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ABSTRACT

In this paper, we present our application of deep neural
network to modeling piano performance, which imitates
the expressive control of tempo, dynamics, articulations
and pedaling from pianists. Our model consists of recur-
rent neural networks with hierarchical attention and condi-
tional variational autoencoder. The model takes a sequence
of note-level score features extracted from MusicXML as
input and predicts piano performance features of the corre-
sponding notes. To render musical expressions consistently
over long-term sections, we first predict tempo and dynam-
ics in measure-level and, based on the result, refine them
in note-level. The evaluation through listening test shows
that our model achieves a more human-like expressiveness
compared to previous models. We also share the dataset we
used for the experiment.

1. INTRODUCTION

Music performance is one of the most essential activities
in music. Good performance requires not only translating
notes in the score into physical actions with precise timing
and right pitch on an instrument but also delivering emo-
tions and messages through subtle controls of tempo, dy-
namics, articulations and other expressive elements.

There have been research interests in modeling expres-
sive performance using a computational method. A re-
cent review paper comprehensively summarized the his-
tory [4]. While some of previous work exploited com-
putational modeling as a tool for understanding how hu-
mans perform [3], or listen to music [10], others focused
on automatically generating expressive performances. The
previous methods include rule-based approaches [2, 8], or
probabilistic models [17, 29], and an artificial neural net-
work [5,11]. The instrument is mainly limited to piano be-
cause it is relatively easy to quantify the performances.
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Recent approaches have attempted to apply deep learn-
ing to modeling expressive piano performance, such as
rendering note velocity and deviation of note onset with
vanilla recurrent neural network (RNN) [20], or predict-
ing note velocity with a long short-term memory (LSTM)
RNN [22]. Others introduced DNN models for generat-
ing polyphonic music with expressive timing and dynam-
ics [13,24]. While these models can generate performance
MIDI notes, they are more like music composition models
rather than expressive performance models that take mu-
sic scores as input. Besides piano performance, a recent
work presented DNN-based system for modeling expres-
sive drum performance [9].

One of the bottlenecks in the DNN-based approach is
the lack of dataset [4]. Since the task is rendering expres-
sive performances from score inputs, the dataset should
consist of music scores and their corresponding perfor-
mances by human musicians. Furthermore, the pair of
score and performance should be aligned in note-level to
effectively train the model. Also, ideally, the list of mu-
sic score and performance should cover various composers
and performance styles.

In this paper, we present a hierarchical RNN-based
model for expressive piano performance along with a
dataset that we organized. The model takes MusicXML
as input and generates performance MIDI with expressive
tempo, dynamics, articulation and pedaling. The model
consists of RNN with hierarchical attention network and
conditional variational autoencoder (CVAE). In particular,
the model predicts the performance features using a multi-
scale approach; it first predicts tempo and dynamics in
measure-level and, based on the result, fine-tunes them in
note-level. A listening test with professional pianists shows
that our model achieves a more human-like expressiveness
compared to previous models.

2. DATASET

2.1 Performance and Score Data

As aforementioned, we need a dataset of human perfor-
mances with their corresponding music scores to train a
neural network model. A list of expressive performance
datasets are summarized in [4]. Among others, Yamaha
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Signature MIDI collection 1 , which are recorded during
Yamaha e-Competitions with computer-controlled pianos,
is the largest public dataset that provides a substantial
amount of expressive performance MIDI of professional
pianists. Some of the pianists performed the same piece
more than once in different rounds of the competition in
different years. The Yamaha collection has been employed
in automatic performance generation [24] and automatic
music transcription and audio synthesis [12] as well.

While the Yamaha collection provides high-quality pi-
ano performance data in MIDI, it does not contain the cor-
responding music scores of the pieces. Thus, we collected
the score files from another source. Specifically, we down-
loaded them from MuseScore, a community-based web
platform of music score 2 . The scores were transcribed vol-
untarily by the community users and can be exported in
MusicXML format. We also included our own transcrip-
tions of scores to the dataset. While MIDI is suitable for
representing performance, MusicXML aims to represent
the Western music notation in its entirety. Therefore, Mu-
sicXML can contain various types of musical symbols such
as rest, slur, beam, barline, key and time signature, articu-
lation, ornament markings and so on, which are excluded
in MIDI format.

