
MODELING MUSIC AND CODE KNOWLEDGE TO SUPPORT A
CO-CREATIVE AI AGENT FOR EDUCATION

Jason Smith1 Erin J.K. Truesdell2 Jason Freeman1

Brian Magerko2 Kristy Elizabeth Boyer3 Tom McKlin4

1 Center for Music Technology, Georgia Institute of Technology, Atlanta, GA, USA
2 Expressive Machinery Lab, Georgia Institute of Technology, Atlanta, GA, USA

3 Computer & Information Science & Engineering, University of Florida, Gainesville, FL, USA
4 The Findings Group, Decatur, Georgia, USA
{jsmith775, erinjktruesdell}@gatech.edu

ABSTRACT

EarSketch is an online environment for learning intro-
ductory computing concepts through code-driven, sample-
based music production. This paper details the design and
implementation of a module to perform code and music
analyses on projects on the EarSketch platform. This anal-
ysis module combines inputs in the form of symbolic meta-
data, audio feature analysis, and user code to produce com-
prehensive models of user projects. The module performs
a detailed analysis of the abstract syntax tree of a user’s
code to model use of computational concepts. It uses mu-
sic information retrieval (MIR) and symbolic metadata to
analyze users’ musical design choices. These analyses pro-
duce a model containing users’ coding and musical deci-
sions, as well as qualities of the algorithmic music created
by those decisions. The models produced by this module
will support future development of CAI, a Co-creative Ar-
tificial Intelligence. CAI is designed to collaborate with
learners and promote increased competency and engage-
ment with topics in the EarSketch curriculum. Our module
combines code analysis and MIR to further the educational
goals of CAI and EarSketch and to explore the application
of multimodal analysis tools to education.

1. INTRODUCTION

Digital music creation environments often use a combina-
tion of raw audio data, symbolic information, code, and
metadata to represent user-generated music. For example,
a digital audio workstation might represent a song through
a combination of audio files, genre and artist labels, MIDI
events, and a data source indicating the placement of audio
and MIDI segments on a multi-track timeline, along with
device and mixer settings and automation.

c© Jason Smith, Erin J.K. Truesdell, Jason Freeman, Brian
Magerko, Kristy Elizabeth Boyer, Tom McKlin. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Jason Smith, Erin J.K. Truesdell, Jason Freeman, Brian
Magerko, Kristy Elizabeth Boyer, Tom McKlin, “Modeling Music and
Code Knowledge to Support a Co-creative AI Agent for Education”, in
Proc. of the 21st Int. Society for Music Information Retrieval Conf.,
Montréal, Canada, 2020.

In the context of music information retrieval (MIR), ac-
cess to these multiple types of music representation can
vastly simplify common retrieval tasks that are too com-
plex to perform on audio alone. Examples of this include
music preference modeling using a combined model of au-
dio and metadata [1] and genre recognition using feature
analysis alongside symbolic representation of the same
audio through statistical descriptors of melody, harmony,
and rhythm [2, 3]. A multimodal analytical approach can
therefore help develop powerful MIR-driven applications
within these digital music creation environments, such as
creativity-support tools that generate ideas and feedback
for users as they create music with the software.

Digital environments that include algorithmic composi-
tion elements offer yet another mode of analysis: the code
that generates the music. A creativity support tool that in-
corporates code analysis in addition to these other modal-
ities can potentially generate recommendations not only
about the music users create but also about the code that
they write and and the conceptual overlap thereof between
the code and music.

This paper describes an analysis system we have created
that uses audio features, audio metadata, symbolic multi-
track music data, and code from user-created projects to
understand the structure of algorithmic music and to model
users’ knowledge of coding and musical techniques. We
have created the system in the context of EarSketch [4], an
expressive and collaborative learning environment for high
school students that is used by roughly 120,000 students
per year. In EarSketch, users write Python or JavaScript
code to algorithmically create multi-track compositions
remixing a library of audio loops. Figure 1 depicts the
EarSketch user interface. EarSketch aims to increase
student engagement in computing across diverse student
populations, promoting student perceptions of authenticity
through its use of a professionally-produced audio loop li-
brary and design influences from industry-standard digital
audio workstations [5].

