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Abstract

We provide, to the best of our knowledge, the
first study about reoptimization complexity of
game-theoretical solutions. In a reoptimization
problem, we are given an instance, its optimal
solution, and a local modification, and we are
asked to find the exact or an approximate so-
lution to the modified instance. Reoptimiza-
tion is crucial whenever an instance needs to
be solved repeatedly and, at each repetition, its
parameters may slightly change. In this paper,
we focus on Nash equilibrium, being the cen-
tral game-theoretical solution. We study the
reoptimization of Nash equilibria satisfying
some properties (i.e., maximizing/minimizing
the social welfare, the utility of a player or the
support size) for some different local modifica-
tions of the game (i.e., modification of a pay-
off or addition/removal of an action), show-
ing that such problems are NP-hard. Further-
more, we assess the approximation complex-
ity of the aforementioned problems, showing
that it matches the complexity of the origi-
nal (non-reoptimization) problems. Finally, we
show that, when finding a Nash equilibrium
is thought as an optimization problem, reopti-
mization is useful for finding approximate so-
lutions. Specifically, it allows one to find ε-
Nash equilibria with smaller ε than that of the
solutions returned by the best known approxi-
mation algorithms.

1 INTRODUCTION

The design of computational tools for tackling strate-
gic scenarios has been a central problem in Artifi-
cial Intelligence for several years. The main goal

is the development of software/physical agents capa-
ble of behaving optimally when facing strategic op-
ponents. This is achieved by modelling a scenario
by means of models from non-cooperative game the-
ory [Fudenberg and Tirole, 1991] and by employing al-
gorithmic tools [Nisan et al., 2007] to search for optimal
solutions (a.k.a. equilibria), each one specifying the best
strategies the agents can play. A crucial issue is the study
of the complexity of equilibrium-finding problems and
the design of efficient algorithms scaling up in real-world
applications, e.g., as in Security Games [Tambe, 2011].

A key solution concept is the Nash Equilibrium (NE),
which prescribes strategies so that no player has any in-
centive in deviating unilaterally. Given the importance of
NE concept, there has been a growing interest on settling
its computational properties. More precisely, the compu-
tational complexity of finding an NE has been recently
shown to be PPAD-complete [Daskalakis et al., 2009]
even for 2-player games [Chen and Deng, 2006]. Recall
that PPAD ⊆ FNP but PPAD * FNP-complete unless
NP = co-NP [Megiddo and Papadimitriou, 1991], and
it is unlikely that this last equivalence holds. Further-
more, it is generally believed that PPAD 6= FP and thus
it is unlikely that there is an algorithm finding an NE that
requires polynomial time in the size of the game. When,
instead, one searches for an optimal NE, e.g., maximiz-
ing social welfare or the payoff of a single player, the
problem becomes NP-hard [Gilboa and Zemel, 1989,
Conitzer and Sandholm, 2008].

Frequently, the same equilibrium-finding problem must
be repeated whenever the value of some parame-
ter changes. Practical examples of such a scenario
are, e.g., the problems of bargaining among eco-
nomic agents [Gatti et al., 2008] and games for secu-
rity [Tambe, 2011]. In these settings, the structure of
the game may gradually change during time as, for ex-
ample, costs in bargaining games could change or, in a
security game, the available resources or the values of
the targets may vary at different times of the interac-



tion. Another interesting related scenario is when learn-
ing tools are paired with optimization algorithms (e.g.,
in an online fashion, see [Nguyen et al., 2013]) to con-
tinuously refine the estimations of some parameters, in
the attempt to minimize the regret due to the initial lack
of information. In all these scenarios, a central ques-
tion is whether the knowledge of an optimal solution
(e.g., the Nash equilibrium with a certain property) can
make the equilibrium-finding problem of the modified
game easier. This problem is commonly known as re-
optimization problem (see [Ausiello et al., 2012, Chap-
ter 4]). Most NP-hard problems maintain the same
complexity in reoptimization but, for many of them, re-
optimization allows one to find better approximations,
changing in some cases the approximation computational
complexity class or just improving the approximation ra-
tio in others. This happens, for instance, in scheduling
problems [Schäffter, 1997] and in the Travelling Sales-
man Problem [Archetti et al., 2003]. To the best of our
knowledge, the problem of reoptimizing equilibria in
games is unexplored in the literature so far. In this paper,
we provide the first study on the reoptimization complex-
ity of game-theoretical solutions and, more precisely, of
Nash equilibria.

Original contributions. The original contributions pro-
vided in this paper are as follows. For the sake of pre-
sentation, at first, we focus on the exact reoptimization
problem and, subsequently, on the approximation prob-
lem, whose treatment is more involved. Specifically, we
show that the NE reoptimization problem is NP-hard
when searching for NEs maximizing/minimizing the so-
cial welfare, a player’s utility or the support size, and the
local modification is either the modification of the value
of some payoffs of the game or the addition/removal of
actions. Then, we prove that the aforementioned prob-
lems are also hard to approximate, unless P = NP. This
happens even when the modification is as small as pos-
sible (i.e., a payoff modification arbitrarily close to zero
or the addition/removal of one action). We show that, for
every modification, maximizing/minimizing social wel-
fare or a player’s utility is not in Poly-APX, while maxi-
mizing/minimizing the support size is not in Log-APX1.
In doing that, we also provide a complete picture of the
approximation problems for the non-reoptimization case,
while, so far, the results provided by the literature are
only partial and do not analyze the specific approxima-
tion complexity classes. Finally, we study how an NE of
the original game maps to those of the locally modified
one, proving that, in case of payoff modifications with
maximum magnitude δ, an NE of the original game is a
δ-NE of the modified game. This shows that reoptimiza-
tion may be useful when searching for approximate NEs.

1See [Ausiello et al., 2012] for the definitions of the classes.

