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Abstract

We consider the important crowdsourcing prob-
lem of estimating worker confusion matrices, or
sensitivities and specificities for binary classifi-
cation tasks. In addition to providing diagnostic
insights into worker performance, such estimates
enable robust online task routing for classifica-
tion tasks exhibiting imbalance and asymmetric
costs. However, labeled data is often expensive
and hence estimates must be made without much
of it. This poses a challenge to existing meth-
ods. In this paper, we propose a novel model that
captures the correlations between entries in con-
fusion matrices. We applied this model in two
practical scenarios: (1) an imbalanced classifica-
tion task in which workers are known to belong
to groups and (2) a multitask scenario in which
labels for the same workers are available in more
than one labeling task. We derive an efficient
variational inference approach that scales to large
datasets. Experiments on two real world citizen
science datasets (biomedical citation screening
and galaxy morphological classification) demon-
strate consistent improvement over competitive
baselines. We have made our source code avail-
able.

1 INTRODUCTION

Crowdsourcing is a popular approach to collecting annota-
tions at comparatively low cost. However, crowdsourcing
annotation work necessitates taking care to evaluate worker
annotation quality, as this will likely be lower than that of
a domain expert. The standard means of addressing this is
to collect multiple labels for each item and then use an ag-
gregation method to derive a consensus label. The simplest
such method is majority voting, which selects the major-
ity label for each item. More complex methods exist; see
(Sheshadri and Lease, 2013) for a review.

Many crowd consensus methods posit some model of
worker qualities, e.g., a worker’s overall accuracy. How-
ever, the problem of modeling workers has typically been
considered a secondary issue, with the primary concern be-
ing label aggregation. Here we argue that the problems
of aggregating labels and of modeling workers are distinct
(though related). A good method for aggregating labels
will not necessarily provide reliable estimates of worker
qualities. For example, majority voting assumes that work-
ers are equally good; this assumption is almost certainly
usually wrong, but nonetheless can yield high quality ag-
gregated labels when workers do not make correlated er-
rors. Consider, e.g., a scenario in which each item has been
labeled by three workers, two of whom are always correct
and one of whom is always wrong. Here, majority vot-
ing would provide perfect label aggregation, but plainly the
workers are not equally good.

The simplest way to model worker skill is with the uni-
variate metric of overall accuracy. This may be appropriate
when classes are balanced and/or when false negatives and
false positives are equally expensive. However, in most
real-world tasks, we would prefer a more granular model
of accuracies. The standard way is to model the worker
confusion matrices, whose entries are the probabilities of a
worker providing each possible label j, conditioned on the
true label i: Aij = Pr(Response = j|TrueLabel = i).
This class conditional approach posits two parameters for
each worker, affording the flexibility to accurately capture
worker performance. The caveat is that more data is needed
to estimate more parameters.

For example, when the majority of items belong to the neg-
ative class, very few positive items will be available to re-
liably estimate the probabilities of responses given that the
true label is positive, i.e. A01 and A11. Explicitly model-
ing correlations between sensitivity and specificity is one
potential means of improving estimates in this case: Work-
ers who perform well on negative items are likely to also
correctly classify positive ones. Another scenario in which
this general approach may help is when data from multi-
ple labeling tasks is available, for example if many workers



who performed a text classification task come back to work
on a new image classification task. In such scenarios, we
might expect a worker who does well on one task to also be
likely to do so on the other.

Specific contributions of this work are as follows.

• Taking inspiration from previous work in modeling
medical diagnostic test (Dahabreh et al., 2012; Re-
itsma et al., 2005), we propose modeling the corre-
lation between worker sensitivity and specificity. A
natural property of our model is the assumption that
workers belong to one or more groups, each with its
own mean sensitivity and specificity. Intuitively, these
means allow us ‘back-off’ to group-level quality esti-
mates when data from a specific worker is sparse.

• We extend our idea to model the correlations of the
workers across multiple labeling tasks. This allows us
to transfer knowledge of worker quality from a task
with more data to one with less.

