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Abstract

In geometric modeling and processing, computer graphics and computer vision, smooth surfaces are approximated by discrete
triangular meshes reconstructed from sample points on the surfaces. A fundamental problem is to design rigorous algorithms to
guarantee the geometric approximation accuracy by controlling the sampling density. This paper gives explicit formulae to the
bounds of Hausdorff distance, normal distance and Riemannian metric distortion between the smooth surface and the discrete
mesh in terms of principle curvature and the radii of geodesic circum-circle of the triangles. These formulae can be directly applied
to design sampling density for data acquisitions and surface reconstructions. Furthermore, we prove that the meshes induced from
the Delaunay triangulations of the dense samples on a smooth surface are convergent to the smooth surface under both Hausdorff
distance and normal fields. The Riemannian metrics and the Laplace–Beltrami operators on the meshes are also convergent to those
on the smooth surfaces. These theoretical results lay down the foundation for a broad class of reconstruction and approximation
algorithms in geometric modeling and processing.

Practical algorithms for approximating surface Delaunay triangulations are introduced based on global conformal surface para-
meterizations and planar Delaunay triangulations. Thorough experiments are conducted to support the theoretical results.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In geometric modeling and processing, computer graphics and computer vision, smooth surfaces are often approx-
imated by polygonal surfaces, which are reconstructed from a set of sample points. One of the fundamental problems
is to measure the approximation accuracy in terms of position, normal fields and Riemannian metrics. It is highly
desirable to design practical reconstruction algorithms with approximation errors fully controlled by the sampling
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density and triangulation method. This work accomplishes this goal by establishing the relation between the Haus-
dorff distance, normal field distance and the sampling density.

Different surface reconstruction algorithms have been discussed by many researchers. Hoppe et al. (Hoppe et al.,
1992; Eck and Hoppe, 1996) represented the surface by the zero set of a signed distance function. Amenta et al.
developed a series of algorithms based on Voronoi diagram in (Amenta and Bern, 1999; Amenta et al., 1998, 2002).
Bernardini and Bajaj used α shapes for manifold sampling and reconstruction (Bajaj et al., 1995; Bernardini and
Bajaj, 1997). Recently Ju et al. introduced the dual contour method for reconstruction (Ju et al., 2002). Floater and
Reimers reconstructed surfaces based on parameterizations (Floater and Reimers, 2001). Surface reconstruction has
been applied to reverse engineering (Benkö et al., 2001), geometric modeling (He and Qin, 2004), mesh optimization
and simplification (Hoppe, 1996) and many other important applications.

It is a common belief that by increasing the sampling density, the reconstructed discrete mesh will approximate
the smooth surface with any desired accuracy. This work aims at precisely formulating this common belief and rig-
orously proving it in an appropriate setting. This result will offer the theoretical guarantee for the general algorithms
in geometric modeling and processing, where the measurements on smooth surface are calculated on its discrete
approximations and the physical phenomenon on original surface are simulated on the discrete counterpart.

1.1. Geometric accuracy

There are different levels of accuracy when approximating a smooth surface by discrete meshes,

(i) Topological consistency, it requires the surface and the mesh are homeomorphic to each other;
(ii) Positional consistency, measured by Hausdorff distance between the surface and the mesh;

(iii) Normal consistency, it requires the normal fields on the surface and on the mesh are close to each other.

Many previous works address the theoretical guarantee of topological consistency. Leibon et al. proved in (Leibon
and Letscher, 2000) that if the sampling density is high enough, the smooth surface and the triangle mesh induced by
the Delaunay triangulation is homeomorphic. Amenta et al. proved a similar result in (Amenta et al., 2002).

In terms of positional consistency, Amenta et al. invented a series of algorithms which reconstruct the meshes from
sample points based on Voronoi diagrams. Assuming the bound of the diameters of the face circum-circles is ε and
the normal error is small enough, the Hausdorff distance between the mesh and the surface is bounded by the ε2 in
(Amenta et al., 2002). In (Elber, 1996), Elber introduced an algorithm to approximate freeform surfaces by discrete
meshes with bounded Hausdorff distance.

Positional consistency does not guarantee the normal consistency. It is very easy to find a sequence of meshes,
which converge to a smooth surface under the Hausdorff distance, but the normal field does not converge. In (Morvan
and Thibert, 2002) and (Morvan and Thibert, 2004), Morvan and Thibert established theoretical results to estimate
the normal error and area difference in terms of Hausdorff distance and angles on the triangulation.

The convergence of discrete Laplace–Beltrami operators over surfaces has been studied by Xu et al. in (Xu, 2004)
and (Liu and Xu, 2005), where rigorous theoretical results are given. A statistical analysis of discrete Laplace–Beltrami
operators and their convergence properties is given by Hein, Audibert and Luxburg in (Hein et al., 2006).

In geometric modeling and processing, many algorithms require calculating the geodesics (Surazhsky et al., 2005).
Many parametrization works require accurately approximating the Riemannian metrics (Floater and Hormann, 2005).
Spectrum compression also needs good approximation of Laplace–Beltrami operators (Ben-Chen and Gotsman,
2005). These important applications demand the theoretical guarantee for accurate approximation for Riemannian
metric and differential operators. It has been shown in (Hildebrandt et al., 2005), that Hausdorff convergence and nor-
mal field convergence guarantee the convergence of area, Riemannian metric tensor and Laplace–Beltrami operator.

Therefore, our work focuses on estimating both Hausdorff distance and normal field distance with the only as-
sumption of the sampling density.