2.2 Data Matching and Refinement

Since we collected the performance and score data from
different sources, we had to match and refine them. In
particular, transcription styles in the crowdsourced Mu-
sicXML files are not consistent. For example, some of
the transcribers add extra expressions such as dynam-
ics markings or tempo change to make the score sounds
more expressive. They usually set them to “invisible ob-
jects” to make the transcribed score appear as the refer-
ence score. We deleted such extra markings added by tran-
scribers. Also, we manually checked whether the perfor-
mances followed the repetitions in the scores. If a per-
formance skipped the repetition, we omitted the repetition
from the score so that the performance and the score can
be aligned.

To train a model with note-level score features and
performance features, each note in the score should be
matched to that in the performance. We employed a score-
to-performance alignment algorithm proposed by Naka-
mura et al. [23]. The algorithm automatically handles asyn-
chronously performed notes as well as missing and extra
notes in the performance, and returns a list of note-to-note
matches. Although the algorithm showed high accuracy in
our test, a small amount of alignment errors can be critical
in extracting performance features such as tempo or onset
deviation. Since the dataset is too large to make manual
corrections, we filtered out some erroneous matches based
on simple rules and excluded them in training the perfor-
mance model. For example, if a matched performance note
is too close or even earlier than the previous note in the
score, we regarded it as an alignment error. Also, if multi-

1 http://www.yamahaden.com/midi-files
2 https://musescore.com

ple notes have the same onset time in the score (e.g., chord
notes) but one is too far from other notes in performance,
we regarded it as an alignment error as well.

We found that this additional refinement made severe
improvement on the training result, especially on onset de-
viation, or micro-timing, of individual notes. The standard
deviation of onset deviation decreases from 7.369 to 0.053
after the refinement, where the unit is quarter-notes. With-
out the refinement, the prediction of onset deviation be-
came too noisy that one could not perceive correct rhythm.

As a result, we collected music scores of 226 pieces
by 16 composers in MusicXML and 1,052 piano perfor-
mances in MIDI. After the matching and refinement, the
score and performance data contain a total of 666,918
notes and 3,547,683 notes, respectively. Among the per-
formance notes, 131,095 notes were failed to be aligned
with score notes, and additional 114,914 notes were ex-
cluded by our refinement algorithm. The number of valid
performance notes is ten times larger than the Magaloff
corpus [7], which is the largest existing dataset for classi-
cal piano music [4].

3. SYSTEM ARCHITECTURE

3.1 Background

3.1.1 Input and Output Features

Designing input and output features is an important issue in
performance modeling because it defines the characteris-
tics of the computational task [4]. We followed the scheme
we previously proposed in [15], which covers a wide range
of score and performance features. The score features in-
clude pitch, duration, articulation marking, slur and beam
status, tempo marking, dynamic markings, and so on. The
performance features include absolute tempo, velocity, on-
set deviation, articulation and pedal usages. All the features
are encoded in the note-level so that each note had the same
dimension of score features and performance features.

3.1.2 Hierarchical Attention Network

Recent research has shown that a hierarchical approach can
improve the performance of RNN model in modeling se-
quential data [6, 30]. It was also demonstrated that the hi-
erarchical approach has advantages in generating symbolic
music data [25]. In this paper, we employ a hierarchical
attention network (HAN) to predict a sequence of perfor-
mance features from a sequence of score features.

The HAN composes higher-level representations by
summarizing lower-level representations in pre-defined hi-
erarchical boundaries using a weighted sum. In our case,
we set beat and measure as the hierarchical boundaries so
that beat-level attention and measure-level attention sum-
marize note-level and beat-level representations, respec-
tively. Instead of directly implementing the HAN in [30],
we combined it with the idea of multi-head attention [28]
which splits the dimension into several heads and applies
different weights of attention for each split.

