
LEARNING NOTATION GRAPH CONSTRUCTION FOR
FULL-PIPELINE OPTICAL MUSIC RECOGNITION

Alexander Pacha
Institute of Information Systems
Engineering, TU Wien, Austria

alexander.pacha@tuwien.ac.at

Jorge Calvo-Zaragoza
Pattern Recognition and Artificial

Intelligence Group
University of Alicante, Spain
jcalvo@dlsi.ua.es

Jan Hajič jr.
Institute of Formal and

Applied Linguistics,
Charles University, Prague

hajicj@ufal.mff.cuni.cz

ABSTRACT

Optical Music Recognition (OMR) promises great bene-
fits to Music Information Retrieval by reducing the costs of
making sheet music available in a symbolic format. Recent
advances in deep learning have turned typical OMR obsta-
cles into clearly solvable problems, especially the stages
that visually process the input image, such as staff line re-
moval or detection of music-notation objects. However,
merely detecting objects is not enough for retrieving the
actual content, as music notation is a configurational writ-
ing system where the semantic of a primitive is defined by
its relationship to other primitives. Thus, OMR systems
must employ a notation assembly stage to infer such re-
lationships among the detected objects. So far, this stage
has been addressed by devising a set of predefined rules
or grammars, which hardly generalize well. In this work,
we formulate the notation assembly stage from a set of de-
tected primitives as a machine learning problem. Our no-
tation assembly is modeled as a graph that stores syntactic
relationships among primitives, which allows us to cap-
ture the configuration of symbols in a music-notation docu-
ment. Our results over the handwritten sheet music corpus
MUSCIMA++ show 95.2% precision, 96.0% recall, and
an F-score of 95.6% in establishing the correct syntactic
relationships. When inferring relationships on data from a
music object detector, the model achieves 93.2% precision,
91.5% recall and an F-score of 92.3%.

1. INTRODUCTION

Optical Music Recognition is the field of research that in-
vestigates how to read music notation in documents com-
putationally. This technology enables many computational
tasks that, otherwise, could not be performed directly on
the music sources themselves [17]. One interesting appli-
cation of OMR is concerned with reconstructing the notes
encoded in the music-notation document, also referred to

c© Alexander Pacha, Jorge Calvo-Zaragoza, Jan Hajič jr..
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Alexander Pacha, Jorge Calvo-
Zaragoza, Jan Hajič jr.. “Learning Notation Graph Construction for Full-
Pipeline Optical Music Recognition”, 20th International Society for Mu-
sic Information Retrieval Conference, Delft, The Netherlands, 2019.

as replayability [22]. In particular, the objective of the re-
playability application is to recover the pitches, onsets, du-
rations, and velocities of notes from a document and ex-
port them into a symbolic representation. This symbolic
representation—e.g., a MIDI file—is already a very useful
abstraction of the music itself and allows for plugging in a
wide range of music information retrieval tools. However,
despite prolonged efforts, the replayability application is
still under research [4, 7, 16, 36].

Given the wealth of information that is contained in a
music score, the task of decoding its content is usually ad-
dressed by dividing the process into smaller stages that rep-
resent limited challenges. The general pipeline, proposed
first by Bainbridge and Bell [3] and later refined by Re-
belo et al. [29], is considered a de-facto standard, which
organizes the process into four main blocks: i) preprocess-
ing, which works over the input image to ease further steps
and make the system more robust; ii) music object detec-
tion, which is in charge of retrieving and classifying all
objects and glyphs of the image; iii) notation assembly,
which must infer the relationships among the detected ob-
jects to reconstruct the music notation itself; and iv) encod-
ing, which exports the symbolic reconstruction into the de-
sired format, typically MIDI for replayability or an XML-
based encoding such as MusicXML [15] or MEI [19] for
further computational processing.