• We introduce an efficient variational method to scale
parameter estimation to handle large data.

We are unaware of any previous work on using correlations
to improve estimates of worker confusion matrices nor a
generative model of worker performance in multiple tasks.

2 RELATED WORK

Dawid and Skene (1979) presented the classic crowd con-
sensus model in which each item corresponds to a hid-
den ‘true label’ variable and each worker is modeled by
a confusion matrix of class-conditional label probabilities.
Raykar et al. (2010); Kim and Ghahramani (2012); Liu and
Wang (2012) all presented Bayesian extensions, placing
priors on the worker confusion matrices. Unique amongst
this prior work, Liu and Wang (2012) emphasized getting
good estimates of the confusion matrices to gain diagnostic
insights into worker performance, while the other two fo-
cus on recovering the true labels and building a good clas-
sifier. Recently, Lakkaraju et al. (2015) further extended
the model by clustering workers and items based on their
features. Although very effective compared to Liu and
Wang (2012)’s Hybrid Confusion approach, demographic
features such as worker age, education or job are not al-
ways available, e.g., on Amazon Mechanical Turk.

The idea of detecting latent groups and communities of
similar workers has been studied previously (Simpson
et al., 2013), and incorporated into a generative model to
improve the aggregated labels (Venanzi et al., 2014). By
contrast, here we consider exploiting known worker groups,
when such information is available, to improve our confu-
sion matrix estimates.

While modeling individual confusion matrices is the most
common approach to annotator modeling, recent work has

also explored other strategies. Kajino et al. (2012)’s mul-
titask formulation views each worker as a learning task.
Bi et al. (2014) models each worker as a classifier, whose
parameters deviate from the true parameters. While these
methods have been shown to outperform the ‘Two Coin’
model (Raykar et al., 2010) for the task of label aggrega-
tion, they unfortunately do not provide direct estimates of
worker sensitivity and specificity.

In terms of inference and learning algorithms, Dawid
and Skene (1979) and Raykar et al. (2010) both used
the Expectation-Maximization (EM) algorithm (Dempster
et al., 1977) while Liu and Wang (2012) used Gibbs sam-
pling. Variational inference has also been applied and
shown to perform well for crowdsourcing models (Liu
et al., 2012).

3 METHODS

We now present the details of our probabilistic graphical
model, including details of representation, inference and
learning (Koller and Friedman, 2009). We first define a
joint probability model over all observed and hidden vari-
ables of interest, conditioned on the parameters. In Section
3.2, we present our inference method, which involves an
efficient variational algorithm. This estimates the distribu-
tion over the hidden variables, assuming the parameters are
known. In Section 3.3, we present an EM approach to learn
the parameters from data. Finally, we extend our approach
to the multitask setting in section 3.4.

3.1 MODEL

We assume that each worker has a latent sensitivity and
specificity, and that these two quantities are correlated.
This assumption has similarly been made in medicine for
estimating diagnostic test performance (Dahabreh et al.,
2012). Following this work, we explicitly model the corre-
lation between sensitivity and the false positive rate (FPR)
(=1− specificity).

Let Zi be the (potentially unobserved) true label for in-
stance i and Lij be the label provided for i by worker j.
We then model worker j using two hidden variables, Uj
and Vj , these capture transformations of worker sensitiv-
ity and FPR, and are assumed to be drawn from a bivariate
normal with a covariance matrix to be estimated.

More precisely, the generative process is as follows:

Uj , Vj ∼ N (µ,C) (1)
Zi ∼ Ber(θ) (2)

Lij |Zi = 1 ∼ Ber(S(Uj)) (3)
Lij |Zi = 0 ∼ Ber(S(Vj)) (4)

Ber(p) is the Bernoulli distribution with parameter p en-



coding the probability of the variable taking the value 1.
N (µ,C) is the bivariate Normal distribution with mean
vector µ and covariance C: the correlation between U and
V is thus modeled by the off-diagonal entries in C (C is
symmetric; the two off-diagonal entries are equal). S is
the Sigmoid function: S(x) = 1/(1 + exp(−x)), which
maps real numbers to the interval [0, 1]. Uj and Vj are thus
the logit-transformed sensitivities and FPRs of workers (the
logit function is the inverse of the sigmoid fuction).