2 PRELIMINARIES

A normal-form game [Shoham and Leyton-Brown, 2008]
is a tuple (N,A,U) in which N = {1, . . . , n} is the
set of players, A = A1 × . . . × An, where Ai is
the set of actions available to player i ∈ N , and
U = {U1, . . . , Un}, where Ui : A → R is the utility
function of player i ∈ N . A (mixed) strategy si for
player i ∈ N is a probability distribution over Ai, where
we define with si(a) the probability that a ∈ Ai is
played by player i. We denote with Si the set of all
mixed strategies of player i, i.e., the (|Ai| − 1)-simplex.
A strategy si is said to be pure if there exists an a ∈ Ai
s.t. si(a) = 1. Letting S = S1 × . . . × Sn, a strategy
profile s ∈ S is a tuple specifying a strategy for each
player. Given strategy si, its support is the set of actions
{a|si(a) > 0}. Moreover, the support of a strategy
profile is made by the union of the supports of players’
strategies. With a slight abuse of notation, let Ui(s) be
the expected utility of player i when s is played, i.e.,
Ui(s) =

∑
a∈A Ui(a)

∏
j∈N sj(aj) (where aj is the

action of player j in a).

A Nash equilibrium (NE) [Nash, 1951] is a strategy
profile s s.t., for each i ∈ N , for each s′i ∈ Si,
Ui(si, s−i) ≥ Ui(s

′
i, s−i), where s−i denotes the

profile of players’ strategies except for si. It is
well known that the problem of finding an NE is
PPAD-complete [Daskalakis et al., 2009], even for
2-player games [Chen and Deng, 2006], and there-
fore it is unlikely to be solvable in polynomial time.
Moreover, the problem is FIXP-complete for three
or more players [Etessami and Yannakakis, 2010].
Additionally, [Gilboa and Zemel, 1989] and
[Conitzer and Sandholm, 2008] study the complex-
ity of finding a NE optimizing certain properties—for
instance the social welfare (i.e., the sum of players’
utilities), the utility of a given player, and the size of the
support at the equilibrium—showing that the problem is
also inapproximable. The results that are relevant to our
work are summarized in Table 1.

Table 1: Complexity Results.

Exact solution Approximate solution

Max/Min social welfare NP-hard 2 /∈ Poly-APX3

Max/Min player utility NP-hard 2 /∈ Poly-APX3

Max support NP-hard /∈ Log-APX3

Min support NP-hard /∈ Log-APX4

2Results on Min problems are novel, see Remark 2.
3Inapproximability results on Max problems refine those

presented in [Conitzer and Sandholm, 2008], where the authors
just show that the problems are not in the APX class. The re-
fined results can be derived similarly to Theorems 5-7.

4The inapproximability of Min support is a novel result



The literature also explores the idea of approximate
NEs. Notice that the computation of an NE can be
formulated as an optimization problem as follows.
The NE constraints are relaxed so that players can
play also non-optimal actions with strictly positive
probability, provided they guarantee a regret, w.r.t. a
best response, of at most ε (in additive sense), and the
objective function to be minimized is ε. Multiple notions
of approximate NE have been proposed. Most of the
literature [Lipton et al., 2003, Daskalakis et al., 2007,
Tsaknakis and Spirakis, 2007] studies the ε-approximate
Nash equilibrium (ε-NE), which is a strategy profile
s.t. no player can gain more than ε by unilaterally
deviating from it. Formally, s ∈ S is an ε-NE if, for
each i ∈ N , for each s′i ∈ Si, Ui(s) ≥ Ui(s

′
i, s−i) − ε.

Some works [Kontogiannis and Spirakis, 2007,
Daskalakis et al., 2006] study a stronger notion of
approximate equilibrium strategies, called ε-well-
supported Nash equilibrium (ε-ws-NE). In an ε-ws-NE,
a player plays with strictly positive probability only
actions guaranteeing her an expected utility within ε
from the best reachable value, given the strategies of
the others. Formally, s ∈ S is an ε-ws-NE if, for each
i ∈ N , for each a ∈ Ai, if si(a) > 0 then, for every
a′i ∈ Ai, it holds Ui(a, s−i) ≥ Ui(a

′
i, s−i) − ε. We

remark that, while an ε-ws-NE is always an ε-NE, the
contrary is not generally true. However, given an ε-NE,
one can construct in polynomial time an ε′-ws-NE,
where ε′ polynomially scales with ε [Chen et al., 2006].

In the derivation of our original complexity
results, we employ two game gadgets intro-
duced in [Conitzer and Sandholm, 2008] and
[Gilboa and Zemel, 1989], respectively. They are
built starting from instances of SAT and SET-
COVER, which are well-known NP-complete prob-
lems [Garey and Johnson, 1979]. For clarity, we provide
their brief definition.

Definition 1 (SAT) SAT is defined as follows:

• INSTANCE: A set V of m variables and a collec-
tion C of c clauses.

• QUESTION: Is there a satisfying truth assignment
for C?

Definition 2 (SET-COVER) SET-COVER is defined as
follows:

• INSTANCE: A collection R of subsets of a set T ,
with |R| = r and |T | = t, and a positive integer k.

which has never been studied before. We prove this result in
Lemma 10.

• QUESTION: Does R contain a cover for T of size
k i.e., a subset R′ ⊆ R with |R′| = k and s.t.⋃
ρ∈R′ ρ = T?

Now, we highlight the structure of the two aforemen-
tioned gadgets.

Definition 3 (SAT-gadget) Given a SAT instance with
m variables and c clauses, and a real number ε >
0, a SAT-gadget is a normal-form game ΓSATε =
({1, 2}, ASAT, U SAT), with |ASAT

1 | = |ASAT
2 | = 3m+c+1,

s.t.:

• there exists an NE where each player’s expected
utility is m− 1 iff the SAT instance is satisfiable;

• the only other NE provides both players an expected
utility of ε.

Remark 1 In a SAT-gadget, the support size of players’
strategies at an equilibrium is, respectively,m for the NE
providing m− 1 utility, 1 for the other one.

Definition 4 (SET-COVER-gadget) Given a SET-
COVER instance with t items and r subsets of
items, a SET-COVER-gadget is a normal-form game
ΓSC = ({1, 2}, ASC, USC), with |ASC

1 | = t + 1 and
|ASC

2 | = r + 1, s.t. there exists an NE with support for
each player no more than k iff the SET-COVER instance
has a cover of size k.

