is considered. Nonetheless the above work con-
sidered only the average delay (average over all agents)
constraint, while the issues with individual fairness con-
straints have not been addressed in this type of schedul-
ing problems.

The rest of our paper is organized as follows. In Sec-
tion[2] we detail our model and revisit the optimal stop-
ping rule based multi-agent sequential matching prob-
lem. Formulations of the sequential matching problems
with delay and reward fairness constraints are presented
in Section[3] We then state the solutions for above prob-
lems in Section 4] In Section [5] we present an specific
example to demonstrate the efficiency of computing the
optimal strategy. Section [6]concludes the paper.

2 PRELIMINARIES

Consider the following sequential delegated assignment
problem. We have M > 1 groups of agents facing a
sequence of arriving assignments and denote them by
the set Y = {1,2,..., M}. We can view the agents as
companies looking for job candidates (assignments), or
freelancers (UBER drivers) looking for job offers (ride
requests). They form groups according to certain at-
tributes, for instance race, gender, or residency. The de-
cision maker (DM) is delegating the matching procedure.
Note that the group to be matched is the same as there is
an arriving agent from that group to be matched.



The decision making process proceeds as follows. At
each time n (discrete time slot), there is an arrival of
possible assignment (deterministically) to be matched.
We model the availabilities of groups (of agents) as a
stochastic process with a constant expected inter-arrival
time ¢. that 7 := E[t.] stays as a constant. Denote by p;
the probability that there is an agent from group ¢ is ready
to be matched to an assignment upon an arrival time, and

Dieuli = 1D

Both agents and DM are collecting rewards from the
matching process. Per each match, reward is generated
according to a random variable R; € Rt (non-negative
real numbers) for group 7, with its cumulative distribu-
tion function (CDF) Fg, (z) defined on z € RT. Jointly
the DM observes reward R:

R~ prFRi(z) = Fgp(z),z € RT.

Before each matching, the DM observes the current re-
ward realization R(w) (w denotes a realization of R).
Then he makes a decision between two options : sfop
and continue. By stop the DM will proceed to match
the agent with the assignment, which takes one unit
time slot to finish. As a consequence, a total reward
J- R(w),1 > 6 > 0 will be collected. ¢ can be thought
of the fraction DM charges for his service. By continue,
the DM will forgo the current matching opportunity, and
the above process repeats by itself. Clearly by continue a
potentially higher reward may be collected in the future
if the current matching happens to be a bad realization.
The trade-off is also clear as due to availabilities, coor-
dinating for a new matching takes away non-negligible
amount of resources ( time in our case). For simplicity
of analysis, we assume the matching process repeats over
time, and the system clock resets to 0 after each success-
ful match.
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Figure 1: Illustration of the system. The delegated deci-
sion maker makes decision on matching arriving assign-
ments to groups of agents.

!This modeling choice is mainly for simplicity of presenta-
tion; our results can extend to the case when there is not always
an available group of agents.

Example: Consider the ride-sharing example. When
ride-sharing company (e.g. UBER) schedules drivers, %,
models the coordination cost, such as time for schedul-
ing drivers (sending notification, making calls etc). The
reward R captures the per ride earning. Each individual
driver has either an expected delay in receiving a job (de-
lay constraints), or an expected hourly payment (reward
constraints).

2.1 UN-CONSTRAINED SEQUENTIAL
MATCHING: REVISIT

We now rigorously describe our sequential matching
problem with the DM’s objective being maximizing the
average return of reward over successful matches. For
each such successful match, denote by 7 a matching pol-
icy ™ := {n1,m2," - 1y(x) }, Where 7 denotes the k-th
action taken by the k-th to-be-matched agent for this par-
ticular matching cycle. Notice we have

M, = continue, Vk =1,--- ~(mw) — 1,

and 7,(r) = stop. Note decision is only made upon the
availability of groups of agents, and ~(7) denotes the
stopping time at which the process terminates with de-
cision being stop and match. Denote by R(k) as the re-
alized reward of the matching at k-th decision epoch, and
we assume within each matching period, the sequence of
rewards { R(k)} forms an IID process.