Note that µ andC are group-level parameters, capturing ex-
pected sensitivity and FPRs across all workers. Thus ours
may be viewed as a ’fixed effects’ model (Hedges, 1994) of
worker quality, as we assume individual worker parameters
are drawn from a shared parent distribution. This is in con-
trast to much of the previous work on this task, which has
often modeled individuals independently (although there
have been exceptions to this, e.g., Liu and Wang (2012)).
In one scenario we assume that workers belong to distinct
groups: experienced workers and novices. We also assume
that we know a priori to which groups workers belong. In
this case we fit separate models for each group, deriving
corresponding distinct estimates for mean sensitivities and
FPRs (and covariances).

Taking a Bayesian view, one may place priors on the shared
variables µ,C and θ. However this increases model com-
plexity and introduces the need to specify appropriate pri-
ors. Intuitively, these parameters are informed by all or
most of the items in the dataset, and we should therefore
have considerably less uncertainty around our estimates of
them, compared to the hidden variables Z,U and V (which
are informed by one or a small number of items).

Putting the components together, the unnormalized joint
posterior of our model has the form:

P (U1..m, V1..m, Z1..n, L) =

m∏
j=1

N (Uj , Vj |µ,C)

n∏
i=1

Ber(Zi|θ)
∏
Zi=1

Ber(Lij |S(Ui))
∏
Zi=0

Ber(Lij |S(Vi))

(5)

Where we are denoting the number of workers by m and
the number of items by n.

3.2 INFERENCE

We aim to recover the posterior distribution of
all of the hidden variables given worker labels:
p(U1..m, V1..m, Z1..n|L). Unfortunately, evaluating
this analytically is intractable. One possibility is instead
to perform approximate inference via sampling methods
such as Markov chain Monte Carlo (MCMC). However,
practical implementations of MCMC, such as BUGS

Lij
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Figure 1: The Factor Graph of our model. Circles represent
random variables (shaded variables are observed), squares
depict factors, diamonds are deterministic mappings, edge
endpoints (µ,C, θ) are parameters, plates denote repeti-
tions, dotted plates are gates (in this case, the value of Z
is used to select which one of the two S(U) and S(V ) is
used as the parameter for the Bernoulli distribution.

(Spiegelhalter et al., 1995) and PyMC (Patil et al., 2010),
do not scale to large datasets, rendering this approach
infeasible for our application.

We therefore propose a novel variational inference al-
gorithm for the model specified above. Variational ap-
proaches (Wainwright and Jordan, 2008) aim to approxi-
mate the true posterior p via a simpler distribution over the
same variables: q(u1..m, v1..m, Z1..n). The idea is to make
q ‘close’ to p by minimizing the Kullback-Leibler (KL) di-
vergence between the two, i.e., KL(q||p). By minimizing
this divergence, we are maximizing a lower bound on the
data log likelihood.

A typical strategy in variational inference is to make the
mean field assumption, i.e., assume that q neatly factorizes:

q(U1..m, V1..m, Z1..n) =

m∏
j=1

q(Uj)q(Vj)

n∏
i=1

q(Zi) (6)

where each distribution q on the right hand side is over one
hidden variable (disambiguated by the argument), and has
the form:

q(Uj) = N (µ̃uj , σ̃
2
uj) (7)

q(Vj) = N (µ̃vj , σ̃
2
vj) (8)

q(Zi) = Ber(θ̃i) (9)

Here {µ̃uj , σ̃2
uj , µ̃vj , σ̃

2
vj |j = 1...m} and {θ̃i|i = 1...n}

are the variational parameters that should be selected to



minimize KL(q||p). This optimization problem can be
solved via coordinate descent by updating each factor dis-
tribution while keeping all others fixed. The general mean
field update for a vectorX of hidden variables has the form:

q∗(Xi) ∝ exp{E−qi logP (X)} (10)