The EarSketch curriculum contains musical concepts
integral to algorithmic music and relevant to coding, in-
cluding repetition, form, and effect usage. The EarSketch
sound library contains over 3,500 sounds from professional



Figure 1. A Screenshot of the EarSketch web-based ap-
plication, containing the Digital Audio Workstation (top),
and Code Editor (bottom).

artists, split into folders and labeled with artist, genre,
and instrument type. Users write code with Python and
JavaScript APIs to manipulate sounds and create music.

EarSketch is designed for students without formal mu-
sic training. It does not focus on traditional music theory
concepts such as music notation, melody, and harmony. In-
stead, it uses audio loops, effects, automation, and step-
sequenced rhythms to facilitate music production through
code without prerequisite knowledge. In addition to mod-
eling understanding of code, our module includes music
analysis to compare a user project’s traits to the informa-
tion conveyed by the EarSketch curriculum.

Our analysis system was designed to support a new
creativity-support tool within EarSketch called CAI (Co-
creative Artificial Intelligence). CAI, which is still in the
early stages of design, will assist EarSketch users in learn-
ing and practicing pedagogical concepts in both computing
and music. CAI will use our multimodal analysis system
in combination with user interaction to suggest additions
and changes to student music and code, scaffolding student
learning and producing co-creative musical output.

In the following sections, we position this work in the
context of recent music information retrieval research, de-
scribe each component of the analytical system in turn, ex-
plain how we coalesce this data into a user model to inform
CAI, and outline future areas of work in the design and
implementation of the larger CAI system that will leverage
this analysis tool.

The development of this analysis module for CAI marks
a unique application of MIR and code analysis to educa-
tional systems. Further development of the CAI system
will continue to illuminate the role of mixed-input models
for the goal of supporting learners in expressive computing
environments.

2. RELATED WORK

Multimodal music information retrieval relies on represen-
tations of information to perform analysis tasks beyond
what is possible using raw audio signals [6]. Digital pro-
duction environments and notation software use symbolic
information to represent structural and artistic elements of
user-generated music. Due to its prominent use in music
software, symbolic music is a significant presence in the
domain of music information retrieval, with well-known
tools such as Music21 [7] performing operations on sym-
bolic data. MIDI has also been used to train style transfer
models [8] and detect meter in live performance [9].

MIDI note messages are direct symbolic representa-
tions of musical notes. Other combinations of symbolic
and audio analysis performed by labeling audio with sta-
tistical descriptors have been used in applications of genre
recommendation [2] and pattern-based style identification
[3]. Another application [10] uses symbolic music rep-
resentation to vectorize multiple aspects of music for the
purpose of performing song recommendations. The LFM-
1b dataset [11] contains recorded listening events tagged
with metadata, and has been used in conjunction with au-
dio feature analysis to model user music preference [1].
Our system differs from these applications by using au-
dio and symbolic data to model a user’s proficiency with
the techniques required to produce musical output, using
EarSketch curriculum topics as evaluation criteria.

Our system extends traditional music information re-
trieval applications in its use of source code analysis as an
input. Code analysis tools often rely on the analysis of ab-
stract syntax trees (ASTs) generated from student code to
propose edits. Contemporary AST-based systems [12, 13]
rely on step calculations between a student’s current code-
state and a previously seen code-state or family of code-
states that fulfills a set of conditions. These systems use
AST analysis to simplify a wide range of projects to their
most basic structure and provide suggestions in almost all
situations. This application has largely focused on mov-
ing students from an "incorrect" answer to a "correct" one.
In comparison, the application of AST analysis to creative
problems without a defined "solution" is relatively unex-
plored. Our code analysis module brings the advantages of
AST analysis into the expressive domain, reorienting the
process towards open-ended learning and development.