As our starting point towards completing the OMR
pipeline, we assume that the music object detection stage
can be solved reliably, which allows us to investigate how
to deal with the later stages. In this paper, we want to focus
in particular on the third stage, which is responsible for the
notation assembly. Although previous work exists, most
approaches are based on predefined rules that hardly gen-
eralize, and that only work for a limited set of scenarios.
In contrast, we propose a well-principled machine learning
approach, which addresses the problem in a generalizable
way, provided there is convenient training data.

2. RELATED WORK

Most literature on OMR focuses on the first stages of the
pipeline. This comes as no surprise because if one strug-
gles with detecting music objects in an image reliably, it
is understandable that subsequent stages that build on top
of that are often neglected. With the appearance of deep

75



learning in OMR, however, many steps that traditionally
produced suboptimal results, such as the staff-line removal
or symbol classification, have seen drastic improvements
[14, 26] and are no longer considered obstacles for OMR
development.

Deep learning also caused some steps to become obso-
lete or collapse into a single (bigger) stage. For instance,
the music object detection stage, which was traditionally
separated into segmentation plus classification stages, is
currently addressed in a single step. Convolutional neu-
ral networks have been shown to be able to deal with the
music object detection stage holistically, without having to
remove staff lines at all [25]. A compelling advantage is
the capability of these models to be trained in a single step
by merely providing pairs of images and positions of the
music objects to be found, eliminating the preprocessing
step altogether [24, 35]. This issue has been the subject
of intense recent research. A comparison of existing ap-
proaches to holistic music object detection is presented in
the work of Pacha et al. [27].

Since the beginning of the OMR research, there have
been attempts to complete the full pipeline, including the
notation assembly stage. Below, we introduce some par-
ticular proposals to perform this stage that can be found in
the existing literature. They can be broadly divided into
grammar-based approaches, and approaches that rely on
heuristics and pre-defined rules.

2.1 Grammar-based approaches

Formal grammars represent the most widely used descrip-
tion of music notation. This feels natural, given that music
notation has syntactic rules and hierarchical structures that
invite such a formalization. These grammars are manually
built to describe the expected relationships among music-
notation objects and then used to reconstruct the music no-
tation from the detected primitives [1–3, 5, 6, 30, 33]. The
2D nature of music notation also inspired graph grammars,
as in the work of Fahmy and Blostein [12]. A prominent
example of this approach is the DMOS system, proposed
by Coüasnon et al. [8,9], which uses a definite clause gram-
mar for describing the relations between graphical objects
on two levels: a graphical one that assists the recognition
of symbols and a syntactic one, which introduces the mu-
sical semantics into the process.

2.2 Heuristical approaches

The other set of approaches relies on ad hoc rules for the
music notation at hand. This includes assumptions about
the configuration and position of the occurring primitives
to reconstruct composite symbols and the notation graph
[10, 23, 28, 34]. Rossant et al. [31] additionally consid-
ered fuzzy modeling, which allows for self-correction dur-
ing the recognition [32]. Their system evaluated different
hypotheses of recognized symbols to verify the compati-
bility between them.

3. NOTATION ASSEMBLY

The related works clearly show a lack of machine learning
approaches. This work aims to fill that gap, by propos-
ing a formulation of the notation assembly stage based on
machine learning models. The advantage of such models
is that they provide greater flexibility since they can vary
their behavior by just changing the provided training set.
This is especially interesting for OMR, where there is a
great diversity of scenarios depending on the epoch or type
of composition of the music scores.

The conventional OMR pipeline foresees that the nota-
tion assembly stage infers the relationships among previ-
ously detected music objects to retrieve the necessary in-
formation to infer the sequence of notes and rests.

Our approach understands that music notation can be
modeled as a directed graphG = (V, T ), hereafter referred
to as Music Notation Graph (MuNG). V represents the set
of vertices, where ζ(v), v ∈ V is the label associated with
a vertex. T represents the set of directed edges, such that
ti = (v1, v2), ti ∈ T, v1, v2 ∈ V denotes an edge from
vertex v1 to vertex v2. The primitives that make up the
music notation, such as noteheads or stems, are modeled
as vertices of this graph, while the relationships between
these symbols are modeled by the edges. In our MuNG,
the edges are not labeled, but there are two types of rela-
tionships:

• Syntactic edges that relate elements syntactically.
This includes relationships between primitives that
make up a composite symbol, such as an eighth note,
which consist of a notehead, a stem, and a flag or
beam as well as general relationships, e.g., between
an accidental and the notehead that is affected by it.