Composing nodes through the attention layers can be
described as follows. For each hierarchical boundary,
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Figure 1. The overview of the proposed system.

which can be a beat or a measure in music score, the notes
in the boundary can be indexed with t ∈ [Bf , Bl], where
Bf and Bl represent the index of the first and last notes in
the selected boundary B. The lower-level hidden states ht

for t in the boundary B are summarized by context atten-
tion to compose a higher-level node m. There are a total I
number of attention heads indexed with i.

ut = tanh(Waht + ba)
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t = ut,i:(i+1)d

hi
t = ht,i:(i+1)d

αααi
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exp(ui
t
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c)∑
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t
ᵀui

c)

mi =
∑
t

αααi
t ∗ hi

t

m = Concat(m0, ...,mI)

(1)

where Wa and ba denote weight and bias parameters of at-
tention, and uc denotes a context vector representing query
for importance, which are trainable parameters. The se-
quence of summarized nodes are fed into a new layer of
LSTM.

3.1.3 Conditional VAE

A music score can be interpreted and performed in various
styles, i.e. with a different tempo or phrasing. Therefore it
is important to enable the performance modeling system to
generate different types of performance. On the other hand,
the variation of performance can be an obstacle for train-
ing the model, because it has to generate different outputs
from the same input. To solve this problem we employed
a conditional variational autoencoder (CVAE), which we
proposed in our previous work [14].

VAE is a widely used generative models based on deep
neural networks [19]. It is a type of autoencoder, which
compresses input information into a lower dimensional la-
tent vector and decodes the original information from the
compressed latent vector. The main difference is that VAE
constrains its latent vector to be sampled from a probabil-
ity distribution. VAE consists of an encoder that models
q(z|x) and decoder to model p(x|z). VAE also models the
probability of latent vector p(z), which usually has a nor-
mal distribution. The training loss of VAE can be define as
follows:

LVAE = Lrec + βDKL[(q(z|x)||p(z)] (2)

where Lrec is the reconstruction error from AE, DKL is
Kullback-Leibler divergence (KLD), and β is a weight for
the KLD.

Figure 2. Diagram for Score Encoder with HAN and RNN

A conditional VAE (CVAE) provides an additional con-
dition so that the output satisfies the given condition [27].
In our system, the condition is the learned score represen-
tation, and the target output are the performance features.
The idea of employing CVAE for expressive performance
modeling was first proposed in [21]. While the previous
work encoded the latent vector in note-level, our idea is to
encode the performance style in a longer-level, such as an
entire piece.

3.2 Proposed System

Our proposed system consists of three parts: score en-
coder, performance encoder, and performance decoder as
depicted in Figure 1.

The role of score encoder is to learn score representa-
tionsC from an input sequence of notes. It consists of three
hierarchical-levels: note, beat, and measure. Each level has
a corresponding bidirectional LSTM unit with a different
hidden size and number of layers. The note-level layer con-
sists of two different LSTM units, one taking the input as
a single sequence, and the other taking the input as voice-
separated sequences. The “voice” means the voice index in
MusicXML that represents an independent stream of mu-
sic as depicted with different colors of notes in Figure 2.
The hidden representations of the lower-level are summa-
rized through the HAN to compose higher-level nodes. The
output of the note-level LSTM is summarized to beat-level
nodes and then they are fed into the beat-level LSTM. Sim-
ilarly, we compose the measure-level LSTM. We concate-
nate the outputs of all the three layers in a note-level as
depicted in Figure 2. The output of score encoder is a se-
quence with the same length as the input. Since we use
multi-head attention instead of single-head attention, each
attention head focuses on the different type of notes as il-
lustrated in Figure 3.

We implemented the performance encoder using CVAE
that models q(z|C, y) to summarize the given performance
y in score condition C to a probability distribution of the
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Figure 3. Visualization of attention weights from different
attention heads. a) focuses more on the melody notes while
b) focuses more on the bass or harmonic notes.

Figure 4. The figure shows how the beat-level decoder
and the note-level decoder feed its results to the other. The
dashed lines in red indicate the edge of beats.

latent vector z, which can be regarded as a performance
style vector. C and y are concatenated and fed into a single
dense layer that contracts the feature dimension. We use
uni-directional note-level LSTM and measure-level HAN-
LSTM to process the contracted input. The last output of
the sequence from the measure-level LSTM is used to infer
µ and σ of q(z|C, y) by a dense layer.