Let R™(k) denotes the matching reward obtained during
the k-th decision epoch under policy 7. Clearly for k <
~(m) we will have R™ (k) = 0, that is no reward will be
collected when no matching happened, and R™ ( (7)) =
R(~y(m)). Let I denotes the total amount of time that
has been spent up to decision epoch k£ under policy ,
which includes the inter-arrival times (denoting as £,,):

T7 = ZZL:l tn, Yk < (7).
' Yomeitn+1, k=(m).

The goal is to maximize the average return of reward (av-
erage reward per time unit) over the duration of this de-
cision process. This is rigorously stated as follows:

y(m)
_ E[R™(y(m))]
TR BT M

with II denoting the admissible set of policies. The sec-
ond equality is due to renewal theory [Ferguson) [2006].
Maximizing this rate-of-return leads to the problem of
choosing a stopping policy 7 to maximize the ratio de-
fined in Eqn.(T).



Classical results [Fergusonl |2006] have established that
the optimal strategy for above problem is simply a
threshold based stopping policy. Further the threshold
can be easily obtained by solving a fixed point equation:

Theorem 2.1 ( Chapter 6 of [Ferguson, [2000], [Zheng
et al., 2009]). The optimal action for each matching of
deciding between stop and continue is given by a stop-
ping rule: the state space of the reward can be divided
into a stopping set A® and continuation set A€, such that
whenever the reward is observed to be in either set above,
the corresponding action (stop v.s. continue) is taken.
Furthermore these two sets are given by the following
threshold property (¥ steps n):

A* ={R(n): R(n) > x*}, 2)

and this threshold x* at time n is given by the unique
solution to the following fixed point equation:

E[R(n) —z]t =z 7. 3)
The optimal stopping time N* is then given as

N*=min{n >1: R(n) > z*}. “4)

For detailed proof please refer to [Chapter 6, [Ferguson,
2006[],[Zheng et al., | 2009]] and we will not restate. Also
the following iterative algorithm has been developed to
compute the exact threshold:

f;(ok) deR(y)
7+ [1 = Fr(z(k))]’

z(k+1):= )]

with an arbitrarily chosen initial belief x(0). Con-
vergence is defined as observing negligible successive
change and is guaranteed [Zheng et al., [2009].

3 FAIR SEQUENTIAL MATCHING

The above results imply that implementing the optimal
decision rule via setting an universal threshold may bias
towards groups that tend to have higher realized reward
statistically. We define our fairness constrained sequen-
tial matching problems in this section.

3.1 DELAY FAIR MATCHING

Now we consider a fair matching setting. We start with
a matching problem with delay constraints. For each
group ¢, we assume the expected delay before match-
ing one of its agents should be no larger than a certain
constant ; > 0, and denote v = [vq, v, ..., V)] as the
vector form of the constraints. Such fairness constraints
may come from regulations, or may come as functions

of different groups’ protected attributes. Note setting the
constraints blindly equal is not regarded as fair. For in-
stance, even for people with the same educational back-
ground , which might be a strong indicator of success,
fairness constraints may not be necessarily the same for
all individuals, as it is likely less so for individuals from
a protected subgroup that has fewer financial resources.
In fact, such fairness constraints should also take into
consideration of the differences in individuals’ ability,
as well as their commitments for using it. This is sim-
ilar to the notion of Rawlsian fairness [Braybrooke et al.|
1963]]. We are not getting into details on how such fair-
ness constraints are generated — instead we assume they
are certain outputs of a fairness policy or regulation, and
we would like to implement them in our decision making
setting. So we will take them as given.

We shorthand the stopping time ~y(7) as N. Denote T
as the total time spent for one successful match with stop-
ping time N. We first have the following lemma formu-
lating the fairness constrained matching problem.