Examples of software analysis applied to music infor-
mation retrieval include a tool that uses Source Code Anal-
ysis and Manipulation (SCAM) to represent the structure
of algorithmic music compositions [14, 15]. Music code
analysis has also been performed in the context of live
coding, a performance format in which programmers write
algorithmic music in real time. A survey of live coding
practitioners on creativity [16] discusses the link between
analyzing live coding techniques and the development of
a creative software agent. EarSketch has previously been
examined for its ability to function as an educational live
coding platform [17], and a fully developed CAI system
will be able to collaborate with learners in a live coding
environment.



3. CODE ANALYSIS

3.1 Code Knowledge Modeling

The code portion of the analysis module combines AST
analysis and a computer science learning taxonomy to
build a model of user knowledge that will be used by CAI
to generate level-appropriate suggestions for EarSketch
users. Previous works on computer science assess-
ment [18–20] have adapted general learning taxonomies
for computing topics; similarly, we defined a series of
knowledge levels for 15 computational concepts from the
EarSketch curriculum across 4 knowledge categories (see
Table 1) based upon a flattened version of Bloom’s Taxon-
omy [21]. For each concept, we define knowledge levels
specific to its usage contexts. Table 2 outlines knowledge
levels defined for the "String" and "User-Defined Func-
tion" concepts. Level 1 refers to usage of the concept
or construct (e.g., a user includes a string in their script).
Level 2 is defined as "original" usage of the concept (us-
age not copied directly from sample code). Our origi-
nality measures are described in greater detail in Section
3.2. Subsequent levels focus on increased complexity of
use: for example, a user’s script could reach level 2 of the
"String" concept by merely including an original string in
their script, but level 3 requires that the string to be put to
use (such as using it as a function argument).

Category Concepts
Value Types String, Integer, Float, Boolean
Data Storage List, Variable

Operations
String Operation, List Operation,
Comparison, Boolean Logic,
Mathematical Operator

Procedure
For Loop, Conditional Statement,
User-defined Function,
Console Input

Table 1. Concepts in the analysis module taxonomy.

Level String
User-Defined
Function

0 Does Not Use Does Not Use
1 Uses Uses
2 Uses Originally Uses Originally

3
Uses Originally for
Purpose

Uses and Calls
Originally

4
Uses Originally and
Indexes or Iterates
for Purpose

Uses and Calls
Originally with Return
OR Arguments

5 N/A
Uses and Calls
Originally with Return
AND Arguments

Table 2. Knowledge levels for two concepts: "String" and
"User-Defined Function."

3.2 Code Complexity Analysis

The code analysis module generates knowledge models for
student scripts, producing concise information on under-
standing of each topic. Code knowledge models are gener-
ated by analyzing the abstract syntax tree of a user’s code,
which allows for fast and non-intrusive analysis. The code
analysis module searches each AST node for constructs
that indicate the user’s knowledge level for every concept
in our taxonomy.

Prior to analysis, the module performs a series of four
passes over the script’s AST to gather supporting data. The
first pass tests student code for similarity to sample code.
We use Andrei Mackenzie’s Levenshtein function 1 to cal-
culate the edit distance between each line of a user’s code
and all lines of EarSketch sample code; if the edit dis-
tance is below a manually-defined similarity threshold, the
line is marked as "not original." Three subsequent passes
gather information about user-defined functions and vari-
able assignments and values. Once this information is col-
lected, each individual node in the hierarchy is checked
against discrete rules developed in tandem with the knowl-
edge modeling level table.