P (X) is the unnormalized posterior (here, Equation 5) and
E−qi is the expectation with respect to all variables except
Xi. By this equation, we can update q(Xi) by making
changes to its variational parameters. The equation updates
our estimate over a variable based on the current belief over
its neighbors (terms involving other variables are absorbed
into the constant). Adapting this general form to our model,
we can derive the following update equations:

q∗(Zi = 1) ∝ exp
{

log Ber(1|θ)+∑
EUj∼q(Uj) log Ber(Lij |S(Uj))

}
(11)

q∗(Zi = 0) ∝ exp
{

log Ber(0|θ)+∑
EVj∼q(Vj) log Ber(Lij |S(Vj))

}
(12)

q∗(Uj) ∝ exp
{
EVj∼q(Vj) logN (Uj , Vj |µ,C)+∑
q(Zi = 1) log Ber(Lij |S(Uj))

} (13)

q∗(Vj) ∝ exp
{
EUj∼q(Uj) logN (Uj , Vj |µ,C)+∑
q(Zi = 0) log Ber(Lij |S(Vj))

} (14)

We have elided indices in summations above for brevity.
The sums in Equations 11 and 12 are over all of the work-
ers that have provided labels for item i. The sums in Equa-
tion 13 and 14 are over all of the items that worker j has
labeled. Recall that in Inference, the parameters µ,C and
θ are assumed to be known.

Intuitively, Equations 11 and 12 consider item i and update
our approximation of the posterior over Zi by taking into
account the prior θ and evidence from all of the worker la-
bels provided for the item. Equation 13 concerns the (logit-
transformed) sensitivity estimate for worker j, taking into
account the bivariate Normal and the current approxima-
tion over the logit-transformed FPR Vj . The approxima-
tion is further updated using all of the items worker j has
labeled, with respect to the current approximation over the
true label Zi of each. Equation 14 can be interpreted simi-
larly, although here we consider the logit-transformed FPR
estimate for worker j.

Although the update equations are available, evaluating
them is difficult due to the model being non-conjugate. We

thus applied Laplace Variational Inference (Wang and Blei,
2013), to directly approximate these equations. We first let

Tj =

(
Uj
Vj

)
to treat Uj and Vj as a single variable and let

f(Tj) be the exponent in their update equation:

f(Tj) = logN (Tj |µ,C)+∑
q(Zi = 1) log Ber(Lij |S(Uj))+∑
q(Zi = 0) log Ber(Lij |S(Vj))

(15)

By using a Laplace approximation on f , we can derive the
approximate update for Uj and Vj :

q∗(Tj) ∝ exp(f(Tj)) ≈ N
(
T̂j ,∇2f(T̂j)

−1
)

(16)

where T̂j is the maximum of f(Tj), can be found by nu-
merical optimization, and the Hessian matrix∇2f(Tj) can
be derived analytically by using the result:

∇2 logN (T |µ,C) = C−1(T − µ)(T − µ)TC−1 − C−1
(17)

For the variable Zi, the expectations in their update equa-
tions (11 and 12) can also be approximated similarly, for
example, let g(u) = logS(u), we have

Eu∼N (µ,σ)g(u) ≈ g(µ) +
1

2
g′′(µ)σ (18)

Again, the second derivative g′′ can be derived analytically:

g′′(u) = −eu/(1 + eu)2 (19)

The inference procedure initializes the variational distribu-
tion q at some value and then applies the update equations
iteratively until convergence. In our implementation, we
iterate until the average changes in the variational param-
eters is less than 0.01. To initialize the means of q(Uj),
q(Vj) and q(Z), we use majority voting. To initialize the
variance of q(Uj) and q(Vj), we make use the Beta distri-
bution. For example, suppose majority voting predicts that
worker j has provided a True Positives and b False Nega-
tives so that his sensitivity can be estimated as a/(a + b).
We initialize the variance σ̃uj of the logit-transformed sen-
sitivity Uj as the logit-tranformed variance of Beta(a, b),
which intuitively gives a smaller variance for workers who
have provided more labels.