Lemma 3.1. The optimal matching strategy under in-
dividual group delay constraints is given by a stopping
rule with threshold strategy x* = [zF, ..., x| such that
for each to-be-matched agent from group 1, the decision
will be matching if observed reward is no less than x;.
X" can be characterized by solving the following con-
strained optimization problem:
(PD)  maxy  E[R(N)] =5, pjziE[Tn]
st %E[TN} < Viel.
x;, >0,Vield.

The proof first borrows results from optimal stopping
theory, via which we can transfer the rate-of-return ob-
jective to the one in (PD). The constraints are given by
formulating a system of equations characterizing agents’
delay in matching.

Proof. Following results from [Ferguson, 2006, Tan
et al.,[2010] we know the rate-of-return problem is equiv-
alent with the optimal stopping problem, which can be
equivalently formulated as solving the following opti-
mization problem to obtain a set of thresholds x =

{xh sey xM}:
sup E[R(N) = > pja:Tw] .
x ieQ
Showing this is equivalent with showing sup E[R(N) —
> icq PixiT] returns the optimal rate of reward, which

can be done similarly as in [Ferguson, 2006]. We then
have the constrained matching problem stated as follows:

max E[R(N)] — priﬁiE[TN]
€U



subject to
z; > 0, D(vaivxfi) < Vi7Vi € Z/{,

where D(N,x;,x_;) denotes the expected delay for
group ¢ before a (successful)-match, with the threshold
policy x and stopping time N. Now we quantify D(-).
Notice the following equation holds:

D(Nv xi,X—i)
=7+ p;[(1 = Fr(xi)) + Fr(2:) D(N, zi, x—;)]

+ (=) Y P ([0 [Fr(z;) D(N, x5, x ;)
i
+ (1 = Fr(x;))(1 + D(N,zi,x-))],

where p*(j|i) is the probability agent from group j # i
to be matched (upon the arrival of agents), conditional on
the fact group ¢ is not the one to be matched.

We explain the implication of RHS of above equation.
The first term corresponds to the expected inter-arrival
time. The second term corresponds to the case group
i is to be matched: with probability 1 — Fr(x;) agent
from group ¢ will be matched immediately while the DM
will forgo the match with probability F'g(x;). The terms
associated with the third part correspond to the events
when agent from group j other than 7 is to be matched.
From above, re-arrange we have

YjeuP;(1 = Frlz;) +7
p;(1 — Fr(z;)) '
Similarly we have (details of explanation omitted)
E[Ty] =7+ Y pj(1 - Fr(x;))
jeu

+ ) piFr(z;)E[IN] |
jeu

D(N7 xivxfi) =

which further this gives us
> jeup;(1 — Frlz;)) +7
1- ngu P;FR(%’)
We thus establish the following
1- Zjeu p?FR(xj)
p; (1 = Fr(zi))

Moreover since the thresholds policy can only be non-
negative, we have established that the constrained opti-
mal stopping problem is equivalent with (PD).

E[Tn] =

D(N,z;,x_;) = E[Tn]. (6)

O

In the constraints, when 1 — Fr(z;) = 0 we will follow
the convention that 1/0 = +oc. The only case that gives

us a 0/0 in the constraints is when Fr(z;) = 1, V. This
is an extreme case stating that the DM will only match a
pair when the realization of R reaches its maximum (zero
measure event for continuous random variable). We rule
out this case.

3.2 REWARD FAIR MATCHING

Now we consider another fair setting with each group
requiring to be guaranteed for an average rate of returned
reward (e.g., minimum hourly wage). Denote individual
group’s average (per time unit) expected reward demand
as pt = [p1, ..., uar]. Re-denote u; := %% since each
agent only collects 1 — ¢ fraction of the realized reward
of each matching, this is a normalization step to simplify

the notation. We similarly prove the following:

Lemma 3.2. The optimal matching strategy under indi-
vidual fairness reward constraints is given by a stopping
rule policy with thresholds x* = [z7, ..., x};], which can
be characterized by solving the following optimization
problem:

(BR) maxy EIR(N)] 3 ey piaElT]
1— . SF :Ej .
st iAo - ElTN] < E[R(N)], Vi.