3 REOPTIMIZATION RESULTS

We focus on the following question: does the knowledge
of an optimal NE, w.r.t. a certain property, help one in
finding a new optimal solution for a slightly modified
game? This question is crucial every time the game is
repeated in time and, at every repetition, a slight modifi-
cation to the game may be introduced. Knowing the so-
lution of the original (pre-modified) game could, in prin-
ciple, avoid one to solve the game from scratch making
the optimization problem easier. Roughly speaking, the
answer to the above question is no, unless P = NP. To
prove such a result, let us formally define the reoptimiza-
tion framework in the context of NE optimization.

Definition 5 Given a property π and a local modifica-
tion µ, the reoptimization problem RE-NE(π, µ) is de-
fined as follows:

• INPUT: (Γ,Γ′, ŝ), where Γ is a normal-form game,
Γ′ is the modified game obtained by applying µ to
Γ, and ŝ is the optimal NE w.r.t. π over Γ.

• OUTPUT: the optimal NE ŝ′ w.r.t. π over Γ′.



In this work we focus on the following properties π char-
acterizing a NE:

• maximum (minimum) social-welfare (MAX-SW,
MIN-SW);

• maximum (minimum) utility for a given player
(MAX-REV, MIN-REV);

• maximum (minimum) support size at the equilib-
rium (MAX-SUPP, MIN-SUPP).

We denote with Π the set of all properties. Furthermore,
we focus on the following local modifications µ to the
original game:5

• payoff modification of a single outcome (PAYOFF);

• addition and removal of an action (ADD, REM).

For the sake of presentation, let NE(π) be the problem
of finding an optimal NE w.r.t. property π in a given
normal-form game.

In Sections 4 and 5, we study the intractability of the
problems of finding, respectively, an exact and an ap-
proximate solution to RE-NE(π, µ), for each pair π, µ.
Table 2 summarizes our results.

Table 2: Reoptimization Intractability Results.

PAYOFF ADD REM

MAX/MIN-SW NP-hard NP-hard NP-hard

/∈ Poly-APX /∈ Poly-APX /∈ Poly-APX

MAX/MIN-REV NP-hard NP-hard NP-hard

/∈ Poly-APX /∈ Poly-APX /∈ Poly-APX

MAX/MIN-SUPP NP-hard NP-hard NP-hard

/∈ Log-APX /∈ Log-APX /∈ Log-APX

4 NP-HARDNESS RESULTS

In this section, we give the formal proofs of the hardness
of RE-NE(π, µ) for each π and µ. Initially, we focus on
the case in which µ ∈ {PAYOFF,ADD}.

Theorem 1 RE-NE(π, µ) is NP-hard for each π ∈ Π
and for each µ ∈ {PAYOFF,ADD}, even for 2-player
games.

Proof 1 We start by considering the case µ = PAYOFF.
We show that the existence of a polynomial-time algo-
rithm A solving RE-NE(π, µ) would allow one to solve

5We do not take into consideration the introduction/removal
of a player since it cannot be considered a local modification of
the game.

NE(π) in polynomial time, therefore leading to a con-
tradiction. Given a generic normal-form game Γk =
({1, 2}, Ak, Uk), where k denotes the number of out-
comes of the game, we define Γ0 = ({1, 2}, A0, U0) s.t.
A0
i = Aki , for each i ∈ {1, 2}, and U0

1 (a) = U0
2 (a) = 0

for each a ∈ A0. Clearly, every strategy profile in Γ0

is an NE. Therefore, we select an appropriate ŝ0, ac-
cording to π, as the initial optimal solution. Specifi-
cally, if π = MAX-SUPP, we set ŝ0 to any strategy
profile with full support for both players, otherwise, if
π = Π \ {MAX-SUPP}, we set ŝ0 to any pure strat-
egy profile. Then, we can define a sequence of PAY-
OFF transformations that allows one to obtain Γk start-
ing from game Γ0. Specifically, a transformation that
leads from Γt to Γt+1, with t = 0, . . . , k − 1, is s.t.,
for a given a′ ∈ At for which U t1(a′) 6= Uk1 (a′) or
U t2(a′) 6= Uk2 (a′), it sets U t+1

i (a′) = Uki (a′) for each
i ∈ {1, 2} and keeps the other payoffs unchanged. No-
tice that the sequence of games Γ0,Γ1, . . . ,Γk requires
a number of transformations to reach Γk that is poly-
nomial in the size of the game6. Therefore, starting from
(Γ0,Γ1, ŝ0), we can applyA to any (Γt,Γt+1, ŝi) to pro-
duce, in polynomial time, ŝt+1, up to ŝk. Thus, ŝk being
the optimal NE according to π in Γk, we reach the con-
tradiction.

Let us now consider µ = ADD. A reasoning similar
to the one used above applies. In particular, given a
generic normal-form game Γk = ({1, 2}, Ak, Uk), let
Γ0 be ({1, 2}, {x} × {y}, U0) s.t. x ∈ Ak1 , y ∈ Ak2
and U0

i (x, y) = Uki (x, y), for each i ∈ {1, 2}. The se-
quence of ADD transformations that allows one to obtain
Γk from Γ0 requires a number of steps polynomial in the
size of Γk, where each step of the sequence adds an ac-
tion to one of the players. Therefore, by assuming the
existence of A, we reach the same contradiction. �

In the following, we focus on the case µ = REM, which
is more involved since the reasoning underlying the proof
of Theorem 1 cannot be applied.

Theorem 2 RE-NE(π, µ) is NP-hard for π ∈
{MAX-SW,MIN-SW,MAX-REV,MIN-REV} and µ =
REM, even for 2-player games.