3.3 LEARNING

We consider µ,C and θ as parameters to be learned from
data. The learning algorithm is a simple application of EM.
In the E step, we perform variational inference to estimate
the posterior over the hidden variable, given all of the the
workers’ labels. In the M step, we maximize the param-
eters µ,C and θ under that posterior distribution. For the
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Figure 2: The Factor Graph highlights the extension to two
tasks from the single task model in Figure 1.

parameters µ and C, the expected sufficient statistics (with
respect to the variational distribution) can be evaluated:

E(Uj) = µ̃j (20)

E(U2
J) = µ̃2

uj + σ̃2
uj (21)

E(UJVJ) = µ̃uj µ̃vj (22)

and then plugged into an estimator of multivariate Normal
mean and covariance. For θ, it is simply set to the ex-
pected proportion of positive items, which is the average
of {θ̃i|i = 1...n}.

3.4 MULTITASK MODEL

In addition to exploiting correlations between worker sensi-
tivities and FPRs, our model can easily accommodate other
sorts of worker performance correlations. For example, in
this section we show that the same model can be adopted
to capitalize on correlated performances across related la-
beling tasks. Specifically, we assume that workers have
different sensitivities and FPRs in different tasks but that
these values are correlated across tasks. Let U1, V1, U2, V2
be the logit-transformed sensitivities and FPRs in the first
and second task. These are assumed to be generated from
a four-dimensional Normal distribution:

U1

V1
U2

V2

 ∼ N (µ,C =

(
A X
XT B

))
(23)

whereA,B andX are 2×2 matrices. A andB are the intra-
task covariance matrices. X models the correlations across
tasks, for instance X11 is the correlation between U1 and
U2. X11 > 0 means that a worker with high sensitivity in
the first task is likely to have high sensitivity in the second
task. Our idea is that each task has its own mean sensitivity
and specificity to represent its difficulty. On the other hand,
the covariance matrix C represents how these sensitivites
and specificities in two tasks are correlated. Figure 2 is an
illustration. Our inference and learning algorithms can be
easily extended to this model.

4 EXPERIMENTS

We conducted experiments on two large ‘citizen science’
datasets to compare our proposed method to baselines. In
citizen science, workers volunteer to contribute to science,
without financial compensation.

We report the Root Mean Square Error (RMSE) of the pre-
dicted worker sensitivities and specificities:

RMSE =

√√√√ 1

m

m∑
j=1

(Predictedj − Truej)2 (24)

where Predictedj is the sensitivity or specificity of worker
j that is predicted by a method and Truej is the correspond-
ing true value. In practice, a worker true sensitivity and
specificity are latent but can be accurately estimated given
that the worker have labeled a large number of items and
the true labels for those items are available: Sensitivity =
TP/(TP+FN) and Specificity = TN/(TN+FP) where
TP, TN, FP and FN are the number of true (false) positives
(negatives) that the worker have labeled. We calculate the
sensitivity and specificity estimates using all of the avail-
able data and treat those as the true values (or gold stan-
dard) for evaluation. Also, to ensure the quality of such
gold standard, we only include in our evaluation the work-
ers who have provided labels for at least 5 positives and 5
negatives (on the entire dataset). We note that the meth-
ods being evaluated are given a small portion of the dataset
and still need to produce good estimates based on very few
crowd labels and without access to the true labels. A sim-
ilar approach to evaluate confusion matrix estimates has
been used by Lakkaraju et al. (2015).