Proof. By renewal theory, with stopping time N, agent
from group ¢’s average expected reward is given by

EIR(N
D (N y Ly X—i)

Then similar with last section, we have the following
problem formulation for obtaining x*:

maxx  E[R(N)] = >, piwE[TN]
E[R(N)T]

D(N,x;,x_;) > Wi, Vi
x; >0,VielU.

S.t.

Remember (; is normalized by 1 — J in above. Since we
have (Eqn.(6))

1- Zjeu ijR(I])
pi[l — Fr(z;)]

D(]\/v7 J}i,X_i) = E[TN]

re-arrange the terms we have the constraints being equiv-
alent with

1- ngu p?FR(xj)
pi[l — Fr(z;)]

which finishes the proof. O

i E[Tn] - E[R(N)] <0,



4 FAIR OPTIMAL MATCHING

We studied the structure of optimal solutions for de-
lay fair matching, and have shown that solving the fair
matching problems is equivalent with solving a set of
constrained optimization problems. In this section we
present the details towards characterizing the optimal so-
lutions to (PD). We obtain very similar results as for the
reward fair matching. The proof is also similar to the
case with delay constraints — we leave out the details for
a concise presentation.

4.1 WHEN IS FAIRNESS UN-ACHIEVABLE?

We start by presenting a characterization result. Denote

vy = (Z i_)fl.

v,
ieA "

vy is the geometric mean of all groups’ constraints on
average matching delay. We first argue v, controls the
feasibility region of the fairness problem.

Lemma 4.1. (PD) is feasible only if vyy > 1+ 7 .

Proof. To see this, denote by D; (N, x) the expected de-
lay for group ¢ before each of its matching with matching
policy (stopping time) /N and thresholds x, we will have
( Eqn.(6) of Proof for Lemma[3.1))

1- Zjeu pfFR(xj)
pi(1 — Fr(z:))

From above we easily obtain

D;(N,x) =

E[Ty] .

1
E[Tn]

1
Z .DZ(]V7 X)
ieU

For a feasible solution we have D;(N,x) < v;, and thus
1 1
_ > —.
Z DZ(N, X) - Z V;
€U =2

Then we arrive at a necessary condition:

1
Xi

The second inequality is due to the fact each matching
attempt takes up at least 1 (the matching time)+ 7 (inter-
arrival time) time units. O

>E[In]>21+7.

This result can also be seen as an impossibility results
stating the region where the fairness profiles are unable
to satisfy. Therefore for this part of study we focus on
the case when vy > 1+ 7.

4.2 RESULTS

We first introduce a parameter in helping characterize the
optimal stopping policy:

Lemma 4.2. There exists a unique solution forv > 141
for the following equation:

T T

Fpl(1-

Ihe

)= JE[R - Fz'(1-

v—1 v—1
Denote the unique solution as v*. Simple algebras show
that the above fact holds. Intuitively speaking (as well
as we will show later) v* is a threshold determining the
strictness of the set of constraintsE] When v, < v*, we
will see the constraints are more strict; while when v, >
v*, the set of delay constraints will be easier to satisfy.

When constraints are tight (1, < v*): When con-
straints are tight we have the following theorem:

Theorem 4.3. When vy < v*, there exists a computable
constant x;, (computable in O(1) time) such that the op-
timal solution X* = [z7, ..., ;] for (PD) is given by the
solution to the following system of equations:

1-Fr(z; PiV; . L
1—F}}:Ei_j;: p%yi ,V’L 7& VEX2W) S u
iy Piti=xy -

when the following condition holds

E:ﬁﬂfﬁ—

1 S
min;ey pP; Vi> <at
jeu

S u -
piv;

This strikingly clean structure of optimal solution has
a very intuitive structural property: roughly speaking
the probability of matching (with the assigned thresh-
old) should be inversely proportional to different groups’
availability probability, as well as their delay constraints
p;v;. This result also looks similar to proportional fair-
ness [Kelly et al., [1998]], may it be in a resource alloca-
tion or a cooperative game setting.