• Precedence edges that specify the temporal order be-
tween notes. In most cases, the position on the hori-
zontal axis is sufficient to infer this kind of relation-
ship; however, for polyphonic music, a more sophis-
ticated mechanism is needed to handle ambiguous
situations.

We can, therefore, define the set of edges as T = S∪P ,
where S is the set of edges that define the syntactic rela-
tionships and P is the set of edges that define the prece-
dence relationships. A graphical representation of MuNG
is shown in Fig. 1. The primary goal of our work is to train
a machine learning model to construct such a MuNG G
from a music score image.

4. LEARNING MUSIC NOTATION GRAPH
ASSEMBLY

There are existing algorithms that are capable of dealing
with the input image and retrieving a set of detected music-
notation primitives. In other words, these algorithms pro-
cess the input and provide the set of vertices V , along with
its associated labels and bounding-boxes. In order to com-
plete the OMR pipeline for replayability, we also need to
recover the set of edges T .

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

76



Figure 1: Graphical representation of a Music Notation
Graph in a selected excerpt of music notation: vertices
are highlighted with transparent yellow bounding boxes
around the music-notation primitives, syntactic edges are
shown as transparent cyan lines, and precedence edges
are shown as transparent purple lines connecting the note-
heads.

We propose a principled way of inferring T without re-
sorting to a set of fixed rules but using machine learning.
Our system learns to establish these relationships from a
conveniently annotated training set so that the rules are im-
plicitly modeled by the machine learning model.

The edges that relate vertices of the set T have an un-
labeled binary nature; i.e. for each pair of vertices, a rela-
tionship either exists or not. Formally speaking, the infer-
ence of these relationships can be formulated as a function
f : V × V → {0, 1}. However, given their different na-
ture, the set of edges S and P are inferred by independent
models. To learn the functions fS and fP , for the edges
of S and P , respectively, we propose to train binary classi-
fiers that receive two vertices and predict whether such re-
lationship must be established or not. To do so, one would
have to estimate the potential relationship between each
pair of symbols, which entails high computational costs.
However, it is obvious that most of these relationships are
unfeasible. Since the music object detection stage also re-
trieves some associated information, such as the label ζ(v)
associated to each vertex and the bounding box of that ob-
ject in the input score image, we can use this information
to filter edges by two criteria:

1. An edge is only feasible if the distance between the
bounding boxes of their vertices falls below a certain
threshold t. In other words, two vertices that are too
far apart cannot be related.

2. An edge is only feasible if the labels of its associ-
ated vertices are “compatible”, e.g., a notehead with
a stem. This eliminates a large number of incom-
patible combinations, such as an edge between an
accidental and a rest. The compatibility map is a
fixed list of vertex pairs that, according to the syntax
of modern music notation, can hold a relationship to
each other.

Then, given two vertices v1 and v2, for which their edge
is declared feasible, we train a deep convolutional neural
network to predict whether there must be an edge from v1
to v2 or not. We generate a multi-channel image with a
fixed size that serves as input features for the neural net-
work, which consists of:

• Channel 1: the patch of the input score image that is
centered at the objects represented by v1 and v2.

• Channel 2: the binary mask of the object v1

• Channel 3: the binary mask of the object v2

The required information to generate these multi-
channel images can be obtained from the bounding boxes
of v1 and v2, which are expected to be generated during
the preceding music object detection stage. Note, that the
masks for channel 2 and 3 are obtained from the bound-
ing boxes and the underlying image, which means that
the masks can (partially) include other objects as well un-
less the exact masks are provided via pixelwise segmenta-
tion [16, 35].

The network is then fed with this 3-channel image and
trained to predict 1 if there should be a relationship be-
tween the vertices, and 0 otherwise. Visualizations of the
input images are given in Fig. 2.