1.2. Triangulations

Triangulations play vital roles in surface reconstruction. There are different ways to measure the refinement of a
triangulation,



J. Dai et al. / Computer Aided Geometric Design 24 (2007) 323–338 325
Fig. 1. Hausdorff convergence doesn’t guarantee normal convergence and length convergence. The black curve is a half circle with radius r , the
blue curve is composed by two half circles with radii r

2 ; the red curve is composed by 4 half circles with radii r
4 . A sequence of curves can be

constructed, they converge to the diameter PQ under the Hausdorff distance. But the length of each of them equals to πr , which do not converge
to the length of the diameter 2r . (For interpretation of the references to color in this figure legend the reader is referred to the web version of this
article.)

Fig. 2. Hausdorff convergence vs. normal convergence. In the left frame, the center is the north pole (0,0,1) of the unit hemisphere. C1 is the
equator x2 + y2 = 1, C2 is the intersection circle between the sphere with the plane z = 1

2 . All the arcs QiQj and PiQj are geodesics, the arcs
PiPj are arcs along C2. The right frame shows one step subdivision: insert the middle points of all the arcs in the left frame, split each triangle to 4
smaller ones, such that if an edge connecting two points on C2, the edge is the arc on C2, otherwise the edge is a geodesic segment. Repeating this
subdivision process to get a sequence of triangulations {Tn}, and a sequences meshes Mn induced by the triangulations. The longest edge length
of Tn goes to zero, Mn converge to the hemi-sphere under Hausdorff distance. For any Mn there is one triangles f0 adjacent to P0 and contained
in the curved triangle P1P0P3. Because all three vertices of f0 are on C2, its circumscribe circle is C2, the normal of f0 is constant which differs
from the normal at P0 to the sphere. Therefore, {Mn} doesn’t converge to the sphere under normal distance.

(i) The bound l of the longest lengths of the edges of triangles in the mesh.
(ii) The bound d of the diameters of the circum-circles of triangles in the mesh.

It is obvious that the diameter bounds the edge length, but the edge length does not bound the diameter (see Fig. 2). In
the following discussion, we will demonstrate that the Hausdorff distance is bounded by the square of the edge length,
whereas the normal error is bounded by the diameter of the circum-circle.

In Fig. 1, we demonstrate a one dimensional example, where a family of curves converge to a straight line segment
under Hausdorff distance, but the lengths and normals do not converge.

In Fig. 2, we demonstrate an example, where for the same sets of sample points, the bounds of edge lengths go to
zero, but the bounds of the diameters of circum-circles remain constant. Therefore, neither the area nor the metric on
the mesh converges to those on the smooth surface.

Given a dense set of sample points, it is highly desirable to find a triangulation such that the circum-circles are as
small as possible. For sample points on the plane, Delaunay triangulation is a good candidate for such a triangula-
tion. Leibon generalizes Delaunay triangulation to arbitrary Riemannian manifolds (Leibon and Letscher, 2000). In
the following discussion, we use Delaunay triangulation to refer Delaunay triangulation on surfaces. The Delaunay
triangulation is determined solely by the sample points. In the following discussion, we will show that the meshes
induced by the Delaunay triangulations are convergent both under Hausdorff distance and normal distance.

In practice, there is no prior knowledge of the smooth surface, only the dense sample of points is available. The
connectivity induced by the surface Delaunay triangulation can be best approximated using Voronoi diagram in R3
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as described in (Amenta et al., 1998, 2002). We have not fully proven the consistency between the two triangula-
tions.

1.3. Factors affecting geometric accuracy

In order to achieve bounded Hausdorff error and normal error, the following factors play crucial rules, the sampling
density should be carefully designed. The major factors determining the sampling density are as follows,

– Principle curvature For regions with higher principle curvature, the samples should be denser.
– Distance to medial axis For regions closer to the medial axis, the samples should be denser to avoid topological

ambiguity during the reconstruction process. It is also called local feature size.
– Injectivity radius Each point p on the surface M has the largest radius r , for which the geodesic disk B(p, r) is

an embedding disk. The injectivity radius of M is the infimum of the injectivity radii at each point. Each geodesic
triangle on the surface should be contained in a geodesic disk with radius less than the injectivity radius.

These factors are not independent, but closely related. Suppose k is the bound of principle curvature on the surface,
then the distance to the medial axis is no greater than 1

k
as proved in (Federer, 1959).

1.4. Comparisons to previous theoretical results

Hildebrandt et al.’s work (Hildebrandt et al., 2005) focuses on the equivalence of convergence of polyhedral meshes
under different metrics, such as Hausdorff, normal, area and Laplace–Beltrami. Assuming the Hausdorff convergence
and the homeomorphism between the surface and the mesh, all the error estimations are based on the homeomorphism.

Leibon et al.’s work (Leibon and Letscher, 2000) focuses on the existence of Delaunay triangulation for dense
sample set. It only estimates the Riemannian metric error without considering Hausdorff error and normal error.

Amenta et al.’s work (Amenta et al., 2002) only demonstrates the estimation of Hausdorff error under the two
assumptions: first the sampling density is sufficiently high; second the normal field error is given and bounded.

Morvan and Thibert (2002, 2004) estimate the normal error and area difference in terms of Hausdorff distance
and angles on the triangulation. In practice, in order to control both the Hausdorff distance and angles of triangu-
lation, Chew’s algorithm is applied to progressively add samples to reduce the Hausdorff distance and improve the
triangulation.

Previous works either assume the normal error is bounded and estimate the Hausdorff distance or assume the
Hausdorff distance is given and estimate the normal field error. In contrast, our work shows that solely the radii of
geodesic circum-circles of faces on the triangulations are enough to guarantee the convergence of both Hausdorff
distance and the normal fields. To the best of our knowledge, our work is the first one to bound both the Hausdorff
error and the normal error (therefore the Riemannian metric distortion) only by the sampling density.

The main theorem of the work is that if the sampling density is ε, then the Hausdorff distance is no greater than
4kε2, and the normal error is no greater than 9kε, where k is the upper bound of the principle curvature on the smooth
surface to be approximated. The metric distortion is measured by the infinitesimal length ratio, which is bounded by

1 − 4k2ε2 and 1+4k2ε2

1−9kε
.