When constraints are loose (v, > v*): Consider
now vy, > v*, in which case the constraints are regarded
as being loose (the larger the 1/, is, the larger the v;s can
be. ) The idea for solving this case is simple: we can
then afford to make a set of strictly tighter constraints
out from the one we have, and reuse the results from the
case when v < v*.

2For details please refer to the proof.



First denote 7 = [iy, ..., Upy] as the solution for the fol-
lowing optimization problem.

(TIGHT) miny Y, piFg'(1— 7“““;?;} iy
S.t. OSIZSVZ,VZEU
1 _ 1
djeus; = v

where € > 0 is an arbitrarily small quantity. This is a
“tightening” step that we will refer to. The optimiza-
tion step is to relax the conditions for the solutions to be
non-negative as much as we can. Notice technically we
should have 7; > 0. However ©; = 0 clearly violates the
second equality constraint with an appropriately selected
€, which leads to the current equivalent formulation.

Theorem 4.4. When vy > v*, there exists a computable
constant x}, (computable in O(1) time) such that one op-
timal solution x* = [x7, ..., 2% ] for (PD) is given by the
solution to the following system of equations:

1=Fr(z;)  pion’

{ 1Pl _ P i £ G i e U
Dieu Piti= 1, .

when the following condition holds

min; H2
ZP?Fz%l(l - e ) <a.

—
Vs
jeu PjY;

The following remarks end this subsection: (1) Our re-
sults extend the ones reported in [Kennedyl, |1982]]. In
particular if there is only one global delay constraint v,
the individual group delay becomes v/p; (the delay be-
fore matching of each particular group). Then 1, will
degenerate to v and the results degenerate to the ones re-
ported in [Kennedy, [1982]). Further Theorem[4.3|and [4.4]
become the two cases that have been discussed in above
work. (2) The second observation is when the constraints
are loose (1y > v*), we could simply make the con-
straint set to be more strict and solve it according to the
case when constraints are tight. However this “tighten-
ing” step requires solving another optimization problem.
We will show later with specific reward distributions the
optimization problem can be solved efficiently. (3) The
closed-form of the system of equations characterizing the
optimal solution in Theorem [4.3] and [f.4] is not clear so
far in terms of computation complexity, e.g., linearity,
convexity etc. We will discuss this matter in Section 5

4.3 MAIN IDEAS OF THE PROOF

We provide the main ideas of the proof for Theorem [4.3]
and Eﬂ The proof builds on the Lagrange relaxation

3Full proof can be found in the supplementary materials.

and primal dual analysis of (PD), as well as the optimiza-
tion formulation of an optimal stopping problem.

(Theorem [4.3) We will first introduce the Lagrange re-
laxation for (PD):

V* = E[R(N)]-

oy L2 piFR(z))
Z(pl-:cz + A Pl = Fred)] E[TN].  (7)

7

Following standard stopping rule results [Ferguson,
2006] the optimal stopping time for maximizing V* is:
N* =min{n >1:
1- Zj ijR(xj)
p;[1 = Fr(zi)]

R(n) > (pja; + A )+ V"

The intuition is that the stopping time is characterized
by when the excessive expected return of reward is no
less than V'*, which characterizes the expected excessive
return from the stopping policy. Further the optimal set
of thresholds satisfy the following fixed-point equation:

oy L= piFR(z)) 1
E[R(N)—Zi:(pﬁz"‘/\l pi[l — Fr(z;)] v
1>, p;Fr(z))

pi[l — Fr(w;)]

= Z(pfxi + A )T (8)

The LHS of above equation characterizes the expected
additional reward for not stopping. While the RHS is the
additional reward collected when stop.