4.1 Dataset

To carry out our experiments we need a corpus, which
has annotations for both the individual symbols as well
as their relationships. Currently, the only publicly avail-
able dataset which fulfills this requirement is the MUS-
CIMA++ dataset [18] of handwritten music notation. It
provides symbol-level annotations as well as relationship
annotations for 140 out of 1 000 images from the CVC-
MUSCIMA dataset [13]. The MUSCIMA++ dataset con-
tains 91 254 annotated symbols, consisting of both nota-
tion primitives and higher-level notation objects, such as
key signatures or time signatures as well as 82 247 explic-
itly marked relationships between symbol pairs.

Unfortunately, the precedence relationships between
notes are not included in the MUSCIMA++ dataset, so our
experiments consider only the syntactic edges. However,
the formulation and the proposed approach are very simi-
lar and should work for both kinds of edges.

4.2 Relationship Reconstruction

For learning the relationships, we train a convolutional
neural network in PyTorch with five consecutive blocks,
each consisting of a convolution, batch normalization, a
non-linearity (ReLU), and max-pooling, before going into
a fully connected layer with a single output neuron fol-
lowed by a sigmoid activation function that produces the
final estimation. The network has 28 865 parameters in to-
tal. We use the Binary Cross-Entropy loss and train with
the Adam optimizer [20] until the validation performance
has not improved for ten epochs, upon which we stop.

The data-loading routine presents the biggest challenge
because it has to construct the multi-channel images as de-
scribed in Sect. 4. To efficiently generate the set of vertex-
pairs, we compute the pairwise distance between all ob-
jects in an image but filter them considerably afterward by
the distance and compatibility criteria (see Sec. 4). The
distance threshold was set to t = 200 pixels for including
most valid edges from the MUSCIMA++ dataset. Valid re-
lationships between objects that are further apart than 200
pixels are extremely rare and were neglected in favor of

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

77



(a) A positive example of two objects that
are related.

(b) A negative example of two objects that
are unrelated.

(c) A hard negative example of a dot that
could be related to the notehead, but is not.

Figure 2: Three samples of images that are used during training. The mask given in channel 2 is shown as bright green
overlay and the mask from channel 3 as cyan overlay.

computational efficiency. Our compatibility map contains
225 valid combinations of primitives. To improve the per-
formance even further and simplify the classification task,
the input image for the neural network is cropped to a
sub-image of 512 × 256 pixels (width × height), contain-
ing the two objects of interest at its center. Both the dis-
tance threshold and the sub-image dimensions are hyper-
parameters that are dataset-dependent but can be obtained
by running a statistical analysis on the used dataset.

We split the 140 images of the dataset into 60 % train-
ing data, 20 % validation data, and 20% test data. In each
epoch, the network is trained on approximately 250 000
images of candidate pairs. Approximately 25 percent of
the candidates contain positive examples. The best re-
sults were obtained after just 12 epochs before the network
started to overfit and the validation performance declined.
The source-code is publicly available on Github. 1

4.3 Music Object Detection

Since the notation assembly stage begins after the music
objects have been detected in the score image, we also
wanted to evaluate, how well our approach works on ac-
tual detection results. For obtaining such results, we resort
to a state-of-the-art music object detector as proposed by
Pacha et al. [25] with a minor modification: While we do
divide the full page into sub-images containing one stave
each, we do not see the need for cutting the images any fur-
ther. The model selection and training procedure remains
unchanged. We split the dataset into 100 images for train-
ing, 20 images for validation and 20 images for testing, as
proposed by the authors of the MUSCIMA++ dataset. The
improved implementation is publicly available. 2

We evaluate the trained model on the test set for the
stave-wise individual images and report the Mean Average
Precision (mAP) as defined for the COCO challenge [21]
which is a unified metric, commonly used for object detec-
tion tasks. The trained model achieves 69.5 % mAP. For
comparison, we also report a mAP of 93.3 % when using
the mAP as defined for the PASCAL VOC challenge [11],
which was used in the original paper. Finally, the im-
ages are merged into the full-page results upon we achieve:

1 https://github.com/OMR-Research/MungLinker
2 https://github.com/apacha/

MusicObjectDetector-TF

34.5 % mAP / 45.2 % w-mAP 3 (COCO) and 53.8 % mAP
/ 80.9 % w-mAP (PASCAL). As our main focus is on learn-
ing relationships and not music object detection, we do
not go into further details on these numbers. However,
we want to point out that the COCO metric is very strict
and probably underestimating the performance of the mu-
sic object detector (see Fig. 3 for an example output).

4.4 Evaluation Protocol

Once the music objects have been detected, and their rela-
tionships established, the system can produce a complete
MuNG that can be compared with the reference MuNG,
provided as ground truth. However, it is necessary to first
establish the correspondences between vertices from the
prediction and the ground-truth. To do so, we assume that
a detected object v1 corresponds to a ground-truth object
v2 if they depict the same class ζ(v1) = ζ(v2) and their
Intersection over Union exceeds 50 %.

Once the vertices of the ground-truth are matched with
the detected objects, it is possible to compute the statistics.
If an established relationship is correct, it is considered a
true positive (TP); if an established relationship is incor-
rect, it is considered a false positive (FP); and, if an ex-
pected relationship is not predicted, it is considered a false
negative (FN). Then, we can compute precision (P ), recall
(R), and F-score (F1) metrics:

P =
TP

TP + FP
, R =

TP
TP + FN

, F1 = 2
P ×R
P +R

P measures how reliable the established relationships
are, whereas R measures the ability of the model to re-
trieve as many relationships as possible. F1 summarizes
both metrics with a single value.

Note that, although our evaluation is primarily focused
on the relationships between objects, the used metrics are
affected by the performance of the music object detector.
Errors from earlier stages of the OMR process propagate
to later stages. So if musical objects were missed, their
relationships are counted as false negatives. To account for
this, we evaluate our model in two ways:

3 Weighted Mean Average Precision is the Mean Average Precision,
weighted by the frequency of the occurring classes, which is higher be-
cause frequent classes yielded better results than rare ones.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

78



Figure 3: Sample output of the improved music object detector. Each detected object v has a box around it, with the color
representing the class ζ(v) of the particular object, e.g., light green for full-noteheads.

• over a hypothetical set of perfect detections, which
we can extract from the ground-truth of the corpus,
and

• over the result of an actual music object detec-
tor, specifically using the state-of-the-art model, de-
scribed in Sect. 4.3.

These settings allow us to answer the two questions:
Does the proposed approach for reconstructing the MuNG
with a machine learning model work at all? If yes, how
well does the system perform in a real-world scenario,
when confronted with (imperfect) object detector results
instead of the perfect ground-truth bounding boxes?

4.5 Results

The main objective of our work is to demonstrate that the
notation assembly stage can be formulated as a machine
learning task. The main results of our experiments are
given in Table 1. It can be observed that the proposed ap-
proach is highly effective: in all cases, values above 90 %
are reported.

When starting from ground-truth music object detec-
tion, our model yields P = 95.2%, R = 96.0%, and
F1 = 95.2%, which indicates a successful approach to
completing the OMR pipeline. In case of starting from
actual results of a state-of-the-art detector, performance
decreases slightly to P = 93.2%, R = 91.5%, and
F1 = 92.3%. We think this is because the location of the

objects is not always exact (leading to a lower P ) and miss-
ing symbols cause relationships to be irrecoverable (lead-
ing to a lower R).

Graph Edges / Relationships

Precision Recall F-Score

Perfect Detection 95.2% 96.0% 95.6%
Real Detector 93.2% 91.5% 92.3%

Table 1: Overall performance of the proposed machine
learning model to reconstruct syntactic edges of the Mu-
sic Notation Graph (MuNG), given hypothetically perfect
detection results (top row), and given results from a state-
of-the-art detector (bottom row).