The paper is organized as the following, Section 2 introduces the preliminary concepts and theorems proven in pre-
vious works; our new theoretical results are explained in details in Section 3, which is the most technical part of the
work, focusing on the proofs of three major theorems; practical algorithms for approximating surface Delaunay trian-
gulation is introduced in Section 4; experimental results are demonstrated in Section 5; finally the paper is concluded
in Section 6, where the future works are briefly discussed.

2. Definitions and preliminaries

In this section, we review the preliminary concepts necessary for our further theoretical arguments. We adopt the
definitions from (Leibon and Letscher, 2000; Hildebrandt et al., 2005; Amenta et al., 1998, 2002).

We assume that the surface S is closed without any boundary, at least C2 smooth with bounded principle curvature,
and embedded in R3.
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2.1. Medial axis, ε-sampling and Delaunay triangulation

The medical axis of a surface S embedded in R3 is the closure of the set of points with more than one nearest
neighbor in S. The local feature size f (p) at point p ∈ S is the least distance of p to the medial axis.

A geodesic disk B(p, r) centered at p with radius r is the point sets

B(p, r) = {
q ∈ S | d(p,q) � r

}
,

where d is the geodesic distance on the surface. The injectivity radius at a point p ∈ S is the largest radius τ(p), for
which the geodesic disk B(p, τ(p)) is an embedding on S.

Suppose ε :S → R is a positive function defined on the surface S, a point set X ⊂ S is an ε-sample, if for any point
p ∈ S, there is at least one sample inside the geodesic disk B(p, ε(p)).

The definition of Delaunay triangulations of X on S is the same as it is in R2. They are defined as having the empty
circumscribing circle property: the circum-circle for each geodesic triangle contains no vertices of the triangulation in
its interior. In order to guarantee the uniqueness and embedding of the circum-circles, X should be dense enough.

Leibon et al. proved in (Leibon and Letscher, 2000) that, suppose X is a generic ε-sample, ε satisfies the following
conditions:

ε(p) � min

{
2τ(p)

5
,

2π

5k(p)

}
, (1)

where k(p) is the upper bound of the principle curvature, k(p) = maxq∈B(p,τ(p)) |k(q)|, then the Delaunay triangula-
tion of X exists and is unique.

2.2. Hausdorff distance, normal distance and shortest distance map

Let M1,M2 ⊂ R3 be non-empty point sets, the Hausdorff distance between M1 and M2 is defined as

dH (M1,M2) = inf
{
ε > 0 | M1 ⊂ Uε(M2),M2 ⊂ Uε(M1)

}
, (2)

where Uε(M) = {x ∈ R3 | ∃y ∈ M: d(x, y) < ε}.
Suppose S and M are two surfaces embedded in R3, the shortest distance map g :M → S is defined to map p ∈ M

to its nearest point g(p) on S. It is proved that the line connecting p to g(p) is along the normal direction at g(p)

on S. It has been proven in (Leibon and Letscher, 2000), if the sampling density ε satisfies the Delaunay triangulation
condition equation (1) and the following

ε(p) � f (p)

4
, (3)

where f (p) is the local feature size at p, then the g is a homeomorphism between the mesh M and S induced by the
Delaunay triangulation. Then we denote the inverse of g as Φ = g−1 :S → M and call it the inverse shortest distance
map, then

Φ(p) = p + φ(p)n(p), p ∈ S, (4)

where n(p) is the normal vector at p on S, and φ(p) measures the distance from p to Φ(p) on the mesh. The normal
distance between S and M is defined as

dn(S,M) = max
p∈S

∣∣n(p) − n ◦ Φ(p)
∣∣.

Suppose γ : t → S is a curve on S, then Φ ◦ γ : t → M is a curve on M . It is proven in (Hildebrandt et al., 2005), the
infinitesimal distortion of length satisfies

min
i

(1 − φki) � dlM

dl
� max

i

1 − φki

〈n,n ◦ Φ〉 , (5)

where dl = √〈dγ,dγ 〉 is the length element on S, dlM = √〈dγ ◦ Φ,dγ ◦ Φ〉 is the corresponding length element
on M , and ki is the principle curvature.
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3. Geometric accuracy analysis

In this section, we analyze the geometric accuracy of reconstructed meshes. Suppose X is an ε-sample on S, if ε

satisfies Eq. (1) then X induces a unique Delaunay triangulation T , where all edges are geodesics. Each face on T has
a unique geodesic circumscribed circle. The bound of all the radii r(X) is determined by the sampling density ε. Then
by replacing geodesic triangles on T to Euclidean triangles, a piecewise linear complex M(X) is produced, denoted
as the Delaunay mesh induced by X. Our goal is to estimate the Hausdorff error, normal error and Riemannian metric
error between S and M , in terms of the r(X) and sampling density ε.

The following is the major steps of our proof,

(i) We first estimate the Hausdorff distance between a geodesic triangle and the planar triangle through its vertices.
(ii) Then we estimate the normal deviation between the normal at an arbitrary point in a geodesic triangle and the

normal of the planar triangle.
(iii) Finally we discuss the Hausdorff distance and normal distance between S and M , then we estimate the metric

distortion.

3.1. Hausdorff distance between a geodesic triangle and a planar triangle

Lemma 1. Let R(t) be an arc length parameterized smooth space curve with curvature bound κ > 0, 0 � a, b, t, t ′ �
π/κ , �m = R(b)−R(a)

|R(b)−R(a)| then the following estimates hold

t �
∣∣R(t) − R(0)

∣∣ � 2 sin(κt/2)/κ, (6)∣∣R′(t) × �m∣∣ � 1

4
κ(b − a), t ∈ [a, b], κ(b − a) <

√
6, (7)∣∣R′(t ′) − R′(t)

∣∣ �
∣∣2 sin

(
κ(t − t ′)

)∣∣, (8)

 R(a)R(t)R(b) � π/2, (9)

dist
(
R(t),R(a)R(b)

)
� κ(b − a)min(t − a, b − t)

4
, 0 < a < t < b <

√
6/κ, (10)

0 <
(
R(t) − R(a), �m)

<
∣∣R(b) − R(a)

∣∣, t ∈ (a, b), (11)

where dist(·,·) denote the distance from a point to a line, and (·,·) denotes the inner product of two vectors.