Meanwhile with above characterization, the expected
stopping time can be written as (geometric distribution):

E[Ty] =1+
-

_ . ©
s 1—2 F (17) *
1= FrOZ(piei + N tne) + V)

From KKT condition on the set of threshold policies.

©pi[l = Fr(zi)]

E[Tx] — Niv; = 0,Vi € U.
(10)
Plug Eqn.(9) into Eqn.(T0), we will be able to show
pi[l = Fr(zi)]vi = C(x,A)

where C'(x, \) is a constant that is independent of group
index . From above we know that for A7, A7 > 0,1 #+j
we have

1 — Fr(w) _ Pivj

1— Fr(z;)  pivi




This give us the first set of equations in Theorem[4.3] For
our primal and dual problems we have

Lx* ) =V"+XxTv=0. (11)
A*Ty can further be calculated as follows:
V=2 FR(xs) - pill = Fr(z)]
pi[l = Fr(zi)] 1=, p5Fr(z;)
Plug in V* (Eqn.(7)) and above into Eqn. (TI) we have

I, st E pix; =y .
e’

* ok
)\ZU,L—AZ

(Theorem[d.d) Consider v, > v*, i.e., not all constraints

are active. Notice since > 1 — > v*, we could find a
i€U v

set of ¥ such that

*

OSIZSV“\V?]EL{, and <v

1
Yieu s
In particular choose a small ¢ > 0 and set Zi:u T =
v* — €. Under this case the average optimal reward rate
2% (O(1) computable) associated with v* — ¢ is achieved.
Since we have a set of more strict constraints we know
the original constraints [v1, ..., vps] will all be met if the
new one gets satisfied. The rest of the proof is similar to
the one for Theorem 23] and will be omitted.

Meanwhile we would like to choose the set of 7 that will
make the constraint

ZF§1<1

e’

*
<1’y

. o~
min;ey p;v; )
Div;
less strict, i.e., we choose the set of 7 minimizing
-1 min; cy p;V;
Zz‘eu Frp | 1- IRz

optimization problem for charactering [71, ...

) and we have the following

aVM}:

. -1 min;ey p;vi
ming Yo PiFg (1 - 7;;(;? >
S.t. OSI;ZSVHVZEZ/{

Yieus = v
JEU b; T vr—e’

44 REWARD FAIR MATCHING

We show the results we proved for the delay fairness case
can be largely extended to the reward fairness case. First
denote the maximum reward rate that can be achieved
by the group of agents for un-constrained rate-of-return
problem as z* (solution to Eqn.(3)). Obviously when
Zieu w; > x*, there is no solution to the constrained
system. This is because we know the objective value of
a constrained setting can never exceed the one for its un-
constrained counterpart. We then focus on the case with
> icu i < x*. We have the following theorems leading
to the characterization of the fair optimal solution.

When constraints are tight (>, _,, 1, = 2¥):
Theorem 4.5. When ), i = x*, the optimal solu-
tion X* = [x7,...,x%] for (PR) is given by the solution
to the following system of equations:

1-Fr(z;) " pin;’

1-Fn(e) _ Py i 5 e Y.
DieuPiTi= "

when the following condition holds

S pirgt (1o L e
! maX;ey fii/P§

JjeEU

When constraints are loose (>, /s < *):  When
Yo i < x*, we similarly have a less restricted sce-
nario. The constraints will be firstly tightened. Denote
f& = [fi1, ..., fipr] as the solution for the following opti-
mization problem:

: s —1 s /P;
ming Zjeu p;FR (1 - maxiéu [i/p;)
S.t. /NJ,,L ZMZ,VZ ceuU.
Ejeu pj=a*.
And then we have the following set of results:

Theorem 4.6. When ). j1; < x*, one optimal solution

x* = [z7, ..., x},] for (PR) is given by the solution to the
following system of equations:

1-Fr(x) Pl . 4 . ¢ .