In order to provide more experimental insights, Table
2 reports 10 out of the 225 compatible combinations of
relationships that are most common in the MUSCIMA++
dataset. As might be expected, the notehead primitives
are involved in all of these frequent combinations. In this
regard, our model obtains nearly optimal results for these
over-represented cases. Note that these relationships are
of particular relevance to be able to decode the notes that
appear in the score. When comparing the individual results
to the overall results in Table 1, the discrepancy can be
explained by looking at the remaining 215 combinations
that are not shown. Many of these have a much lower F1,
probably because they are under-represented in the dataset.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

79



From To Number of candidate
pairs in the dataset F-Score on the test set

notehead-full stem 158064 99.5%
notehead-full beam 61253 98.7%
notehead-full leger_line 47503 98.1%
notehead-full slur 24738 96.4%
notehead-full 8th_flag 12877 97.7%
notehead-full sharp 12563 97.5%
notehead-full duration-dot 12305 96.7%
notehead-empty stem 9488 100.0%
notehead-full staccato-dot 8628 96.8%
notehead-full natural 7160 98.7%

Table 2: Overview of the ten most common combinations of object-pairs, along with the number of generated candidate
pairs in the dataset, as seen by the network. The last column contains the F-scores that were reported for the individual
combinations when evaluating the trained model on the test set, containing the ground truth of music primitives v.

5. CONCLUSION AND OUTLOOK

In this work, we study how to complete the OMR pipeline
from the previous efforts to detect the music objects within
the input image. Our approach seeks the construction of a
music notation graph that stores the information of the no-
tation primitives as well as their syntactic and precedence
relationships. We propose a machine learning model that
can predict whether two primitives are related to each other
or not.

Results over the set of syntactic relationships from the
handwritten sheet music dataset MUSCIMA++ show that
our approach is very effective. We obtain success rates
close to the optimum when establishing the correct rela-
tionships from the ground-truth primitives (F1 = 95.6%).
When re-evaluating the results starting from the primi-
tives detected by a state-of-the-art music object detector, a
slightly lower performance can be observed (F1 = 92.3%).
These figures indicate that the notation assembly stage of
the OMR pipeline can be solved reliably with a machine
learning model, given a curated set of annotated scores.
Comparing our approach to existing methods is extremely
difficult, if not impossible, because:

• most existing solutions are black boxes with closed
source-code, or there is no available implementation
at all,

• only a few systems are capable of handling hand-
written modern notation, and

• it is unclear how to compare the music notation as-
sembly stage between two different systems, espe-
cially given that the notation graph is only an inter-
mediate representation.

So, although the results are promising, we still see many
interesting avenues for further research. For instance, by
adding data augmentation during training to make the no-
tation assembly model more robust against variations in the
bounding box retrieval of the first stage. Also, we plan to
look into providing other meaningful features to the net-

work, such as the class labels ζ(v) of the involved prim-
itives v ∈ V . Furthermore, we observed that the fixed-
sized input patch given to the network is often covering a
much larger area than required to contain the objects of in-
terest, especially when they are very close (see Fig. 2c).
This could be handled by using size-independent neural
network layers such as Global Pooling, instead of flatten-
ing the features and feeding them into a fully-connected
layer, allowing us to adjust the input patch for each sam-
ple.

We also believe that the notation assembly stage could
benefit from having a broader set of hypotheses about the
objects detected in the previous stage, instead of a fixed set
of proposals. State-of-the-art music object detectors are
based on statistical neural models that are able to provide a
probability distribution over the whole set of possible de-
tection hypotheses. When it comes to recognizing, we are
typically interested in the most likely hypothesis—the one
that is proposed as an answer—forgetting the other ones.
However, it is certainly interesting to exploit this statistical
modeling: the notation assembly algorithm could establish
relationships that are more logical a priori, although the
objects involved have a lower probability according to the
object detector. These types of approaches have yet to be
explored in the field of OMR.