Proof 2 In order to prove the result, we show the hard-
ness of the decision version of our problem, which asks
for an NE of the modified game having value of π greater
than or equal to a given constant. Let us first focus on
the case π ∈ {MAX-SW,MAX-REV}, and consider a
SAT-gadget ΓSATε with 0 < ε < m − 1, where m is
the number of variables of the SAT instance embedded in
ΓSATε , as in Definition 3 (in the following proofs we omit

6k is upper bounded by the number of outcomes of the
game, which is its dimension.



the definition of m, giving it the same meaning). Let us
define a game Γ = ({1, 2}, A, U) s.t. A1 = ASAT1 ∪{x},
A2 = ASAT2 ∪ {y} and U is equal to:

• Ui(a) = USATi (a), ∀i ∈ {1, 2},∀a ∈ ASAT ;

• U1(x, a2) = U2(x, a2) = −M , ∀a2 ∈ ASAT2 ;

• U1(a1, y) = U2(a1, y) = −M , ∀a1 ∈ ASAT1 ;

• U1(x, y) = U2(x, y) = m;

where M is a sufficiently large constant (i.e., any M ≥
4), making−M the lowest payoff in the game. Therefore,
Γ preserves the NEs of ΓSATε , i.e., given an equilibrium s
for ΓSATε , playing the actions of Γ corresponding to the
support of s according to the same probability distribu-
tion leads to an equilibrium. Γ has also the new equilib-
rium (x, y), which is the optimal equilibrium w.r.t π. If
we apply REM to Γ removing action x (or, equivalently,
y), we obtain a new game Γ′ s.t. its NEs are only those
of ΓSATε . Therefore, Γ′ has an equilibrium with value for
the property π greater than or equal to m− 1 iff the SAT
instance embedded in ΓSATε is satisfiable.

Similarly, when π = {MIN-SW,MIN-REV}, we follow
the same reasoning, by setting ε > m−1 and U1(x, y) =
U2(x, y) = m− 2. �

The proof of the previous theorem suggests the following
result about optimal NEs without reoptimization.

Remark 2 Using a reduction similar to that due
to [Conitzer and Sandholm, 2008], setting ε > m − 1,
it follows that NE(π), for π ∈ {MIN-SW,MIN-REV},
is NP-hard, even for 2-player games.

Theorem 3 RE-NE(MAX-SUPP,REM) is NP-hard,
even for 2-player games.

Proof 3 Let us focus on the maximization of the overall
support size at the equilibrium. The proof for the problem
of maximizing the support of a single player follows the
same reasoning.

Consider the decision version of RE-
NE(MAX-SUPP,REM), i.e., the problem of deciding
whether Γ′ has an NE with support size greater
than or equal to a given constant. Let ΓSATε be a
SAT-gadget, with ε > 0. Γ is a normal-form game
({1, 2}, A, U) s.t. A1 = ASAT1 ∪ {xi|1 ≤ i ≤ m},
A2 = ASAT2 ∪ {yj |1 ≤ j ≤ m} and U is defined as:

• Ui(a) = Ui(a)SAT , ∀i ∈ {1, 2}, ∀a ∈ ASAT ;

• U1(xi, a2) = U2(xi, a2) = −M , ∀xi ∈
A1\ASAT1 , ∀a2 ∈ ASAT2 ;

• U1(a1, yj) = U2(a1, yj) = −M , ∀yi ∈ A2\ASAT2 ,
∀a1 ∈ ASAT1 ;

• U1(xi, yj) = U2(xi, yj) = 1, ∀xi ∈ A1\ASAT1 ,
∀yj ∈ A2\ASAT2 ;

where −M is s.t. it is the lowest payoff in the game
(i.e., any M ≥ 4). Γ preserves the NEs of ΓSATε and
also has a new set of equilibria given by all the possi-
ble probability distributions over actions in A1\ASAT1

and A2\ASAT2 . Therefore, if the two players random-
ize uniformly over all xi and yj , ŝ has support of size
2m. Suppose to apply a REM transformation to a row in
A1\ASAT1 (or, equivalently, to a column in A2\ASAT2 ).
The resulting Γ′ has an NE with support greater than or
equal to 2m iff the SAT instance contained in ΓSATε is
satisfiable. �

Theorem 4 RE-NE(MIN-SUPP,REM) is NP-hard,
even for 2-player games.

Proof 4 We consider the problem of minimizing the
overall support size at the equilibrium. The proof for
the problem of minimizing the support size of a single
player follows the same reasoning. We show that the re-
optimization problem is hard by proving the hardness of
its decisional counterpart.

Given a SET-COVER-gadget ΓSC , we build Γ =
({1, 2}, A, U) s.t. A1 = ASC1 ∪ {x}, A2 = ASC2 ∪ {y}
and U is defined as:

• Ui(a) = USCi (a), ∀i ∈ {1, 2}, ∀a ∈ ASC;

• Ui(x, a2) = −M , ∀i ∈ {1, 2}, ∀a2 ∈ ASC2 ;

• Ui(a1, y) = −M , ∀i ∈ {1, 2}, ∀a1 ∈ ASC1 ;

• Ui(x, y) = 1, ∀i ∈ {1, 2};

where M > 1 (so that −M is the lowest payoff in the
game) and therefore, the set of NEs of Γ is equal to that of
ΓSC with the only addition of (x, y), which is the equilib-
rium minimizing support size. Γ′ is obtained by applying
REM to row x (or column y). Γ′ has an NE with support
size less than or equal to k iff the SET-COVER instance
in ΓSC has a cover of size k. �

5 INAPPROXIMABILITY RESULTS

We show the inapproximability of RE-NE(π, µ), for ev-
ery pair of π and µ. We initially focus on searching for
an NE maximizing either the social welfare or the utility
of a player.



Theorem 5 RE-NE(π,µ) is not in Poly-APX for
each π ∈ {MAX-SW,MAX-REV} and µ ∈
{PAYOFF,REM,ADD}, unless P = NP.

Proof 5 We provide the proof for π = MAX-SW. The
proof for π = MAX-REV follows the same reasoning.
Let ΓSATε be a SAT-gadget, with 0 < ε < m−1

f(m) , where
f(m) = 2m (the polynomiality of the reduction is pre-
served as f(m) can be codified with m bits). Assume,
by contradiction, that there exists a polynomial-time al-
gorithm A providing an approximate solution to RE-
NE(MAX-SW,µ), with approximation factor r = 1

f(m) .
Let Γ = ({1, 2}, A, U), where A1 = ASAT1 ∪ {x},
A2 = ASAT2 ∪ {y}, and U is so defined:

• Ui(a) = USATi (a), ∀i ∈ {1, 2}, ∀a ∈ ASAT ;

• Ui(x, a2) = −M , ∀i ∈ {1, 2}, ∀a2 ∈ ASAT2 ;

• U1(a1, y) = K, U2(a1, y) = −M , ∀a1 ∈ ASAT1 ;

• U1(x, y) = K and U2(x, y) = 0;

where M ≥ 4 and K > 2(m − 1). Let ŝ be the NE
with maximum social welfare, i.e., the pure strategy pro-
file where ŝ1(x) = 1 and ŝ2(y) = 1. We define Γ′ on the
basis of the applied µ as follows:

• µ = PAYOFF. We build Γ′ by applying a
PAYOFF transformation to outcome (x, y), setting
U1(x, y) = K − δ, where δ > 0 is an arbitrarily
small positive constant.