Proof. Consider function f (t) = (R′(t),R′(0)), then since R′(t) ⊥ R′′(t),

f ′(t) = (
R′′(t),R′(0)

) = (
R′′(t),R′(0) − (

R′(0),R′(t)
)
R′(t)

)
� −κ

∣∣R′(t) × R′(0)
∣∣ = −κ

√
1 − f 2(t).

f (t) satisfies f ′(t) � −κ
√

1 − f 2(t), f (0) = 1, then

∂

∂t
(arccosf (t)) � κ,

f (t) � cos(κt), t ∈ [0,π/κ].
Now the estimates follows by integration:

∣∣R(t) − R(0)
∣∣2 =

t∫
0

t∫
0

(
R′(t1),R′(t2)

)
dt1 dt2

�
t∫ t∫

cos
(
κ(t2 − t1)

)
dt1 dt2 = 4κ−2 sin2(κt/2) ⇒ (6),
0 0
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∣∣R(b) − R(a)
∣∣(R′(t), �m)

�
b∫

a

cosκ(s − t)ds = 1

κ

(
sinκ(b − t) + sinκ(t − a)

)

� (b − a) − κ2(b − a)3

6
, (12)

∣∣R′(t) × �m∣∣ =
√

1 − (
R′(t), �m)2

�
√

1 − (
1 − κ2(b − a)2/6

)2
, if κ(b − a) <

√
6

�
√

2

6
κ(b − a) ⇒ (7).

Eq. (12) implies (R′(t),R(b) − R(a)) > 0 when b − a < π/κ , hence (R(t),R(b) − R(a)) is an increasing function
of t , hence (11) is proved.

(
R(b) − R(t),R(t) − R(a)

)
�

t∫
a

b∫
t

cosκ(u − v)dudv

the right-hand side equals to

cosκ(b − t) + cosκ(t − a) − 1 − cos(b − a) � 0 if κ(b − a) < π ⇒ (9).(
R′(t),R′(t ′)

)
� cosκ(t ′ − t),

∣∣R(t)
∣∣ = ∣∣R′(t ′)

∣∣ = 1 ⇒ (8).

Assume t − a < b − t , then (7) implies that

dist
(
R(t),R(a)R(b)

) = ∣∣(R(t) − R(a)
) × �m∣∣ � κ(b − a)(t − a)/4

which ⇒ Eq. (10). �
Notation: We use ˜ to denote an geometric object on a surface in geodesic sense, such as ÃB , �̃ABC to denote a

geodesic or a geodesic triangle.

Lemma 2. P , Q are two points in a geodesic convex region of a smooth surface with principal curvature bounded
by κ , then the normal at P , Q differs by at most κ|P̃Q|.

Proof. Bound of principal curvature implies |∇�n| � κ , where ∇ is the covariant derivative and �n is the normal. Hence
the estimate. �

The following theorem estimate the distance of points inside a geodesic triangle to the plane through the vertices,
independent of the shape of the triangle.

Theorem 1. Let �ÃBC be a geodesic triangle on a smooth surface embedded in R3 where the principal curvature
is bounded by κ and the maximal length d of edges of �ÃBC is bounded by 1/κ . P is any point inside the triangle,
PABC is the plane through A,B,C, then the dist(P,PABC) � κd2/4.

Proof. Assume ÃP intersects B̃C at Q, P ′ is the projection of P onto AQ, Q projects onto BC at H , H ′ is on AH

such that P ′H ′ is parallel to QH . By (10),

dist(Q,PABC) � dist(Q,BC) = |QH | � κd2/8.

|PP ′| � κd2/8.

(11) implies that P ′ is inside AQ and |P ′H ′| � |QH |,
dist(P,PABC) � |PP ′| + |P ′H ′| � κd2/4. �
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From the proof we see that when P go through �̃ABC, H ′ go through �ABC. Then it is easy to see that the
nearest distance of any point on �ABC is also bounded by κd2/4. Thus we have the following corollary.

Corollary 3. With the same assumption of ÃBC and κ, d . The shortest distance of and point in ABC to ÃBC is
bounded by κd2/4.

3.2. Normal error estimation between a geodesic triangle and a planar triangle

Lemma 4. Let ÃBC be a geodesic triangle with maximal length of edge d , the principal curvature is bounded by κ ,
d < 2/κ ,  BAC = α, then the normal nA to the surface at A and the normal n to PABC satisfies

|nA × n| � max

(
κd

4 sin(α/2)
,

κd

4 cos(α/2)

)
. (13)

Proof. Denote by T1 the tangent vector at A to ÃB , T2 tangent to ÃC, V1 the unit vector along AB , V2 along AC.
Then by (7)

|T1 × V1| � κd/4, |T2 × V2| � κd/4.

So ∣∣(nA,V1)
∣∣ = ∣∣(nA,V1 − (V1, T1)T1)

∣∣ �
∣∣V1 − (V1, T1)T1

∣∣ = |T1 × V1| � κd/4,∣∣(nA,V2)
∣∣ � κd/4.