During the actual performance generation from a given
score, the performance encoding is bypassed, and the sys-
tem randomly samples the style vector z from a normal
distribution or exploits a pre-encoded z from other perfor-
mances.

The performance decoder uses LSTMs to generate a se-
quence of performance features ŷ for the given conditionC
and the style vector z. Since the tempo is always estimated
in beat level, we have two different LSTM units, one in
the beat-level and the other in the note-level. Both LSTMs
are in auto-regressive, i.e., take their own output from the
previous step as an input, and the outputs of the note-level
decoder is fed into the beat-level decoder, and vice versa,
as presented in Figure 4.

3.3 Measure-level Module

One of the main difficulties in expressive performance
modeling is achieving long-term expression such as grad-
ual change of tempo or contrast between loud and quiet
sections. To solve this problem, we propose an optional
measure-level module that predicts measure-level tempo
and dynamics as presented in Figure 5. The main idea is
to make our system predict overall progress of the perfor-

Figure 5. Diagram for Measure-level modules

mance in measure-level and then refine it in note-level. A
similar idea achieved a successive result in image genera-
tion using GAN, which started training in a low resolution
and progressively in higher resolutions [16].

To train the measure-level module, we have to de-
fine measure-level performance features. The measure-
level tempo is defined by elapsed time to play the mea-
sure divided by the length of the measure in quarter-notes.
We used average velocities of notes in the measure for a
measure-level dynamics. The measure-level module has al-
most the same architecture with the note-level modules ex-
cept that the output of the score encoder is the measure-
level states instead of concatenated result of note, beat and
measure hidden states. The performance encoder and de-
coder are also in measure level.

In this hierarchical approach, the note-level module
takes not only the score data but also the output of the
measure-level module as a concatenated input. It is pos-
sible to combine two modules as a single model or in a
single training process, but we made two modules indepen-
dent and trained them separately. Therefore, the note-level
module is trained with ground-truth measure-level outputs.

4. EXPERIMENTS

4.1 Training

We split the dataset into training, validation, and test sets
so that each set has a size of approximately 8:1:1 in the
number of piece, performance, and notes, while consider-
ing the distribution of composers in each set. A single piece
was included only in either of one of the splits. For the
training set, we sliced the input sequences at the measure
boundaries with the least size of 500 notes. When training
the measure-level module, the sequence has at least 2000
notes or entire notes if the piece is short. The note is or-
dered by its appearance order and pitch. The features with
continuous value was normalized to have zero mean and
unit standard deviation.

We calculated the loss in mean square error (MSE) be-
tween each feature. The loss was calculated for each note
and each output features, except the tempo, whose loss was
calculated in beat level. During the training, the input se-
quences included all the notes that have non-matching per-
formance notes, because missing notes in the input data
can change the context of the other notes in the score. How-
ever, these notes were excluded in the loss calculation be-
cause we could not extract performance features for the
notes. Since the articulation is largely affected by the sus-
tain pedal, we reduced the weight for the articulation loss
to 0.1 for notes with the sustain pedal pressed at the offset.
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Model Tempo Vel Dev Artc Pedal
Baseline 0.400 0.673 0.773 0.721 0.843
HAN-S 0.269 0.607 0.753 0.688 0.820
HAN-M 0.220 0.532 0.747 0.754 0.810

Table 1. Reconstruction loss of each model on the test set
in MSE. Vel, Dev and Artc denote velocity, onset deviation
and articulation, respectively.

We used the ADAM optimizer [18] with an initial learn-
ing rate of 0.0003 and dropout ratio of 0.1. To avoid that
the system bypasses z during the decoding, we use the
KLD weight annealing as proposed in [1], so that the KLD
weight started from zero at the beginning of training, and
increased to 0.02 gradually.