• µ = REM. We build Γ′ by applying a REM trans-
formation either to row x or column y.

• µ = ADD. We obtain Γ′ by adding to Γ a new
column y′ s.t.:

– U1(a1, y
′) = K, ∀a1 ∈ ASAT1 ;

– U2(a1, y
′) = −M , ∀a1 ∈ ASAT1 ;

– U1(x, y′) = 0 and U2(x, y′) = 1.

Notice that, in each Γ′, the additional equilibrium of Γ
w.r.t ΓSATε disappears, and no other equilibria are intro-
duced. Therefore, in each of these cases, by employing
A, we would be able to obtain an approximate solution
of value at least 2m−2

f(m) > 2ε iff the SAT instance of ΓSATε

is satisfiable. Otherwise, if it is unsatisfiable, the value
of the approximate solution is less than or equal to 2ε.
Thus, the existence of A would allow us to solve SAT in
polynomial time. �

The case in which we search for an NE minimizing either
the social welfare or the utility of a player is similar to the
case studied above.

Theorem 6 RE-NE(π,µ) is not in Poly-APX for
each π ∈ {MIN-SW,MIN-REV} and µ ∈
{ADD,REM,PAYOFF}, unless P = NP.

Proof 6 The proof follows from that of Theorem 5. The
same reasoning applies if we choose ε > m − 1 and
K < 2(m− 1). �

The next three results focus on the case in which we
search for an NE with maximum support.

Theorem 7 RE-NE(MAX-SUPP, ADD) is not in Log-
APX , unless P = NP.

Proof 7 Consider a SAT-gadget ΓSATε (for any ε > 0).
Let us define a game Γ = ({1, 2}, A, U) s.t. A1 =
ASAT1 ∪ {xi|1 ≤ i ≤ m}, A2 = ASAT2 ∪ {yj |1 ≤
j ≤ m}, and U is defined as:

• Ui(a) = USATi (a), ∀i ∈ {1, 2},∀a ∈ ASAT ;

• U1(xi, a2) = U2(xi, a2) = −M , ∀xi ∈
A1\ASAT1 , ∀a2 ∈ ASAT2 ;

• U1(a1, yj) = U2(a1, yj) = −M , ∀yj ∈
A2\ASAT2 , ∀a1 ∈ ASAT1 ;

• U1(xi, yj) = U2(xi, yj) = 1, ∀xi ∈ A1\ASAT1 ,
∀yj ∈ A2\ASAT2 with i 6= j;

• U1(xi, yj) = U2(xi, yj) = −1, ∀xi ∈ A1\ASAT1 ,
∀yj ∈ A2\ASAT2 with i = j;

where M ≥ 4. Clearly, all the NEs of ΓSATε are pre-
served in Γ, and every additional NE of Γ does not have
actions of ASAT1 and ASAT2 in its support. Moreover, Γ
has always an equilibrium ŝ = (ŝ1, ŝ2) s.t. ŝ1(xi) = 1

m
for every 1 ≤ i ≤ m and ŝ2(yj) = 1

m for every
1 ≤ j ≤ m, having support size 2m. Also note that
Γ has no NE with support size greater than 2m. Suppose
to apply an ADD transformation to Γ, leading to a new
game, say Γ′, by introducing an action x for player 1
s.t. U1(x, a2) = U2(x, a2) = −M for any a2 ∈ ASAT2 ,
U1(x, yj) = 2 andU2(x, yj) = 1 for any 1 ≤ j ≤ m−1,
and U1(x, ym) = U2(x, ym) = 2. Notice that ŝ is not an
NE of Γ′ since player 1 has an incentive to deviate from
ŝ1, playing x, which provides her a utility of 2, instead
of m−2m . In addition, simple arguments allow us to prove
that the set of NEs of Γ′ is equal to the one of ΓSATε with
the addition of (x, ym) (whose support size is 2).

By contradiction, assume there exists a polynomial-time
approximation algorithm A for RE-NE(MAX-SUPP,
ADD), which guarantees an approximation factor r =

1
g(m) , where g(·) is a logarithmic function of the input.
Clearly, if the SAT instance embedded in ΓSATε is satis-
fiable, then A, when applied to (Γ,Γ′, ŝ), produces an



equilibrium ŝ′ with support size at least 2m
g(m) > 2. Oth-

erwise, the support size of ŝ′ is less than or equal to 2.
Thus, the existence of such an algorithm would allow us
to solve SAT in polynomial time. �

Theorem 8 RE-NE(MAX-SUPP, PAYOFF) is not in
Log-APX , unless P = NP.

Proof 8 Let Γ be defined as in the proof of Theorem 7,
where, in this case, U is changed so that:

• U1(x1, yj) = 0 and U2(x1, yj) = (m− 1)δ, ∀yj ∈
A2\ASAT2 , 1 ≤ j ≤ m− 1;

• U1(x1, ym) = 1 and U2(x1, ym) = 0;

• U1(x2, y1) = U2(x2, y1) = 0;

• U1(xi, y1) = 1 and U2(xi, y1) = 0, ∀xi ∈
A1\ASAT1 , 3 ≤ i ≤ m;

• U1(xi, yj) = U2(xi, yj) = 0, ∀xi ∈
A1\ASAT1 , 2 ≤ i ≤ m, ∀yj ∈ A2\ASAT2 , 2 ≤ j ≤
m− 1;

• U1(x2, ym) = 1 and U2(x2, ym) = δ;

• U1(xi, ym) = 0 and U2(xi, ym) = δ, ∀xi ∈
A1\ASAT1 , 3 ≤ i ≤ m;

where δ is an arbitrarily small positive constant. As be-
fore, Γ has all the NEs of ΓSATε , with the addition of
ŝ, which has support size 2m (the maximum possible).
Now, let us apply a PAYOFF transformation to Γ, lead-
ing to Γ′, by changing the utilities in (x1, ym), so that
U1(x1, ym) = 1− δ and U2(x1, ym) = 3δ. Simple con-
siderations allow us to conclude that the NEs of Γ′ are
those of ΓSATε , with the addition of (x2, ym). The result
easily follows, by contradiction, as in Theorem 7. �

Theorem 9 RE-NE(MAX-SUPP, REM) is not in Log-
APX , unless P = NP.