The projection of nA onto PABC falls into the parallelogram with both width κd/2 and inner angle α,π −α, centered
at A. Now (13) follows by simple trigonometry. �
Lemma 5. Let l(t) be a geodesic circle radius r , parameterized by arc length. Suppose the principal curvature is
bounded by κ in the disk and r � 1/(4κ). N(t) is the tangent vector at l(t) normal to l′(t). Then for t < r ,

(
l(t) − l(0),N(0)

)
� t2

5r
. (14)

Proof. Let n(t) be the normal to the surface at l(t). The curvature condition implies |(l′′(t), n(t))| � κ . Hessian
comparison theorem (Schoen and Yau, 1994) implies

(
l′′(t),N(t)

)
� κ cot(κr) � 19

20r
, if κr < 1/4,

∣∣l′′(t)∣∣ � κ
√

cothκr2 + 1 � 11

10r
, if κr < 1/4. (15)

Lemma 2 implies |n(t) − n(0)| � κt . (15) implies |l′(t) − l′(0)| � 11t/10r , then for t � r(
l′′(t),N(0)

) = (
l′′(t),N(t)

) + (
l′′(t),N(0) − N(t)

)
= (

l′′(t),N(t)
) + (

l′′(t), n(0) × l′(0) − n(t) × l′(t)
)

�
(
l′′(t),N(t)

) − ∣∣l′′(t)∣∣(∣∣n(0) − n(t)
∣∣ + ∣∣l′(0) − l′(t)

∣∣)
� 1

r

(
19

20
− 11κt

10
− 121t

100r

)
. (16)

Use l′(0) ⊥ N(0), integrate (16) to get

(
l(t) − l(0),N(0)

)
� 9t2

40r
. �
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Theorem 2. D is a geodesic disk of radius r of a smooth surface embedded in R3 with principal curvature bounded
by κ , r < 1/(4κ). A,B,C are three distinct points on the boundary of D, PABC is the plane through A,B,C, Φ is
the inverse shortest distance map from D onto PABC . For any point p ∈ D, v ∈ Tp is a tangent vector, we have

|np − nABC | � 4.5κr, (17)

|v| � ∣∣Φ∗(v)
∣∣ � |v|(1 − 4.5κr), (18)

dist(p,PABC) � 9κr2. (19)

Proof. Consider the intersection angle between the radial geodesic connecting center O of D and the vertices A,B,C.

If two such intersection angle is less than 9/10, say  ÃOB,  B̃OC, then comparison theorem shows that the arc
between A, B or between B , C along boundary of D is less than

9

10
· eκr − e−κr

2κ
� r. (20)

Let d1, d2 be the length of line segment AB , BC respectively, then (11) implies  ABC > π/2 while Lemma 5 implies

 ABC � π − arcsin(d1/5r) − arcsin(d2/5r).

Then apply Lemma 4 to get

|nB − nABC | � κ(d1 + d2)

4 cos( ABC)/2
� κ(d1 + d2)

2d1/5r + 2d2/5r
= 2.5κr.

If only one such intersection angle is less than 9/10, say  ÃOB , without lost of generality, assume  BAC �
 ABC. For the triangle AOC, by (6) and (7)

 AOC � 9/10 − 2 arcsin(κr/4) � 0.77,

r > |OA|, |OC| > .99r,

|AC| � 2 ∗ .99 sin(0.77/2)r > 0.74r, (21)

 CAO � arccos
(
(.992 + .742 − 1)/(2 ∗ .99 ∗ .74)

)
< 1.21,

 BAO � π/2 + 2 arcsin(κr/4) � 1.70,

4 cos
( (CAB)/2

)
� 4 cos(1.455) � 0.46. (22)

On the other hand for �ABC, |AC|, |BC| � 0.74r by (21), |AB| � r by (20), so

 BAC � arccos(.5/.74) � .8,

4 sin( BAC/2) � 1.4. (23)

Now apply Lemma 4 with estimate (22) and (23) to give an estimate of the difference of the normal at A and to the
plane ABC, then use Lemma 2 to get (17).

Given (17) proved, (18) easily follows as∣∣v − Φ∗(v)
∣∣ = ∣∣(v,nABC)

∣∣ = ∣∣(v,nABC − nA)
∣∣ � 4.5κr|v|

and for (19), let l(t) be the geodesic connecting A and p

dist(p,PABC) =
∣∣∣∣
∫
l

(
l′(t), nABC

)
dt

∣∣∣∣ � d̃ist(p,A) ∗ 4.5κr � 9κr2. �

3.3. Geometric accuracy for Delaunay meshes

Combining the theoretical results in Section 2 and the estimations on a single geodesic triangle Theorem 3 and
Theorem 4, we can easily get the following theorem.
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Theorem 3. Suppose S is a closed C2 smooth surface embedded in R3. The principle curvature upper bound is k, the
injective radius lower bound is τ , the lower bound of local feature size is f . Suppose X is an ε-sample set on S, such
that constant ε satisfies the following conditions,

ε � min

{
2τ

5
,

2π

5k
,
f

4
,

1

8k

}
,

then X induces a unique Delaunay triangulation T , (X,T ) induces a piecewise linear complex M ,

(i) M is homeomorphic to S, the nearest distance map g :M → S is a homeomorphism.
(ii) The Hausdorff distance

dH (M,S) � 4kε2. (24)

(iii) The normal distance

dn(M,S) � 9kε. (25)

(iv) The infinitesimal length ratio

1 − 4k2ε2 � dlM

dl
� 1 + 4k2ε2

1 − 9kε
. (26)

Proof. Because X is an ε-sample, ε satisfies the Delaunay triangulation condition in Eq. (1), therefore the unique
Delaunay triangulation T exists according to (Leibon and Letscher, 2000). ε is less than a quarter of the local feature
size (3), then the shortest distance map is a homeomorphism.

Suppose C is a circumscribe circle of a triangle in T , then there is no interior point belonging to X. If the radius
of C is greater than 2ε, then C contains at least disks with radii ε, therefore, it contains at least one point of X as its
interior. Thus the radius of C is no greater than 2ε.