4.2 Model Configuration

The score encoder of our proposed system has three-layer
dense network of size 128 with ReLU activation as an em-
bedding layer, two-layer bidirectional(Bi)-LSTMs of size
128 for note-level and voice-level, two-layer Bi-LSTM of
size 64 for beat-level, and one-layer Bi-LSTM of size 64
for measure-level. The performance encoder has two-layer
unidirectional(Uni)-LSTM of size 16 for note-level and
one-layer Uni-LSTM of size 16 for measure-level. The size
of latent vector z in CVAE is 16. The performance decoder
consists of one-layer Uni-LSTMs for beat-level and note-
level both of size 64. The measure-level module has almost
the same setting except that every hidden size of the net-
work in the performance encoder is 8 including the latent
vector z.

To compare our approach with HAN architecture and
measure-level modules (HAN-M), we also trained two
other models. The first model is a baseline model that uses
only three-layers LSTM in note-level with hidden size of
256. The other model, which will be denoted as HAN-S, is
a model that excludes the measure-level module. In HAN-
S, the hidden size of beat-level layer in the score encoder
and performance decoder was 128.

5. RESULTS

5.1 Reconstruction Error

Quantitative evaluation of modeling expressive perfor-
mance is a not trivial issue. One of the frequently used
quantitative evaluation method is calculating MSE of out-
put features [4]. Comparing the predicted outputs with
“target” performance can be arbitrary, because there can be
various ways to perform the score. In our system, however,
there is a performance encoder and a latent style vector z
that, ideally, makes the output in a style of the target per-
formance. Therefore, comparing output features with the
target performances is more reasonable. Also, as a learn-
ing model, it is fair to check the test loss with the same
criteria used for training.

Table 1 shows the reconstruction loss of each model
on the test set which includes 21 pieces and 109 perfor-
mances. The two HAN models achieved much less recon-
struction error than the baseline model. This indicates that

Figure 6. Average score of the listening test for Schubert
Sonata in 7-point Likert scale. The t-test results between
our models (HAN-S,M) and Human are marked with ns
only if it is not significant. The results between our models
and the others models are marked only if it is significant.
“*” and “**” denote “p≤0.05” and “p≤0.01”, respectively.

the hierarchical approach helps the model to generalize to
unseen data. Between the two HAN models, HAN-M is
slightly better than HAN-S. We have tested different pa-
rameter sizes for HAN-S so that HAN-S has a similar num-
ber of parameters with the sum of two modules in HAN-M,
but the result was not much different.

5.2 Listening Test

We also conducted a listening test to evaluate our model
qualitatively. We asked five students, who are majoring pi-
ano at a college of music, to listen to the rendered perfor-
mances and evaluate them with criteria presented in Figure
6 in 7-point Likert scale (1 - very bad, 7 - very good) with
additional comments on the performance. We chose three
pieces of different styles from our test set: the first move-
ment from Beethoven’s Piano Sonata No. 5 (cut before re-
capitulation), Chopin’s Etude op. 10 No. 2 (entire piece),
and the first movement from Schubert Piano Sonata D.664
(cut before development).

We prepared five different performances MIDI per
piece: a human performance from Yamaha e-competition,
a direct export from MusicXML score to MIDI by a nota-
tion program (MuseScore), each of rendered performances
from HAN-S and HAN-M, and Basis Mixer (BM). The
result exported from MuseScore had no tempo change but
the velocities of notes were changed by a simple rule-based
conversion of dynamic markings in the score. BM is the
only publicly available model that does not require ad-
ditional notation among previous expressive performance
models [5]. It also achieved a highest score among other
computational methods in previous research [26]. We in-
cluded the BM model in the listening test and generated
performances with the same MusicXML file we used for
our model 3 . Since the recording and playback in audio
systems can affect the quality of performance, we invited
the participants to our studio and played the prepared MIDI
files with a Yamaha Disklavier piano. Each performance
was played once in a random order.

The result of evaluation on Schubert is presented in Fig-
ure 6 As expected, all participants gave highest scores in

3 https://basismixer.cp.jku.at/static/app.html
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every criteria for the human performance. Our proposed
model, HAN-S and HAN-M, achieved higher scores in all
seven criteria compared to other models. Two among five
participants gave more than five out of seven points as the
human confidence for the performance by HAN-S, and one
gave five points to HAN-M. The t-test result showed that
HAN-S and HAN-M showed statistically significant differ-
ences (p ≤0.05) compared to the score and the BM model
in overall ratings of the performance of Schubert.