Below is an example of a student script progressing
through levels of the "user-defined function" concept. In
the first code snippet, the user creates and then calls a func-
tion to make a section of music, calling fitMedia() to
place piano and drumpad samples between measures 1 and
16. This corresponds to level 3 of the "user-defined func-
tion" item: "Uses and Calls Originally."

def sectionA():
fitMedia(RD_RNB_PIANO_1,1,1,16)
fitMedia(Y25_DRUMPAD_1,2,1,16)

sectionA()

In the second snippet, the function has been modified to
take arguments: the function now places the samples be-
tween passed "start" and "end" measures. This corresponds
to level 4 of the "user-defined function” item: “Uses and
Calls Originally with Return OR Arguments.”

def sectionA(start, end):
fitMedia(RD_RNB_PIANO_1,1,start,end)
fitMedia(Y25_DRUMPAD_1,2,start,end)

sectionA(1,16)

These node analyses populate an output object with val-
ues mapped to knowledge levels, visualized in Table 3.
These analyses will be used to support future development
of CAI, providing guidance to the system about appropri-
ate code structure for programming and music suggestions
when collaborating with a student.

1 https://gist.github.com/andrei-m/982927



Concept 0 1 2 3 4 5
String

Integer
Float

Boolean
List

Variable
String Op

List Op
Comparison

Boolean Logic
Math Op
For Loop

Conditional
User Function
Console Input

Table 3. Visualization of code analysis output for a sample
project.

4. SYMBOLIC MUSIC ANALYSIS

4.1 EarSketch Music Representation

The music component of the analysis module uses a sim-
plified symbolic representation generated by EarSketch to
apply sounds and effects to the Digital Audio Workstation
view and generate audio playback. When a learner runs a
script, the parsed abstract syntax tree of the code is repre-
sented internally as a dictionary of tracks containing sound
and effect usage for each measure in a piece of music.

Figure 2. Code in the Code Editor of an example project
created in EarSketch.

The track listing for the example project (Figure 2) is
an array of tracks, each containing a series of clip and
effect objects reflecting those used in the code. Each
clip object contains the name of the sound file used
(RD_WORLD_PERCUSSION_KALIMBA_PIANO_1), as
well as its start measure (1), and end measure (5). Each
effect object contains each instance of a specific effect

(VOLUME-GAIN), its starting value and measure (-60, 5)
and ending value/measure (0, 9).

The music analysis tool begins by converting this track
representation to a timeline representation, in order to
ascertain temporal patterns in the song. The timeline is
created by converting the track dictionary to a dictio-
nary of measures, as measure numbers are used in the
EarSketch API for audio and effect sequencing. Figure
3 shows this timeline for four measures of the example,
which has sounds used throughout the song such as
RD_WORLD_PERCUSSION_KALIMBA_PIANO_1
and sounds used in a single section such as
RD_WORLD_PERCUSSION_SEEDSRATTLE_1, as
well as the value of the gain adjustment at each measure.

Figure 3. Timeline representation for measures 1, 5, 7, and
9 of the sample EarSketch project (see Figure 2).

Recognition of patterns in sound and effect usage over
time can be used in determining form as described in sec-
tion 5. It allows CAI to propose changes to sound choices,
effects, and parameters at specific points in time, or to sug-
gest optimized code structure to realize those patterns. For
example, if a user places the same sound at regular in-
tervals and the code analysis does not observe any loops
containing the variables related to that sound in their code,
CAI can suggest the use of a loop.

Audio usage requires students only to select sounds
from the library; conversely, effects can be manipulated
through envelopes and are introduced in the EarSketch cur-
riculum in multiple levels of complexity. The analysis
module conducts a hierarchical score analysis for effect us-
age, while simply recording the selection of audio at each
measure to inform its audio analysis tools.

4.2 Effect Usage Scores

Effect envelopes in EarSketch are applied using a start
value, end value, start time, and end time. The following
code example (found in Figure 2) shows a use of the vol-
ume effect on track 1 having its gain parameter changed
from -60 dB to 0 dB between measures 5 and 9:

setEffect(1, VOLUME, GAIN, -60, 5, 0, 9)



The internal track representation stores a single record-
ing of these four values for each effect parameter. Con-
sequently, we use linear interpolation to store the value of
each effect parameter at each measure when converting ef-
fect envelopes to the timeline.