Proof 9 Let Γ be defined as in the proof of Theo-
rem 7 with the only difference being the definition of U ,
which is defined in the same way but for the subgame
{x1, . . . , xm} × {y1, . . . , ym}. Specifically:

• U1(x1, y1) = U1(x1, y2) = −1;

• U1(x1, yj) = 1, ∀yj ∈ A2 \ASAT2 , 3 ≤ j ≤ m;

• U1(xi, ym) = −1, ∀xi ∈ A1 \ ASAT1 , 2 ≤ i ≤
m− 1;

• U1(xi, yj) = 1i 6=j − 1i=j , ∀xi ∈ A1 \ ASAT1 , 2 ≤
i ≤ m, ∀yj ∈ A2 \ASAT2 , 1 ≤ j ≤ m− 1;

• U1(xm, ym) = −3.

• U2(xi, yj) = −1, ∀xi ∈ A1\ASAT1 , 1 ≤ i ≤ m−1,
∀yj ∈ A2 \ASAT2 , 1 ≤ j ≤ m− 1;

• U2(xm, yj) = 1, ∀yj ∈ A2\ASAT2 , 1 ≤ j ≤ m−1;

• U2(xi, ym) = 1, ∀xi ∈ A1 \ASAT1 , 1 ≤ i ≤ m−1;

• U2(xm, ym) = −2m+ 3.

Notice that Γ has always an optimal NE, say ŝ, with sup-
port size 2m, s.t. ŝ1(xi) = 1

m for every 1 ≤ i ≤ m and
ŝ2(yj) = 1

m for every 1 ≤ j ≤ m. We build Γ′ by ap-
plying a REM transformation to row xm. Γ′ has only an
additional equilibrium w.r.t. ΓSATε (this can be shown by
deleting strictly dominated rows/columns). The result-
ing additional equilibrium is (x1, ym) and, being in pure
strategies, has support of size 2. Therefore, we can prove
the theorem by contradiction, with the same reasoning as
in the proof of Theorem 7. �

Now, we focus on the problem of searching for an NE
with minimum support. Before stating our main results,
let us introduce the following lemma, whose proof is use-
ful in the sequel.

Lemma 10 NE(MIN-SUPP) is not in Log-APX , unless
P = NP.

Proof 10 NE(MIN-SUPP) was shown to be NP-hard
in [Gilboa and Zemel, 1989]. We adapt the reduc-
tion to prove also the hardness of finding an ap-
proximate solution to the problem. The reduction
is based on a SET-COVER gadget ΓSC (for details
see [Gilboa and Zemel, 1989]), where, for our purpose,
k is set equal to r (see Definition 4). By construction,
each of its NEs corresponds to a valid cover for the SET-
COVER instance embedded in the gadget. Moreover, the
support size of an NE is precisely the size of the cover
plus one, since player 1’s actions correspond to the sub-
sets composing the cover, whereas player 2 always plays
her last action. Denoting withOPTNE the optimal solu-
tion value of NE(MIN-SUPP), we have that OPTSC =
OPTNE − 1, where OPTSC is the size of an optimal
cover. By contradiction, assume A is a polynomial-time
approximation algorithm for NE(MIN-SUPP), provid-
ing an approximation ratio r = 1

g(t) , where g(·) is a
logarithmic function of the input. Let APXNE be the
value (in terms of support size) of the approximate solu-
tion which is returned by A on ΓSC . Clearly, such solu-
tion is an NE, and it corresponds to a valid cover for the
SET-COVER instance, with sizeAPXSC = APXNE−1
and, thus, we have OPTSC

APXSC
= OPTNE−1

APXNE−1 . Given that
OPTNE

APXNE
≥ r, we have OPTNE ≥ rAPXNE . Thus, it



follows OPTNE−1
APXNE−1 ≥

rAPXNE−1
APXNE−1 ≥ 2r and therefore

we have OPTSC

APXSC
≥ 2

g(t) . The last inequality leads to
a contradiction, since SET-COVER cannot be approxi-
mated within a factor c

g(t) , where c is a constant greater
than one [Dinur and Steurer, 2014]. �

Now, we can state the main results.

Theorem 11 RE-NE(MIN-SUPP, µ) is not in Log-
APX for each µ ∈ {PAYOFF,ADD,REM}, unless P
= NP.

Proof 11 Let us first prove the case µ=PAYOFF. Given
a SET-COVER gadget ΓSC , where we set k = r (see
Definition 4), let us define Γ = ({1, 2}, A, U) s.t. A1 =
ASC1 ∪ {x}, A2 = ASC2 ∪ {y}, and U is so defined:

• Ui(a) = USCi (a), ∀i ∈ {1, 2},∀a ∈ ASC;

• U1(x, a2) = U2(x, a2) = −M , ∀a2 ∈ ASC2 ;

• U1(a1, y) = 1, U2(a1, y) = −M , ∀a1 ∈ ASAT1 ;

• U1(x, y) = U2(x, y) = 2;

whereM > 1 and therefore,−M is lower than any other
payoff in the game. Observe that the NEs of Γ are the
same as those of ΓSC , with the only addition of (x, y)
(having support size 2). Suppose Γ′ is built by applying
a PAYOFF transformation to Γ, by changing U so that
U1(x, y) = 1− δ. Clearly, the set of NEs of Γ′ coincides
with the one of ΓSC . Suppose, by contradiction, there ex-
ists a polynomial-time approximation algorithm solving
RE-NE(MIN-SUPP, PAYOFF), providing an approxi-
mation factor r = 1

g(t) , where g(·) is a logarithmic func-
tion of the input. Following a reasoning similar to that
adopted in the proof of Lemma 10, we can show that the
existence of such an algorithm would allow us to obtain
an 1

g(t) -approximate solution for a generic SET-COVER
instance, which is a contradiction.