From Corollary 3, the Hausdorff distance is no greater than 4kε2. From the proof of Theorem 2, the normal distance
at some sample point is less than 5kε, also from (24) and previous paragraph, any point on X is within 4ε distance to
such a sample point, thus together with Lemma 2, the normal distance at any point is no greater than 9kε.

In the inverse shortest distance map Eq. (4), φ is less or equal to the Hausdorff distance. From formula (5) we can
derive (26). �

Although the sampling density ε is a constant here, it can be generalized to be a function on the surface, such that

ε(p) � min

{
2τ(p)

5
,

2π

5k(p)
,
f (p)

4
,

1

8k(p)

}
,

then we can estimate the Hausdorff distance, normal distance and metric distortion at point p using the formula similar
to (24), (25), (26) with ε replaced by ε(p).

4. Approximation of surface Delaunay triangulation

Theoretical surface Delaunay triangulation is impractical, because the geodesic circles are difficult to compute.
In this work, we propose to use global conformal parameterization to map the surface to the canonical domains,
and compute the Delaunay triangulation on the conformal parametric domains to approximate the surface Delaunay
triangulation. Delaunay triangulations maximize the minimal angle, conformal parameterization preserves angles,
therefore, Delaunay triangulations on conformal parametric domains approximate the surface Delaunay triangulations
faithfully.
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4.1. Global conformal surface parameterizations

Suppose S1 and S2 are two surfaces with Riemannian metrics g1 and g2, suppose f :S1 → S2 is a map, then if the
original metric g1 and the pull back metric f ∗g2 differ by a scalar

e2ug1 = f ∗g2, u : S1 → R,

then f is a conformal map. A conformal map preserves angles.
Suppose S1 and S2 are embedded in the Euclidean space, the harmonic energy of f is defined as

E(f ) =
∫
S1

|∇f |2 dA.

For genus zero closed surfaces, harmonic maps are conformal and all of them can be conformally mapped to the unit
sphere S2. Suppose S is a genus zero closed surface, we can get a conformal map from S to S2 by diffusing its Gauss
map using the following heat flow method

df

dt
= −�f,

with a constraint
∫
S
f dA = 0, where � is the Laplace–Beltrami operator on S. The heat flow will converge, the final

map is a conformal map. Fig. 6 demonstrates a conformal spherical parameterization for a genus zero closed surface.
Once the surface is mapped to a unit sphere, we can use steoreo-graphic projection to conformally map the sphere onto
the plane. For details, we refer readers to the work of (Gu et al., 2004). This method can be generalized to compute
conformal structures of general surfaces (Gu and Yau, 2003). The rigorous theoretical proof for the convergence of
the algorithm can be found in (Luo, 2006). Fig. 6 illustrates the global conformal parameterization for a genus zero
closed surface.

For surfaces with non-zero genus, the Ricci flow is a powerful method to compute the conformal parameterization.
Suppose g = (gij ) is the initial Riemannian metric on a surface S, then the Ricci flow is defined as

dgij (t)

dt
= −Kgij (t),

where K is the Gaussian curvature. Then it is proven that Ricci flow will converge, the final metric g(∞) is conformal
to the original metric and induces a constant Gaussian curvature. Therefore, the surfaces can be conformally para-
meterized by the Euclidean plane (genus one case) or the hyperbolic disk (high genus case). Fig. 4 demonstrates a
genus one surface conformally parameterized using Ricci flow method; Fig. 7 shows a genus two surface conformally
mapped to the hyperbolic disk using Ricci flow method.

Fig. 3. Smooth surfaces are approximated by Delaunay meshes. The Hausdorff distances really measured are consistent with the theoretical formu-
lae.
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Table 1
Comparison between the theoretical prediction of the Hausdorff distance and the real measured distance. D is the measured Hausdorff distance;
1
4 κd2 is the theoretical estimations, where κ is the maximal principal curvature, d is the maximal length of edges

Shape # vertices # faces D κ d 1/4κd2

Sphere 1002 2000 0.010025 1.758418 0.314097 0.014678
Torus 240 480 0.049931 4.525904 0.616819 0.065040
Knot 2000 4000 0.032552 9.280646 0.391005 0.053959

The discrete algorithms for heat flow can be found in (Jin et al., 2006). The discrete Ricci flow method can be found
in (Chow and Luo, 2003). Figs. 4 and 7 demonstrate global conformal parameterizations for high genus surfaces.

4.2. Approximation of surface Delaunay triangulation

After conformal parameterization of the surface, we generate random samples on the parameter domain and con-
struct a planar Delaunay triangulation which induces an approximation of the surface Delaunay triangulation. This
method was proposed in (Alliez et al., 2002) for topological disk case. In current work, we generalize the algorithm
for arbitrary surfaces.

We use a piecewise polygonal mesh to represent the surface, suppose the surface has n faces {f1, f2, . . . , fn}, then
we use the following sampling and Delaunay re-meshing algorithm:

(i) Compute a global conformal surface parameterization of the input mesh.
(ii) Compute g(i) = ∑i

k=1 sk , where sk is the area of face fi on the original surface.

(a) (b)

(c) (d)

Fig. 4. Global conformal surface parameterization for a genus one closed
surface, the parameterization is periodic. (a) Surface. (b) Conformal tex-
ture mapping. (c) One period. (d) Periodic conformal mapping.

(a) (b)

(c) (d)

Fig. 5. Approximated surface Delaunay triangulation by global confor-
mal parameterization. The sample points are 2.5k, 5k and 10k. (a) 2.5k

samples, front view. (b) 2.5k samples, back view. (c) 5k samples. (d) 10k

samples.
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(a) (b)

(c) (d)

Fig. 6. Approximated surface Delaunay triangulation by global con-
formal parameterization for a genus zero closed surface. The sample
points are 10k. (a) Original surface. (b) Spherical conformal mapping.
(c) Delaunay triangulation, front view. (d) Delaunay triangulation, back
view.