This reorganization allows the analysis module to clas-
sify the level of usage the user demonstrates for each audio
effect in the library, such as gain, filters, delay, and reverb.
The EarSketch curriculum teaches basic effect usage, fol-
lowed by use of effect parameters, and then the use of en-
velopes to change parameter values over time. Similarly,
the levels of effect usage are 0: Does not use, 1: Uses
standard parameters, 2: Uses non-standard parameters,
and 3: Changes parameters over time. EarSketch’s goal
is to teach coding technique through music production, so
students are encouraged to use increasingly complex effect
parameter manipulation through increasingly complex al-
gorithmic structure. These scores, along with the scores
from the code analysis described in section 3, form a com-
posite score to represent user knowledge.

In addition to the timeline representation and modeling
of effects usage, the analysis module records the length of
the piece and whether or not the user sets a tempo differ-
ent than the default 120 bpm. The combination of these
music analysis outputs can be used by CAI to character-
ize a user project and to identify which sounds or effects
to include and where to include them, or areas for further
improvement in a script.

5. AUDIO FEATURE ANALYSIS

In addition to storing user knowledge modeling, the anal-
ysis module is designed to analyze the sound usage, form,
and genre of a user project. These are not represented in or-
dered levels to model conceptual understanding like effects
are, but are recorded to display a detailed overview of the
piece of music and to better target suggestions made by the
CAI system. For example, if a user is primarily choosing
sounds of a certain genre in a specific musical section, CAI
might suggest other sounds in that genre for that section,
while suggesting contrasting sounds for a different section.

5.1 Audio Recommendations

The analysis module includes an expansion of the exist-
ing EarSketch recommendation system [22], which uses
the code of an active user project to make real-time rec-
ommendations. The recommendation system uses audio
features Short-time Fourier Transform (STFT) and Mel-
Frequency Cepstral Coefficients (MFCC) [23] to represent
temporal and non-temporal information, respectively, of
each EarSketch library sound whose name is found in the
code [24]. Feature vectors for each sound are generated in
offline scripts, and feature distances and relative co-usage
by EarSketch users between each pair of sound vectors are
uploaded to the EarSketch server. This avoids the need to
calculate the features, feature distances, and co-usage data
in real time. The advantage of this form of analysis in a
digital production system such as EarSketch is that audio

feature distances can be measured against metadata tags
for artist, genre, and instrument type. The system is able to
provide recommendations that either specifically conform
to the user project’s genre and instrumentation or allow the
user to consciously explore other creative options.

The original EarSketch recommendation system [22],
which used the source code of a script to generate recom-
mendations for an entire user project. The analysis module
expands this system by presenting a series of sound rec-
ommendations per measure. These recommendations can
be used to increase or decrease musical contrast at specific
points throughout a composition, or use stored feature dis-
tances to ascertain the best measure to include a sound.

5.2 Form and Structure Analysis

The use of symbolic music representation greatly simpli-
fies the task of determining sections in a song through
changes in instrumentation and effects. Sound and effect
usage are represented for each measure, and instrument
type and genre are included in metadata tags.

Self-similarity can be used in retrieving [25] and visu-
alizing [26] musical structure. An array of self-similarity
values for instrumentation at every measure in the timeline
view allows the analysis module to infer musical structure
from sounds used by marking the first measure in a se-
quence to pass above or below a threshold of similarity.

Figure 4. Self-similarity of instrumentation for the exam-
ple EarSketch project (see Figure 2), indicating an A-B-A
form. Dotted lines represent similarity thresholds of 0.4
and 0.2 that, when crossed, mark section beginnings.