4.1 BIOMEDICAL CITATION SCREENING

We consider data from the EMBASE screening project
(http://screening.metaxis.com/EMBASE/), which aims to
identify reports of randomized controlled trials (RCTs)
from EMBASE,1 a biomedical literature database. The aim
is to be comprehensive, thus placing an emphasis on sen-
sitivity. An important property of this dataset is its imbal-
ance: fewer than 5% of the items are positive. Our model
aims to improve the estimates of sensitivities using their
correlations with specificities (recall that sensitivity is the
probability of being correct given a positive, and we expect
this estimate to be poor given very few positives). Also,
the screening project has relied on a mix of novice volun-
teer workers and domain experts with associated costs and
levels of expertise. Our model can easily exploit such in-
formation on two groups of workers by using two different
set of parameters (µ and C), one for each group. This is
a large dataset with 151,224 items and 576 workers. Of

1RCTs are experiments in which participants are randomized
to groups in which individuals are exposed to different interven-
tions; one group is designated as a control.



(a) Sensitivity with Uniform Prior (1,1) (b) Specificity with Uniform Prior (1,1)

(c) Sensitivity with Informative Prior (4,1) (d) Specificity with Informative Prior (4,1)

Figure 3: The RMSE in Sensitivity and Specificity with Uniform and Informative Prior of four methods (averaged over 5
runs). DiagCov and FullCov are two variants of our model; their curves overlap in (b), (c) and (d).

those workers, 156 have labeled at least 5 positives and 5
negatives and are used for evaluation. The number of labels
per workers is generally very skewed: 525 workers (91%)
provided less than the average of 603 labels.

We implemented two variants of our method: one with a
full covariance matrix (FullCov) and one with a covariance
matrix constrained to be diagonal (DiagCov) i.e., entries
in the confusion matrices are assumed to be uncorrelated.
This allows us to observe how much improvement is due
to modeling correlation and how much is from modeling
worker groups. We compare these two variants to two base-
lines: Majority Vote, in which sensitivities and specifici-
ties are estimated based on the majority labels, and the Two
Coin model (without features) due to Raykar et al. (2010,
sec. 2.7.4)

We also implemented the Hybrid Confusion model by Liu
and Wang (2012), which is the same as Two Coin but with
inference by Gibbs sampling. Because the results were
very similar to Two Coin, we omit these for clarity.

All of the methods are given the same prior or initialized
in the same way. The Two Coin model has Beta priors
on worker sensitivities and specificities, which can be in-
terpreted as smoothing constants. The same constants are
given to Majority Vote to smooth its estimates. Our model
has no prior on the parameters µ and C but those and the
variational parameters are initialized using the outputs from
Majority Vote (with smoothing constants). To explore the
effect of these worker priors (or initialization), we did ex-
periments with a uniform prior ((Beta(1, 1) as done by
Raykar et al. (2010)) and an informative prior Beta(4, 1)
as in Liu and Wang (2012)). The prior on the class propor-



Items Workers LPI LPW
Task 1 17862 1242 16.8± 3.9 241± 288
Task 2 6476 198 5.0± 2.1 163± 130
Task 3 21951 681 6.7± 3.7 215± 243
Task 4 21915 679 6.7± 3.7 215± 243

Table 1: Statistics of four tasks we consider in the Galaxy
Zoo 2 dataset, after pre-processing. ‘LPI’ stands for ‘La-
bels per item’ and ‘LPW’ for ‘Labels per worker’. In these
columns, we report the means and standard deviations of
the number of labels per item (worker).

tion θ is always uniform (Beta(1, 1) as done by both).

Figure 3 presents our results with RMSE on the Y-axis and
the number of items on the X-axis. We average results
over 5 runs, randomly sampling a number of items from
the dataset for each. The two plots above are for uniform
prior. We see that Two Coin’s performance is surprisingly
weak while two variants of our model achieve the best per-
formance. On the plot for Sensitivity, we also see some
small improvement of FullCov over DiagCov (but signifi-
cant in our paired t-test). In the plot for Specificity, those
two variants have the same performance (the curve for Full-
Cov has overwritten the one for DiagCov). This is what we
expect since the specificity estimates are for the majority
(negative) class and the correlation has little effect given a
large number of labels available. Surprisingly, much of the
improvement of our method can be attributed to the ‘group
part’ of our model (not the ‘correlation part’). As discussed
above, the ‘group part’ provides a ‘back off’ to the group
level estimates when there is not enough data on a worker.