The proofs for the other cases follow a similar structure:
Γ is defined as before, while Γ′ is obtained by applying
a specific transformation to Γ, which makes the set of
NEs of Γ′ equal to the one of ΓSC . In particular, for
µ = ADD, the result is achieved by applying an ADD
transformation which introduces a new action x′ intoA1,
s.t. U1(x′, a2) = U2(x′, a2) = −M , for any a2 ∈ ASC2 ,
U1(x′, y) = 3, and U2(x′, y) = −M − 1. Instead, for
µ = REM, the considered REM operation simply re-
moves action x from A1. �

Given the negative results presented in this section, a
natural question is whether the knowledge of an opti-
mal NE in the original game may help in approximating

a12 a22

a11 1, 1 1, 0

a21 0, 0 1,M

Γ

a12 a22

a11 1, 1 1, 0

a21 0, 0 1− δ,M

Γ′

Figure 1: Arbitrarily small PAYOFF modifications may
disrupt social welfare.

the optimum in the locally modified one when we up-
per bound the magnitude of the modification. Given that
ADD and REM are already elementary operations, since
they consider the addition (respectively, the removal) of a
single action, we concentrate on PAYOFF modifications
where payoffs are either increased or decreased at most
of δ > 0, which we call δ-PAYOFF.

The following example shows how the value of an op-
timal NE of the modified game (in terms of MAX-SW)
can be arbitrarily worse than that for the original game,
even for δ arbitrarily close to zero.

Example 1 Consider the game Γ in Figure 1, where M
is an arbitrarily large value. In this game, the optimal
NE for MAX-SW is the bottom right outcome, which has
social welfare M + 1. Suppose to apply a δ-PAYOFF
transformation to such outcome, where δ > 0 is a con-
stant arbitrarily close to zero, reducing player 1’s utility
from 1 to 1 − δ (see Γ′ in Figure 1). Clearly, (a21, a

2
2)

is no more an NE, and the new optimal NE becomes the
top left outcome, which has social welfare 2. Therefore,
the ratio between the two optimal values is M+1

2 , which
goes to infinity as M grows.

We can construct similar examples showing that the same
holds for maximization/minimization of the revenue and
of the support size. Indeed, simple modifications of the
previous proofs (for µ = PAYOFF) show that the same
inapproximability results hold even for µ = δ-PAYOFF
with δ > 0 arbitrarily close to zero, as stated in the fol-
lowing remarks.

Remark 3 For any δ > 0, RE-NE(π, δ-PAYOFF)
is not in Poly-APX for each π ∈
{MAX-SW,MIN-SW,MAX-REV,MIN-REV}, un-
less P = NP.

Remark 4 For any δ > 0, RE-NE(π, δ-PAYOFF) is not
in Log-APX for each π ∈ {MAX-SUPP,MIN-SUPP},
unless P = NP.

The above remarks directly follow, respectively, from the



construction adopted in the proof of Theorems 5-6 and
Theorems 8-11.

6 APPROXIMATE NASH EQUILIBRIA
We observed that even arbitrarily small modifications in
the payoffs may generate considerable changes in the
equilibria of the game. In particular, it may happen that,
given a generic NE s for Γ, a PAYOFF transformation
results in s no longer being an equilibrium point (dis-
regarding any concept of optimality). Notice that this
may happen even for arbitrarily small payoff modifica-
tion, as shown in Example 1. Furthermore, the com-
putational complexity of the reoptimization version of
the problem of finding an NE (without requiring op-
timality w.r.t. a certain property) is the same as that
of its non-reoptimization counterpart (i.e., finding an ε-
approximate equilibrium minimizing ε). This can be
shown with arguments similar to those of Section 4.

A question with useful practical implications, is whether
knowing that s is a Nash equilibrium for Γ becomes a
completely useless piece of information after a small δ-
PAYOFF perturbation is applied to the original game.
The answer is that, if we consider approximate Nash
equilibria, strategy profile s preserves interesting prop-
erties and should be kept into account when consider-
ing whether computing a new solution for Γ′ is worth
it or not. Specifically, if we focus on normalized [0, 1]-
games7 (a common assumption in the literature on ap-
proximate NEs), we can state the following theorem,
which is a refinement of [Chen et al., 2006].8

Theorem 12 Consider a generic normal-form game
Γ = ({1, 2}, A, U) and a new game Γ′ =
({1, 2}, A, U ′), obtained by applying a PAYOFF mod-
ification of magnitude (δ1, δ2), δi ∈ [−1, 1] for each
i ∈ {1, 2}, to an outcome (a1, a2) ∈ A of Γ so that
U ′i(a1, a2) = Ui(a1, a2) + δi and U ′i(a1, a2) ∈ [0, 1],
for each i ∈ {1, 2}. Let s∗ be an NE of Γ. Then, s∗

is a δ-well supported Nash equilibrium for Γ′, where
δ = max{δ1, δ2}.

Proof 12 First, we show that each action played with
positive probability by the first player in s∗1 leads to a
payoff at most δ1 smaller than the payoff at her best re-
sponse against s∗2. We denote with S : A → [−1, 1] a
function s.t. S(a1, a2) = δ1 and S(a) = 0 for every
a ∈ A \ {(a1, a2)}. Moreover, let â1 ∈ A1 be an action

7Normalized [0, 1]-games are games in which all the pay-
offs of the players are in [0, 1]. We recall that any game is
equivalent to a normalized [0, 1]-game by means of an affine
transformation.