And finally, for completing the OMR pipeline, the en-
coding stage is still missing. However, we see two benefits
of the notation graph representation: the encoding can be
implemented by experts in music encoding that are pro-
ficient in a particular format and given a complete graph
representation, there is no restriction on the actual output
format because the graph contains all the information that
is present in the image.

6. REFERENCES

[1] Alfio Andronico and Alberto Ciampa. On automatic
pattern recognition and acquisition of printed music.
In International Computer Music Conference, Venice,
Italy, 1982.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

80



[2] David Bainbridge. Extensible optical music recogni-
tion. PhD thesis, University of Canterbury, 1997.

[3] David Bainbridge and Tim Bell. The challenge of opti-
cal music recognition. Computers and the Humanities,
35(2):95–121, 2001.

[4] Arnau Baró, Pau Riba, Jorge Calvo-Zaragoza, and Ali-
cia Fornés. From optical music recognition to hand-
written music recognition: A baseline. Pattern Recog-
nition Letters, 123:1–8, 2019.

[5] Pierfrancesco Bellini, Ivan Bruno, and Paolo Nesi. Op-
tical music recognition: Architecture and algorithms.
In Interactive Multimedia Music Technologies, pages
80–110. IGI Global, Hershey, PA, USA, 2008.

[6] Dorothea Blostein and Henry S. Baird. A critical sur-
vey of music image analysis. In Structured Document
Image Analysis, pages 405–434. Springer Berlin Hei-
delberg, 1992.

[7] Jorge Calvo-Zaragoza and David Rizo. End-to-end
neural optical music recognition of monophonic
scores. Applied Sciences, 8(4), 2018.

[8] Bertrand Coüasnon, Pascal Brisset, and Igor Stéphan.
Using logic programming languages for optical mu-
sic recognition. In 3rd International Conference on the
Practical Application of Prolog, 1995.

[9] Bertrand Coüasnon and Jean Camillerapp. A way to
separate knowledge from program in structured doc-
ument analysis: Application to optical music recog-
nition. In 3rd International Conference on Document
Analysis and Recognition, pages 1092–1097, 1995.

[10] Michael Droettboom, Ichiro Fujinaga, and Karl
MacMillan. Optical music interpretation. In Structural,
Syntactic, and Statistical Pattern Recognition, pages
378–387, Berlin, Heidelberg, 2002.

[11] Mark Everingham, S. M. Ali Eslami, Luc Van Gool,
Christopher K. I. Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes challenge:
A retrospective. International Journal of Computer Vi-
sion, 111(1):98–136, 2015.

[12] Hoda M. Fahmy and Dorothea Blostein. A graph gram-
mar programming style for recognition of music no-
tation. Machine Vision and Applications, 6(2):83–99,
1993.

[13] Alicia Fornés, Anjan Dutta, Albert Gordo, and Josep
Lladós. CVC-MUSCIMA: A ground-truth of hand-
written music score images for writer identification
and staff removal. International Journal on Document
Analysis and Recognition, 15(3):243–251, 2012.

[14] Antonio-Javier Gallego and Jorge Calvo-Zaragoza.
Staff-line removal with selectional auto-encoders. Ex-
pert Systems with Applications, 89:138–148, 2017.

[15] Michael Good. MusicXML: An internet-friendly for-
mat for sheet music. Technical report, Recordare LLC,
2001.

[16] Jan Hajič jr., Matthias Dorfer, Gerhard Widmer, and
Pavel Pecina. Towards full-pipeline handwritten OMR
with musical symbol detection by u-nets. In 19th Inter-
national Society for Music Information Retrieval Con-
ference, pages 225–232, Paris, France, 2018.

[17] Jan Hajič jr., Marta Kolárová, Alexander Pacha, and
Jorge Calvo-Zaragoza. How current optical music
recognition systems are becoming useful for digital li-
braries. In 5th International Conference on Digital Li-
braries for Musicology, pages 57–61, Paris, France,
2018.

[18] Jan Hajič jr. and Pavel Pecina. The MUSCIMA++
dataset for handwritten optical music recognition. In
14th International Conference on Document Analysis
and Recognition, pages 39–46, Kyoto, Japan, 2017.