TTrae)= s AR EU.
Yicubiri= " .

when the following condition holds

(/D5
N e ) R
max;ey fli/p;

jeu

It is worth to note though (PD) and (PR) appear to be
different, their solution structures are similar. The two
problems can then share the same solver with setting dif-
ferent parameters (replacing ({v;}, z;) with ({p;}, 2*)
to reach (PR) from (PD).

S COMPUTATION AND EXAMPLES

Our main results have reduced the original constrained
stopping rule problem to solving a set of closed-form
equations. Despite the clean structure, solving the prob-
lem will further rely on the reward distributions, where
the computation issue merits a further clarification. We
could show these equations reduce to system of linear



equations for simple distributions such as exponential
distribution and uniform distribution etc. Take exponen-
tial distribution for example (for some p): Fr(z) =
1 — exp(—pz),Yz > 0, with F;'(y) = —log(l —
y)/p, 0 < y < 1. We take the delay constrained case

for demonstration, and we start with the case vy < v*.
1—Fp(zi) _ PjYj
1-Fr(z;) — pjvi

From

z; —xj = —1/p-logpiv;/piv; . (12)

Meanwhile we know » .., pix; = zj;. Combining this
and Eqn.(T2) returns us a linear system of equations for
all x;; we can then solve for x*. This can be done in
polynomial time.

For the case vy > v*, we need to solve the optimiza-
tion problem (TIGHT). Make the following substitute:

_ minjeu p;i;
Yi = T
straint Z eus = V,}_
% And the constraints 7; < v;,Vi € U become

Iy’m;“ < v;,Vi € U, which is further equivalent with
Ymin < P;y;v;. Hence (TIGHT) becomes equivalent
with the one below:

» Ymin = Mminjey pjv;, and the con-

- then becomes Zjeu Py =

min - — >, p; - logyi/p
s.t. 0 S Ymin < pfyﬂ/uw cU

— Ymin
Zjel/{pj Yi = v =e

Since —log z is a convex function, the above program-
ming problem is convex and can be solved efficiently.

A sub-optimal but easy-to-compute solution It is
worth to mention for the case with v, > v* we can also
easily obtain a feasible solution that is sub-optimal by
setting: 7 = £
case solving the system of equations reduces to the case
with vy < v*, which is much easier to solve.

In summary, solving for the optimal solution only re-
quires solving (1) a linear system of equation and (2) a
convex optimization problem. Existing solver or meth-
ods (e.g., interior point etc) can then be applied to obtain
a solution in polynomial time.

5.1 SIMULATION

We numerically simulate a simple two groups scenario.
For parameter settings please refer to caption of Figure[2]
The figure pictures the heat map for expected reward un-
der different delay constraints: dark blue indicates infea-
sible area, and dark red implies reaching the maximum.
Along with relaxing constraints, our solution gradually
converges to the un-constrained optimal ones. It is clear
our solution help characterize the trade-off between fair-
ness and social optimality.
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Figure 2: Fairness satisfiability & reward (heat map) for
different combination of delay constraints vq, va. p] =
= 1/2,p = 0.05 (parameter for exp. distribution).
Top: 7 = 1, max reward = 0.6006 (un-constrained). Bot-
tom: 7 = 0.5, max reward = 0.5299 (un-constrained).

6 CONCLUSION

In this paper, we discussed optimal multi-agent match-
ing strategies with individual fairness constraints. We
first show the equivalence between this problem and the
locally constrained optimal stopping problem, and then
a set of constrained programings. We considered two
different types of constraints: one with matching dead-
lines (delay) and the other with reward requirements.
We characterized the fair optimal solutions for above
two problems respectively. Via practical example, we
demonstrated that our solutions can be computed effi-
ciently. The reported results can also be leveraged to ob-
tain scheduling policies with other fairness concerns, by
setting the local constraints appropriately.

Our work aims to kick off fairness studies in the sequen-
tial decision making framework. One interesting and im-
mediate followup would be to study a fair policy when
the decisions made in the past will in fact affect different
groups’ status (e.g., reward statistics, availability etc) in
the future.
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