The threshold of similarity can also be hierarchically
defined to determine different granularities of sections and
subsections, from a whole piece to the measure level. The
example in Figure 4 shows ternary form, a musical struc-
ture represented in the EarSketch curriculum. If the sim-
ilarity threshold is above 0.25, then the analysis module
will cross the threshold three times and predict section be-
ginnings at measures 1, 5, and 9. If the threshold is lower,
then it will be crossed five times and predict section be-
ginnings at measures 3 and 11 as well. When analyzing a
script, the analysis module generates a list of section pre-



dictions for thresholds of every ten percent between 0.9
and 0.1. Any list of a unique length (or with unique val-
ues) is recorded. In the example of Figure 4, lists would be
generated to form a section prediction of [1, 5, 9] with a
subsection prediction of [1, 3, 5, 9, 11].

5.3 Genre Analysis

Each sound in the EarSketch sound library is labeled with a
tag for one of 21 genres such as Rock, Funk, Hip Hop, and
EDM. These tags were manually added to the sounds by
the artists and EarSketch developers who uploaded them.

Our music analyzer combines these genre tags with au-
dio features (as described in section 5.1) to predict a genre
for each measure in a user project. It applies the k-means
genre clustering algorithm [27] to each measure, approx-
imating the closest distance in audio fingerprints between
the average for the measure’s sounds and the average for
a genre found in the EarSketch library. The genre tag for
each sound used in a measure is also added to increase the
confidence value for that genre. This combination affords
our system the knowledge of the original genre label for
each sound as presented to the user, but allows it to rec-
ognize a user who has creatively used sounds in genre ap-
plications separate from their label. This genre analysis is
used to determine the likelihood of a user project belong-
ing to a specific genre at the script, section, subsection, or
measure level - depending on the granularity of the self-
similarity measurement used to determine form.

This genre analysis can be used for CAI to target its
audio suggestions to a song’s identified genre. If a user is
writing a song mainly using sounds tagged with a single
genre, such as in the example code (Figure 2), CAI can
suggest sounds in that genre or present options for different
genres to generate contrast.

6. PRELIMINARY RESULTS, USAGE, AND
INSIGHTS

Two informal testing methods have been used to aid in
the iterative development of the code analysis module: a
review of output correctness, and an ongoing large-scale
process to identify bugs in the module.

To evaluate the ability of the module to produce a cor-
rect analysis of a script, we ran it on a series of 103
student- and researcher-generated scripts (77 Python, 26
JavaScript). Student scripts were selected to ensure the
module could accurately respond to programming choices
made by EarSketch users; researcher scripts were selected
or written to test the module’s ability to respond to com-
plex scenarios. For each test script, the analysis module’s
output was judged against a researcher-generated score.
Any discrepancies between the two indicated a missing
component in the module. Modifications were made until
the analysis module could correctly score the script. This
testing identified a number of situations not originally ac-
counted for in the module.

To efficiently locate bugs in the code analysis script, we
have included a version of the Code Analysis module on

EarSketch that runs each time any user runs a script. Upon
the encounter of an exception while analyzing a project,
the module sends a report including the exception and
stack trace to an analytics engine. These reports are fre-
quently reviewed to identify bugs and improve the ability
of the code analysis module to run without error.

The music analysis tool has been integrated into the
EarSketch autograder, an automatic grading tool used in
evaluating the complexity of code submissions in previous
course projects [4]. This autograder is a separate web page
that, given any number of EarSketch script sharing IDs,
generates a list of code topics, their categorized scores, the
list of section markings, measure-by-measure audio rec-
ommendations, and genre predictions. This analysis can
be performed on large samples of scripts, such as on mul-
tiple instances of a script to track improvement over its
history, and is used in ongoing evaluation of the analysis
module’s ability to model form and genre. As the analy-
sis module undergoes future iterative development, obser-
vations of emergent patterns in output will further aid the
development and evaluation of the CAI recommendation
system as well as its component parts.