The two plots below show our results for Informative Prior,
where all of the methods perform better, as expected. For
Sensitivity, Two Coin performs well, slightly better than
Majority Vote while comparable to ours for the most part
and slightly better than ours for 40, 000 or more items.
However, for specificity, it still performs worse than Ma-
jority Vote and ours. The difference is probably due to
Beta(4, 1) being a better prior for sensitivity than speci-
ficity2. This suggests that Two Coin and similarly Hybrid
Confusion can perform well but their performance are de-
pendent on good priors. In contrast, our method is robust
across different settings of priors. This can probably be ex-
plained by the fact that our group level estimates (which
play role in ‘backing off’ sparse workers) are learned from
data while Two Coin’s priors are set to constants.

4.2 GALAXY MORPHOLOGICAL
CLASSIFICATION

The Galaxy Zoo 2 dataset (Willett et al., 2013) consists
of labels provided by volunteer workers on morphologi-
cal classification of galaxies. A worker is given an image

2Beta(4, 1) has a mean of 0.8. The true means for sensitivities
and specificities are 0.78 and 0.94

of a galaxy and is asked multiple questions. We consider
each question to be a labeling task. Specifically in our
experiments, we consider the (simplified) first four ques-
tions/tasks:

1. Is the galaxy smooth or disk-like? If the answer is
disk, proceed to task 2, otherwise stop. 3

2. Is the disk viewed edge-on? If the answer is no, pro-
ceed to task 3, otherwise stop.

3. Is there a bar in the center? Proceed to task 4 regard-
less of the answer.

4. Is there a spiral arm pattern?

Since the tasks have varying difficulties and require varying
skills, worker performance in each task can be very differ-
ent from others, but we can naturally expect some degree
of transferability between tasks. We aim to evaluate our
multitask model on improving the estimates of worker sen-
sitivities and specificities on a target task, given labels on
a source task (for the same set of workers). We did experi-
ments in two scenarios:

1. Conditional Task 1→ Task 2: The methods are given
all of the labels in Task 1, a portion of labels in Task
2 and must estimate worker sensitivities and specifici-
ties in Task 2.

2. Independent Task 3→ Task 4: The methods are given
all of the labels in Task 3, a portion of labels in Task
4 and must estimate worker sensitivities and specifici-
ties in Task 4. Here the two tasks are independent,
while in the first scenario, Task 2 is asked only when
the worker answers ‘disk’ in Task 1.

We compare our multitask model (Multi) to two baselines:
Single, where only labels in the target task are considered,
and Accum, where labels from the source task are merged
with those from the target task. The Accum baseline is
only applicable when the two tasks are questions with the
same number of choices and a matching of these choices is
available (otherwise the labels could not be merged). Our
approach has no such restriction. For both baselines, we
used the FullCov variant of our method.

The dataset is extremely large, with nearly 60 million labels
for 11 tasks from over 83 thousand workers. We do the
following pre-processing to reduce the size of the dataset.
(1) We take the first million labels (for all of 11 tasks). (2)
For each of the first four tasks, we filter out workers with
less than 100 labels and items with less than 3 labels. The
statistics of the four tasks after pre-processing are in Table
1. We note that the gold standard worker sensitivities and
specificities are estimated from the entire dataset (without
pre-processing).

3‘Stop’ means go to a question we don’t consider. This ques-
tion has a third answer (‘star of artifact’) which is very rare and
we don’t consider for simplicity.



(a) Sensitivity: Conditional Task 1 → Task 2 (b) Specificity: Conditional Task 1 → Task 2

(c) Sensitivity: Independent Task 3 → Task 4 (d) Specificity: Independent Task 3 → Task 4

Figure 4: The RMSE against percentage of labels in the target task available of our method compared to two baselines
(averaged over 5 runs).