(a) (b)

(c) (d)

Fig. 7. Approximated surface Delaunay triangulation by global con-
formal parameterization for a genus two closed surface. The sample
points are 10k. (a) Original surface. (b) Hyperbolic conformal mapping.
(c) Delaunay triangulation, front view. (d) Delaunay triangulation, back
view.

(iii) Generate a random number r ∈ [0,1] with the uniform distribution. Find the unique i, such that r ∈ [g(i −
1)/g(n), g(i)/g(n)], then the sample point should be on face fi .

(iv) Suppose the three vertices of fi are v1, v2, v3, generate another two independent random numbers α,β , such that
both of them are uniform distributed. Then the barycentric coordinates of the sample on fi is (α, (1 − α)β, (1 −
α)(1 − β)).

(v) The position of the sample in R2 is the linear combination of the positions of vis, the coefficients are the barycen-
tric coordinates. The parameter of the sample is the linear combination of the parameters of the vi ’s using the
barycentric coordinates.

(vi) Repeat step 2 through 4 to generate random samples, compute the Delaunay triangulation on the parametric
domain, which induces a polygonal mesh in R3.

The Delaunay re-meshing results are shown in Figs. 4, 5, 6 and 7.

5. Experimental results

In order to verify our theorems, we tessellate several smooth surfaces with different resolutions. For each mesh,
we measure the upper bound of the diameters of the faces, the upper bound of the radii of the circum-circles of the
faces. We also measure the Hausdorff distance and the normal distance between the mesh and the smooth surface. The
experimental results show the Hausdorff distance is quadratically convergent with respect to the diameter of the face,
and the normal distance convergent linearly with respect to the circum-circle radius. These experimental results are
consistent with our theorems.

Table 1 and Fig. 3 illustrate the comparison between numerical results and the theoretical estimation of Hausdorff
distance for some simple surfaces. The surfaces have explicit representations, therefore the computation of curvature
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Fig. 8. Manifold splines are used to verify the theoretical results. These spline surfaces are of C2 continuous, thus, the principal curvatures, normals,
Hausdorff distance, etc., can be obtained analytically.

(a) (b)

Fig. 9. Hausdorff distance and normal distance converge to zero. (a) Hausdorff distance converges quadratically to zero. (b) Normal distance
converges linearly to zero.
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bound is straight forward. Then we tessellate the surface on the parameter domain. We estimate the diameter of
triangles using the Euclidean distances between the vertices. The Hausdorff distance is calculated by minimizing the
following functional, suppose p ∈ M , S is S(u, v) then f (u, v) = 〈S(u, v) − p,S(u, v) − p〉. For any point p on M ,
first we find the closest vertex p0 on M , p0 is also on S with parameter (u0, v0). Then we use (u0, v0) as the initial
point, then use Newton’s method to find the global minimum of f (u, v). We densely sample M , and find the maximum
distance between the sample points to S. We subdivide the triangulation on the parameter domain to get a sequence
of meshes. The diameters of faces converge to zero, and the radii of circum-circles converge to zero, with the largest
angle bounded. From the table, it is clear that the numerical results are always no greater than the theoretical upper
bound, and the real values are close to their theoretical predictions.

We further verify our theoretical results by several complicated surfaces as illustrated in Fig. 8. All the models
are scaled into a unit cube. In order to accurately compute the principal curvature, Hausdorff distance and normal,
we convert these shapes into manifold splines (He et al., 2006a, 2006b; Gu et al., 2006). We construct the manifold
triangular B-splines for the two-hole torus (of genus 2, the second row in Fig. 8) and sculpture (of genus 3, the third
row in Fig. 8), and manifold T-spline for the kitten model (of genus 1, the first row in Fig. 8). We compute the curvature
bound using the spline function. We then tessellate the spline surfaces by triangulating the parameter domain to induce
a polygonal mesh. Next we subdivide the planar triangulation to get the refined meshes. For each mesh, we compute
the diameter of the faces d and the Hausdorff distance dH between the spline surface and the mesh. We plot the points
of (d, dH ), which form a quadratic curve (see Fig. 9(a)). Also, we compute the bound of the radii of the circum-circles
of faces on each mesh r , and the normal distance dN . We plot the pairs (r, dN), which form a linear curve when r is
sufficiently small (see Fig. 9(b)). The experimental results are consistent with our theoretical predictions.

6. Conclusion and future work

This work gives explicit formulae of approximation error bounds for both Hausdorff distance and normal distance
in terms of sampling density. For a set of sample points on a surface with sufficient density, it induces a unique
Delaunay triangulation, and a discrete mesh. With the increase of sampling density, the Delaunay meshes converge to
the original surface under both Hausdorff distance and normal distance, therefore, the area, the Riemannian metrics
and the Laplace–Beltrami operators are also convergent.

The theoretical results can be directly generalized along two directions: general triangulations and off surfaces
samples.

(i) General triangulations From our theoretical deduction, the Hausdorff distance is bounded by the quadratic func-
tion of the diameter of triangles on the discrete mesh, and the normal distance is bounded by the radius of the
circum-circle of the triangle on the mesh. The results proved in this paper work for Delaunay triangulation.
Same estimates (but may with different constants) work for triangulations where the largest angle of any face is
bounded. For example it will work for a triangulation with only acute triangles. The proof is a direct application
of Lemma 4.

(ii) Samples off the surface In this paper, the sample points are assumed to be on the surface. When sample points are
off the surface in practice, we expect the same results to be valid if the normal distance of the sample points is up
to a constant locally bounded by the square of least distance between sample points, thus the geometric accuracy
results are expectable.

A practical algorithm is introduced to approximate surface Delaunay triangulations using planar Delaunay triangu-
lations on conformal parametric domains. The method produces good approximation results and is practical for real
applications.

In the future, we will apply these error estimation formulae to prove the convergence of other advanced algorithms
in geometric modeling and processing, such as the conformal parameterizations, Poisson editing etc. We will prove
the convergence of current surface Delaunay triangulation algorithm.