Though the CAI system that will make use of this anal-
ysis module has yet to be completed, the development of
this module has generated insights about the applications
of MIR work in tandem with other disciplines, particularly
in the context of education. Its combined analysis of sym-
bolic music, audio features, and code knowledge highlights
the ability of multimodal analysis to provide a comprehen-
sive body of information to support [systems that do two
things]. The use of this combination in an educational con-
text will allow CAI to assist learners in simultaneous musi-
cal and programming development and further the goals of
educational platforms that intersect domains. Additionally,
the development of this module for a co-creative AI indi-
cates potential for additional knowledge to be developed as
the module is used to inform the agent’s outputs.

7. FUTURE WORK

This analysis module has been implemented in the produc-
tion version of EarSketch. We are still in the early stages
of designing CAI, the agent that will leverage this analysis
data to interact with students through dialogue and gener-
ate suggestions for their music and code. Over the past
year, we have performed studies to better understand how
students interact through chat with each other in student-
to-student chat experiments. We have also conducted chat
experiments between students and researchers posing as AI
agents to simulate the intelligence that CAI will eventually
provide. We are using the findings from these studies to
inform the design of CAI. The initial version of CAI will
exist as a chat-style interface within EarSketch, where stu-
dents will choose prompts from a menu-driven system and
receive natural language responses based on their interac-
tion with the system and its analysis of their code and mu-
sic as described in this paper. Through the addition of CAI
to EarSketch, we hope to further increase student engage-
ment and creativity with the platform.



8. ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation Award No. 1814083. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National
Science Foundation. EarSketch is available online at
https://earsketch.gatech.edu.

9. REFERENCES

[1] E. Zangerle and M. Pichl, “The many faces of users:
Modeling musical preference.” in Proc. of ISMIR,
2018, pp. 709–716.

[2] T. Lidy, A. Rauber, A. Pertusa, and J. M. I. Quereda,
“Improving genre classification by combination of au-
dio and symbolic descriptors using a transcription sys-
tems.” in Proc. of ISMIR, 2007, pp. 61–66.

[3] P. J. P. De León and J. M. Inesta, “Pattern recognition
approach for music style identification using shallow
statistical descriptors,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Re-
views), vol. 37, no. 2, pp. 248–257, 2007.

[4] B. Magerko, J. Freeman, T. Mcklin, M. Reilly, E. Liv-
ingston, S. Mccoid, and A. Crews-Brown, “Earsketch:
A STEAM-based approach for underrepresented pop-
ulations in high school computer science education,”
ACM Transactions on Computing Education (TOCE),
vol. 16, no. 4, pp. 1–25, 2016.

[5] McKlin, Tom, Magerko, Brian, Lee, Taneisha, Wanzer,
Dana, Edwards, Doug, and Freeman, Jason, “Authen-
ticity and personal creativity: How EarSketch affects
student persistence,” in Proc. of the 49th ACM Techni-
cal Symp. on Computer Science Education, 2018, pp.
987–992.

[6] C. C. Liem, M. Müller, D. Eck, G. Tzanetakis, and
A. Hanjalic, “The need for music information retrieval
with user-centered and multimodal strategies,” in Proc.
of the 1st International ACM Workshop on Music infor-
mation Retrieval With User-Centered and Multimodal
Strategies, 2011, pp. 1–6.

[7] M. S. Cuthbert and C. Ariza, “music21: A toolkit for
computer-aided musicology and symbolic music data,”
in Proc. of ISMIR, 2010, pp. 637–642.

[8] G. Brunner, A. Konrad, Y. Wang, and R. Wattenhofer,
“Midi-vae: Modeling dynamics and instrumentation of
music with applications to style transfer,” in Proc. of
ISMIR, 2018, pp. 747–754.

[9] A. McLeod and M. Steedman, “Meter detection and
alignment of midi performance.” in Proc. of ISMIR,
2018, pp. 113–119.

[10] K. Watanabe and M. Goto, “Query-by-blending: a mu-
sic exploration system blending latent vector represen-
tations of lyric word, song audio, and artist,” in Proc.
of ISMIR, 2019, pp. 144–151.