8They obtain an ε-approximate NE with ε ≤ 4δ, when per-
turbing each payoff with an arbitrary probability distribution
over [−δ, δ].

s.t. strategy s1(â1) = 1 is a best response to s∗2 in Γ′.
For each a1 ∈ A1 s.t. s∗1(a1) > 0 it holds:

∑
a2∈A2

U
′
1(â1, a2)s

∗
2(a2)−

∑
a2∈A2

U
′
1(a1, a2)s

∗
2(a2) =

=
∑

a2∈A2

(U1(â1, a2) + S(â1, a2))s
∗
2(a2)+

−
∑

a2∈A2

(U1(a1, a2) + S(a1, a2))s
∗
2(a2) =

=
∑

a2∈A2

U1(â1, a2)s
∗
2(a2)−

∑
a2∈A2

U1(a1, a2)s
∗
2(a2)+

+
∑

a2∈A2

S(â1, a2)s
∗
2(a2)−

∑
a2∈A2

S(a1, a2)s
∗
2(a2) ≤

≤
∑

a2∈A2

U1(â1, a2)s
∗
2(a2)+

−
∑

a1∈A1

∑
a2∈A2

U1(a1, a2)s
∗
1(a1)s

∗
2(a2) + |δ1| ≤ |δ1|

The same reasoning holds for the second player, with a
final upper bound of |δ2|. If we set δ = max{δ1, δ2}, the
previous inequalities show that s∗ is a δ-well supported
NE for Γ′. �

Notice that, for δ < 0.3393, s∗ has better guaran-
tees over Γ′ than what we could obtain by applying the
best polynomial-time approximation algorithm currently
known [Tsaknakis and Spirakis, 2007]. Therefore, on a
mildly modified game, strategy profile s∗ is still a valu-
able prescription for both players. This is an example in
which reoptimization is useful, allowing one to outper-
form the best approximation algorithm known so far.

7 CONCLUSIONS
In this paper, we provide, to the best of our knowl-
edge, the first study of the reoptimization complexity
of game-theoretical solutions. We focus on Nash equi-
libria satisfying some specific properties (i.e., maximiz-
ing/minimizing the social welfare, the utility of a player,
the support size), showing that the reoptimization com-
plexity is NP-hard for some local modifications (i.e.,
modification of a payoff or addition/removal of an ac-
tion). Furthermore, we show that reoptimization does
not help even when one is searching for approximate so-
lutions and this holds also when the modification is as
small as possible. Instead, when one searches for approx-
imate ε-Nash equilibria, reoptimization can help, allow-
ing one to find approximations better than those returned
by the best known algorithms.

In the future, we are interested in empirically evaluating
reoptimization techniques. Although we show in this pa-
per that reoptimization does not help in the worst case
when searching for optimal Nash equilibria, preliminary
results suggest that in the average case it is very use-
ful. Furthermore, we are interested in investigating re-
optimization complexity in Security Games models.



References

[Archetti et al., 2003] Archetti, C., Bertazzi, L., and
Speranza, M. G. (2003). Reoptimizing the traveling
salesman problem. NETWORKS, 42(3):154–159.

[Ausiello et al., 2012] Ausiello, G., Crescenzi, P., Gam-
bosi, G., Kann, V., Marchetti-Spaccamela, A., and
Protasi, M. (2012). Complexity and approximation:
Combinatorial optimization problems and their ap-
proximability properties. Springer Science & Busi-
ness Media.

[Chen and Deng, 2006] Chen, X. and Deng, X. (2006).
Settling the complexity of two-player Nash equilib-
rium. In ANN IEEE SYMP FOUND, pages 261–272.

[Chen et al., 2006] Chen, X., Deng, X., and Teng, S.-H.
(2006). Computing Nash equilibria: Approximation
and smoothed complexity. In FOCS, pages 603–612.

[Conitzer and Sandholm, 2008] Conitzer, V. and Sand-
holm, T. (2008). New complexity results about Nash
equilibria. GAME ECON BEHAV, 63(2):621–641.

[Daskalakis et al., 2009] Daskalakis, C., Goldberg,
P. W., and Papadimitriou, C. H. (2009). The com-
plexity of computing a Nash equilibrium. SIAM J
COMPUT, 39(1):195–259.

[Daskalakis et al., 2006] Daskalakis, C., Mehta, A., and
Papadimitriou, C. (2006). A note on approximate
Nash equilibria. In WINE, pages 297–306. Springer.

[Daskalakis et al., 2007] Daskalakis, C., Mehta, A., and
Papadimitriou, C. (2007). Progress in approximate
Nash equilibria. In EC, pages 355–358.

[Dinur and Steurer, 2014] Dinur, I. and Steurer, D.
(2014). Analytical approach to parallel repetition. In
STOC, pages 624–633.

[Etessami and Yannakakis, 2010] Etessami, K. and
Yannakakis, M. (2010). On the complexity of Nash
equilibria and other fixed points. SIAM J COMPUT,
39(6):2531–2597.

[Fudenberg and Tirole, 1991] Fudenberg, D. and Tirole,
J. (1991). Game theory. MIT Press.

[Garey and Johnson, 1979] Garey, M. and Johnson, D.
(1979). Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco,
CA.

[Gatti et al., 2008] Gatti, N., Di Giunta, F., and Marino,
S. (2008). Alternating-offers bargaining with one-
sided uncertain deadlines: an efficient algorithm. AR-
TIF INTELL, 172(8-9):1119–1157.

[Gilboa and Zemel, 1989] Gilboa, I. and Zemel, E.
(1989). Nash and correlated equilibria: Some
complexity considerations. GAME ECON BEHAV,
1(1):80–93.

[Kontogiannis and Spirakis, 2007] Kontogiannis, S. C.
and Spirakis, P. G. (2007). Efficient algorithms for
constant well supported approximate equilibria in bi-
matrix games. In ICALP, pages 595–606.

[Lipton et al., 2003] Lipton, R. J., Markakis, E., and
Mehta, A. (2003). Playing large games using simple
strategies. In EC, pages 36–41.

[Megiddo and Papadimitriou, 1991] Megiddo, N. and
Papadimitriou, C. H. (1991). On total functions,
existence theorems and computational complexity.
THEOR COMPUT SCI, 81(2):317–324.

[Nash, 1951] Nash, J. (1951). Non-cooperative games.
ANN MATH, pages 286–295.

[Nguyen et al., 2013] Nguyen, T. H., Yang, R., Azaria,
A., Kraus, S., and Tambe, M. (2013). Analyzing
the effectiveness of adversary modeling in security
games. In AAAI.

[Nisan et al., 2007] Nisan, N., Roughgarden, T., Tardos,
E., and Vazirani, V. V. (2007). Algorithmic game the-
ory, volume 1. Cambridge University Press Cam-
bridge.
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