Acknowledgement

This work was supported in part by the NSF CAREER Award CCF-0448339 and NSF DMS-0528363, NSF DMS-
0626223 to X. Gu. Wei Luo is supported by the National Natural Science Foundation of China (No. 60503067).



338 J. Dai et al. / Computer Aided Geometric Design 24 (2007) 323–338
References

Alliez, P., Meyer, M., Desbrun, M., 2002. Interactive geometry remeshing. ACM Trans. Graph. 21, 347–354.
Amenta, N., Bern, M.W., 1999. Surface reconstruction by Voronoi filtering. Discrete Comput. Geom. 22, 481–504.
Amenta, N., Bern, M.W., Kamvysselis, M., 1998. A new Voronoi-based surface reconstruction algorithm. In: SIGGRAPH, pp. 415–421.
Amenta, N., Choi, S., Dey, T.K., Leekha, N., 2002. A simple algorithm for homeomorphic surface reconstruction. Int. J. Comput. Geom. Appl. 12,

125–141.
Bajaj, C.L., Bernardini, F., Xu, G., 1995. Automatic reconstruction of surfaces and scalar fields from 3d scans. In: SIGGRAPH, pp. 109–118.
Ben-Chen, M., Gotsman, C., 2005. On the optimality of spectral compression of mesh data. ACM Trans. Graph. 24, 60–80.
Benkö, P., Martin, R.R., Várady, T., 2001. Algorithms for reverse engineering boundary representation models. Computer-Aided Design 33, 839–

851.
Bernardini, F., Bajaj, C.L., 1997. Sampling and reconstructing manifolds using alpha-shapes. In: CCCG.
Chow, B., Luo, F., 2003. Combinatorial Ricci flows on surfaces. J. Differential Geometry 63, 97–129.
Eck, M., Hoppe, H., 1996. Automatic reconstruction of b-spline surfaces of arbitrary topological type. In: SIGGRAPH, pp. 325–334.
Elber, G., 1996. Error bounded piecewise linear approximation of freeform surfaces. Computer-Aided Design 28, 51–57.
Federer, H., 1959. Curvature measures. Trans. Amer. Math. Soc. 93, 418–491.
Floater, M.S., Hormann, K., 2005. Surface parameterization: a tutorial and survey. In: Dodgson, N.A., Floater, M.S., Sabin, M.A. (Eds.), Advances

in multiresolution for geometric modelling. Springer-Verlag, pp. 157–186.
Floater, M.S., Reimers, M., 2001. Meshless parameterization and surface reconstruction. Computer Aided Geometric Design 18, 77–92.
Gu, X., He, Y., Qin, H., 2006. Manifold splines. Graph. Models 68, 237–254.
Gu, X., Wang, Y., Chan, T.F., Thompson, P., Yau, S.-T., 2004. Genus zero surface conformal mapping and its application to brain surface mapping.

IEEE Trans. Med. Imaging 23, 949–958.
Gu, X., Yau, S.-T., 2003. Global conformal parameterization. In: Symposium on Geometry Processing, pp. 127–137.
He, Y., Qin, H., 2004. Surface reconstruction with triangular b-splines. In: GMP, pp. 279–290.
He, Y., Gu, X., Qin, H., 2006a. Automatic shape control of triangular B-splines of arbitrary topology. J. Comput. Sci. Technol. 21, 232–237.
He, Y., Wang, K., Wang, H., Gu, X., Qin, H., 2006b. Manifold T-spline. In: GMP, pp. 409–422.
Hein, M., Audibert, J., von Luxburg, U., 2006. Graph Laplacians and their convergence on random neighborhood graphs. http://arxiv.org/

abs/math.ST/0608522.
Hildebrandt, K., Polthier, K., Wardetzky, M., 2005. On the convergence of metric and geometric properties of polyhedral surfaces. Submitted for

publication.
Hoppe, H., DeRose, T., Duchamp, T., McDonald, J.A., Stuetzle, W., 1992. Surface reconstruction from unorganized points. In: SIGGRAPH, pp.

71–78.
Hoppe, H., 1996. Progressive meshes. In: SIGGRAPH, pp. 99–108.
Jin, M., Luo, F., Gu, X., 2006. Computing surface hyperbolic structure and real projective structure. In: ACM SPM, pp. 105–116.
Ju, T., Losasso, F., Schaefer, S., Warren, J.D., 2002. Dual contouring of Hermite data. In: SIGGRAPH, pp. 339–346.
Leibon, G., Letscher, D., 2000. Delaunay triangulations and Voronoi diagrams for Riemannian manifolds. In: Symposium on Computational

Geometry, pp. 341–349.
Liu, D., Xu, G., 2005. A discrete scheme of Laplace–Beltrami operator and its convergence over quadrilateral meshes. In: Chen, F., Deng, J., Xu,

C. (Eds.), Progress of Geometric Design and Computing in 2005. Press of University of Science and Technology of China.
Luo, W., 2006. Error estimates for discrete harmonic 1-forms over Riemann surfaces. Comm. Anal. Geom. 14.
Morvan, J., Thibert, B., 2002. On the approximation of a smooth surface with a triangulated mesh. Comput. Geom. Theory Appl. 23, 337–352.
Morvan, J., Thibert, B., 2004. Approximation of the normal vector field and the area of a smooth surface. Discrete Comput. Geom. 32, 383–400.
Schoen, R., Yau, S.T., 1994. Lectures on Differential Geometry. International Press, Cambridge, MA.
Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S.J., Hoppe, H., 2005. Fast exact and approximate geodesics on meshes. ACM Trans. Graph. 24,

553–560.
Xu, G., 2004. Convergence of discrete Laplace–Beltrami operators over surfaces. Comput. Math. Appl. 48, 347–360.