The positive comments on our models were: “the inter-
pretation was interesting” (Beethoven, HAN-M), “felt that
the flow of performance was humane" (Beethoven, HAN-
S), “voicing was too good so that it felt like performed
by multiple performers” (Chopin, HAN-S), “sounded
like a performance by human with strong characteris-
tics” (Chopin, HAN-S), “voicing was fine except some
faults” (Schubert, HAN-M), and “sounded like machine-
generated performance with fine pedaling” (Schubert,
HAN-S) .

There were also negative comments criticizing our
models, such as “used too much pedal”, “pedal points
were unnatural”, “lack of color”, “too short articulation”,
“some tempo or dynamic changes were unnatural”, “touch
was too light”, and “it did not seem that the performer
was listening to the performance”. Although our models
had predicted the pedal usage, the pedaling was often too
deep and “dirty” or too shallow. The result showed that the
note-level pedal embedding needs improvement.

The responses of our participants for performances by
BM, which is a data-driven model based on RNN, were
negative regardless of the piece. The comments from the
participants said that “although there was a clear inten-
tion to express phrasing, it was unnatural and sounded like
a mechanical interpretation” (Schubert), “inaccurate and
limping rhythm” (Beethoven and Schubert),and “the tem-
poral gaps at measure boundary were unnatural” (Chopin
and Schubert). Unlike the Score MIDI, the performance by
BM included clear change in tempo for phrasing. However,
most of the participants gave almost the same level of neg-
ative response to its phrasing quality compared to the Score
MIDI. This shows how difficult it is to model phrasing of
the music.

The results were also largely differed by the character-
istics of the piece. For example, Schubert’s Sonata has a
song-like melody with arpeggio accompaniments. Hence,
it was important to model the natural phrasing, e.g., subtle
change of tempo and velocity according to the melody. On
the other hand, the fast chromatic scale in Chopin’s Etude
demands a stable tempo. Therefore, Score MIDI received
six out of seven points for overall quality from three partic-
ipants because the performance was in perfectly constant
tempo with strict following of dynamic markings. The flex-
ibility of tempo generated by our model was not favored by
the participants in case of Chopin’s Etude.

In summary, the results of listening test shows that our
models have achieved more natural expressions compared
to the other models, especially in a piece with song-like
melodies. Modeling the pedal usage and a human-like sta-

Figure 7. a) Local tempo changes and b) Dynamics change
in different performances of Schubert’s Piano Sonata

ble tempo are issues to further investigate.

5.3 Case Study: Comparison in Tempo and Dynamics

The quality of phrasing can be also observed from exam-
ples. Figure 7-a) compares local tempo changes in differ-
ence performances of Schubert’s Sonata. The local tempo
is represented with inter-onset-interval (IOI) which is com-
puted by dividing seconds into quarter-note. BM has an ev-
ident peak at around the 10th note, which was exaggerated
than any other human pianists. In terms of Pearson corre-
lation, HAN-S and HAN-M have a strong positive correla-
tion with the pianists (0.7<r<1.0) while the BM model has
a less positive correlation (0.3<r<0.5).

Figure 7-b) compares dynamics changes of melody
notes in different performances of the same piece. The dy-
namics is represented with MIDI note velocity. Increasing
and decreasing timings of HAN-M and HAN-S are gener-
ally similar to pianists. For example, decrescendo starts at
note sequence 40 which follows crescendo, then pp starts
at 45 and comes back to mf at 48. Both HAN-M and HAN-
S show similar downward and upward curves with pianists
while the BM model shows just slight upward curve. These
trend can be proved by correlation coefficients among pi-
anists and generated models. HAN-S and HAN-M have
significant positive correlation with pianists (0.3<r<0.7)
while BM has almost no correlation (r<0.1).

6. CONCLUSIONS

We introduced a hierarchical RNN-based system for mod-
eling expressive piano performance and a dataset for
training the model. Our listening test demonstrated that
our model achieved more human-like musical expression
compared to the previous model [5]. The source code
and dataset are available in https://github.com/
jdasam/virtuosoNet.
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