In Figure 4, we report our results. Overall, Accum is sur-
prisingly weak, giving estimates with much higher RMSE
than Single. This shows that worker performance in two
different tasks are sufficiently different that a naive transfer
strategy is unlikely to work.

Compared to the Single baseline, our method has shown
improvement for the case when a small percentage of labels
in the target task is available. The improvement diminishes
when more target task labels are available, as expected.
On a close look at their differences, one might notice that
the improvement is sometimes quite modest. Looking into
the ‘true’ worker sensitivities and specificities (Figure 5),
we found an overall positive correlation between tasks as
expected. However, we also observe a surprisingly large
number of workers who do better in the source task but
worse in the second task (and vice versa). This may be be-
cause the tasks are somewhat subjective that the variations

in workers performance are mostly due to their different
perception and interpretation. In short, we believe the true
multitask correlation plays a role in how much improve-
ment we observe.

To further investigate this, we repeat the same experiments
on simulated labels. We note that the purpose of our sim-
ulation is to complement, not to replace our results on the
real data. The simulated labels are generated by our model
from the following parameters:

µ =


1.49
−1.45
2.18
−2.59

C =


1.80 0 x 0

0 1.30 0 x
x 0 1.06 0
0 x 0 1.89


The mean µ and the variances in C are set to the empirical
estimates in Task 1 and Task 2 while x is the inter-task cor-
relation and is varied in {0.5, 0.75, 1.0, 1.25}, some posi-



tive values in a reasonable range which keep the covariance
matrix positive definite. We assume 5000 items in each task
and 200 workers. Each item is labeled by 5 randomly se-
lected workers. Figure 6 shows that as the correlation x
increases, we see a greater improvement of Multi over Sin-
gle. That is, the more correlated the worker performances
in different tasks are, the greater the improvement realized
by our model.

(a) Sensitivity Task 1 vs. 2 (b) Specificity Task 1 vs. 2

(c) Sensitivity Task 3 vs. 4 (d) Specificity Task 3 vs. 4

Figure 5: Worker sensitivities (specificities) in two tasks.
Each point is a worker. In (a) and (b), the X-axis is task 1
and the Y-axis is task 2. In (c) and (d), the X-axis is task 3
and the Y-axis is task 4.

5 CONCLUSION

We have presented our approach to improve the estimates
of worker confusion matrices and reported the results of
our experiments on real and simulated data. Our main idea
is to exploit the correlations in the matrix entries (sensitiv-
ities and specificities) and the knowledge of groups in the
workers population. The idea also applies to the case when
labels from multiple tasks are available. In all of the cases
we consider, our method shows good performance com-
pared to baselines. We have made our source code avail-
able4. We expect the datasets to be available on request
from their owners.

While we have reported on binary classification tasks with
no instance-level features, where a confusion matrix re-
duces to sensitivity and specificity, our approach can be
easily generalized. For future work, we will extend our
work to categorical tasks, with features when available.

4https://github.com/thanhan/code-uai16

(a) x = 0.50 (b) x = 0.75

(c) x = 1.00 (d) x = 1.25

Figure 6: The RMSE in Sensitivity (averaged over 5 runs)
on simulated labels for 4 values of the inter-task correlation
x. The X-axis is the percentage of target task labels and the
Y-axis is RMSE. The curves for Single and Multi overlap
in (a). The results for Specificity are similar.

Such features can be modeled by additional variables as-
sociated with the instances and a variational algorithm can
be derived similar to (Felt et al., 2015). We are also in-
terested in a better model for the multitask setting, which
can capture important factors such as item and task difficul-
ties as well as worker skill and expertise. Also, we would
like to take advantage of the the full posterior distribution
over the worker confusion matrices in an application such
as an online decision system (Nguyen et al., 2015; Wer-
ling et al., 2015), rather than using only point estimates.
Finally, while we have favored variational inference over
MCMC, recent probabilistic languages such as Stan (Car-
penter et al., 2015) is an attractive alternative and interest-
ing to compare to our approach.
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