[11] M. Schedl, “The LFM-1b dataset for music retrieval
and recommendation,” in Proc. of the 2016 ACM In-
ternational Conference on Multimedia Retrieval, 2016,
pp. 103–110.

[12] T. W. Price, Y. Dong, and D. Lipovac, “iSnap: to-
wards intelligent tutoring in novice programming en-
vironments,” in Proc. of the 2017 ACM SIGCSE Tech-
nical Symp. on Computer Science Education, 2017, pp.
483–488.

[13] K. Rivers, E. Harpstead, and K. R. Koedinger, “Learn-
ing curve analysis for programming: Which concepts
do students struggle with?” in Proc. of the 2016 ACM
Conference on International Computing Education Re-
search, 2016, pp. 143–151.

[14] N. Gold, “Knitting music and programming: Reflec-
tions on the frontiers of source code analysis,” in
2011 IEEE 11th International Working Conference on
Source Code Analysis and Manipulation, 2011, pp. 10–
14.

[15] M. Harman, M. Munro, L. Hu, and X. Zhang, “Source
code analysis and manipulation,” Information and Soft-
ware Technology, vol. 44, no. 13, pp. 717–720, 2002.

[16] A. McLean and G. A. Wiggins, “Live coding towards
computational creativity.” in International Conference
on Computational Creativity, 2010, pp. 175–179.

[17] J. Freeman and B. Magerko, “Iterative composition,
coding and pedagogy: A case study in live coding with
earsketch,” Journal of Music, Technology & Education,
vol. 9, no. 1, pp. 57–74, 2016.

[18] U. Fuller, C. G. Johnson, T. Ahoniemi, D. Cukierman,
I. Hernán-Losada, J. Jackova, E. Lahtinen, T. L. Lewis,
D. M. Thompson, C. Riedesel et al., “Developing a
computer science-specific learning taxonomy,” ACM
SIGCSE Bulletin, vol. 39, no. 4, pp. 152–170, 2007.

[19] C. W. Starr, B. Manaris, and R. H. Stalvey, “Bloom’s
taxonomy revisited: specifying assessable learning ob-
jectives in computer science,” ACM SIGCSE Bulletin,
vol. 40, no. 1, pp. 261–265, 2008.

[20] E. Thompson, A. Luxton-Reilly, J. L. Whalley, M. Hu,
and P. Robbins, “Bloom’s taxonomy for cs assess-
ment,” in Proc. of the tenth conference on Australasian
computing education-Volume 78, 2008, pp. 155–161.

[21] D. R. Krathwohl and L. W. Anderson, A taxonomy
for learning, teaching, and assessing: A revision of
Bloom’s taxonomy of educational objectives. Long-
man, 2009.



[22] J. Smith, M. Jacob, J. Freeman, B. Magerko, and
T. Mcklin, “Combining collaborative and content filter-
ing in a recommendation system for a web-based daw,”
in Proc. of the International Web Audio Conference,
2019.

[23] A. Lerch, An Introduction to Audio Content Analysis:
Applications in Signal Processing and Music Informat-
ics, 1st ed. Wiley-IEEE Press, 2012.

[24] J. Smith, D. Weeks, M. Jacob, J. Freeman, and
B. Magerko, “Towards a hybrid recommendation sys-
tem for a sound library,” in ACM IUI Workshops, 9.

[25] B. Martin, M. Robine, and P. Hanna, “Musical struc-
ture retrieval by aligning self-similarity matrices.” in
Proc. of ISMIR, 2009, pp. 483–488.

[26] J. Foote, “Visualizing music and audio using self-
similarity,” in Proc. of the seventh ACM International
Conference on Multimedia (Part 1), 1999, pp. 77–80.

[27] D. Turnbull and C. Elkan, “Fast recognition of musi-
cal genres using RBF networks,” IEEE Transactions
on Knowledge and Data Engineering, vol. 17, no. 4,
pp. 580–584, 2005.