[19] Andrew Hankinson, Perry Roland, and Ichiro Fujinaga.
The music encoding initiative as a document-encoding
framework. In 12th International Society for Music In-
formation Retrieval Conference, pages 293–298, 2011.

[20] Diederik P. Kingma and Jimmy Lei Ba. Adam: A
method for stochastic optimization. Computing Re-
search Repository, abs/1412.6980, 2014.

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: Common ob-
jects in context. In Computer Vision – ECCV 2014,
pages 740–755, Cham, 2014.

[22] Hidetoshi Miyao and Robert Martin Haralick. Format
of ground truth data used in the evaluation of the results
of an optical music recognition system. In 4th Interna-
tional Workshop on Document Analysis Systems, pages
497–506, Brasil, 2000.

[23] Kia Ng. Music manuscript tracing. Lecture Notes in
Computer Science, 2390:322–334, 2002.

[24] Alexander Pacha and Jorge Calvo-Zaragoza. Optical
music recognition in mensural notation with region-
based convolutional neural networks. In 19th Interna-
tional Society for Music Information Retrieval Confer-
ence, pages 240–247, Paris, France, 2018.

[25] Alexander Pacha, Kwon-Young Choi, Bertrand Coüas-
non, Yann Ricquebourg, Richard Zanibbi, and Horst
Eidenberger. Handwritten music object detection:
Open issues and baseline results. In 13th International
Workshop on Document Analysis Systems, pages 163–
168, 2018.

[26] Alexander Pacha and Horst Eidenberger. Towards a
universal music symbol classifier. In 14th International
Conference on Document Analysis and Recognition,
pages 35–36, Kyoto, Japan, 2017.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

81



[27] Alexander Pacha, Jan Hajič jr., and Jorge Calvo-
Zaragoza. A baseline for general music object detec-
tion with deep learning. Applied Sciences, 8(9):1488–
1508, 2018.

[28] Christopher Raphael and Jingya Wang. New ap-
proaches to optical music recognition. In 12th Inter-
national Society for Music Information Retrieval Con-
ference, pages 305–310, Miami, Florida, 2011.

[29] Ana Rebelo, Ichiro Fujinaga, Filipe Paszkiewicz, An-
dre R.S. Marcal, Carlos Guedes, and Jamie dos Santos
Cardoso. Optical music recognition: State-of-the-art
and open issues. International Journal of Multimedia
Information Retrieval, 1(3):173–190, 2012.

[30] K. Todd Reed and J. R. Parker. Automatic computer
recognition of printed music. In 13th International
Conference on Pattern Recognition, pages 803–807,
1996.

[31] Florence Rossant and Isabelle Bloch. A fuzzy model
for optical recognition of musical scores. Fuzzy Sets
and Systems, 141(2):165–201, 2004.

[32] Florence Rossant and Isabelle Bloch. Robust and
adaptive OMR system including fuzzy modeling, fu-
sion of musical rules, and possible error detection.
EURASIP Journal on Advances in Signal Processing,
2007(1):081541, 2006.

[33] Mariusz Szwoch. Guido: A musical score recognition
system. In 9th International Conference on Document
Analysis and Recognition, pages 809–813, 2007.

[34] Lorenzo J. Tardón, Simone Sammartino, Isabel Bar-
bancho, Verónica Gómez, and Antonio Oliver. Optical
music recognition for scores written in white mensural
notation. EURASIP Journal on Image and Video Pro-
cessing, 2009(1):843401, 2009.

[35] Lukas Tuggener, Ismail Elezi, Jürgen Schmidhuber,
and Thilo Stadelmann. Deep watershed detector for
music object recognition. In 19th International Soci-
ety for Music Information Retrieval Conference, pages
271–278, Paris, France, 2018.

[36] Eelco van der Wel and Karen Ullrich. Optical music
recognition with convolutional sequence-to-sequence
models. In 18th International Society for Music Infor-
mation Retrieval Conference, Suzhou, China, 2017.

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

82


