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Abstract
Centrioles are microtubule-derived structures that are essential to form centrosomes, cilia and
flagella. The centrosome is the major microtubule organiser in animal cells, participating in a
variety of processes from cell polarization to cell division, while cilia and flagella contribute to
several mechanisms in eukaryotic cells from motility to sensing. Although it was suggested more
than a century ago that these microtubule-derived structures are involved in human disease, the
molecular bases of this association have only recently been discovered. Surprisingly, there is very
little overlap between the genes affected in the different diseases, suggesting there are tissue-
specific requirements for these microtubule-derived structures. Knowledge of these requirements
and disease mechanisms has opened new avenues for therapeutical strategies. Here, we give an
overview of recent developments in this field focusing on cancer, diseases of brain development
and ciliopathies.

Centrioles, centrosomes and cilia
The centriole is a conserved eukaryotic organelle involved in a variety of processes, such as
cell division and motility (Fig. 1). This structure, in addition to other proteins, is made
primarily of microtubules organized most often in nine triplets (Fig. 1A, A´; reviewed in1).
The centriole participates in the formation of the centrosome, the major microtubule
organizing center (MTOC) in animal cells (Fig. 1A), which coordinates cell division,
motility and polarity. The centrosome is comprised of two distinct centrioles surrounded by
an electron-dense matrix, the pericentriolar material (PCM). While the PCM harbours
molecules that anchor and nucleate cytoplasmic microtubules (MTs) in interphase and
mitosis, centriolar characteristics determine most properties of the centrosome, such as
stability and capacity to reproduce (reviewed in1). The centriole also sets up the foundations
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for the axoneme, the skeleton of cilia and flagella that are structures involved in sensing and
movement (Fig.1B).

The number of centrioles in a cycling cell is normally controlled through a duplication cycle
(Fig. 2A). During the cell cycle, new centrioles form orthogonally to the two existing ones,
giving rise to two centrosomes. This occurs in coordination with DNA synthesis in S phase.
Thus, when the cell enters mitosis it is equipped with two centrosomes, each harbouring two
centrioles, which nucleate and anchor microtubules that form the mitotic spindle (Fig. 2A).
As a consequence of the centrosome cycle, a dividing cell harbours 3 centriole generations,
which have different ability to nucleate microtubules and form cilia. Non-random patterns of
inheritance of differently-aged centrioles have been observed in stem cells where centriole
age seems to play a role in asymmetric cell division2–5.

Not every cell follows the centrosome cycle. Some cells have many centrioles and others
have none. Many ciliated cells, such as those in vertebrate respiratory and reproductive
tracts, can have 200–300 cilia per cell. This requires the generation of multiple centrioles,
each forming one cilium. Both in multi-ciliated cells and in cells without pre-existing
centrioles, centrioles are formed de novo (reviewed in 6). Centrioles are universally required
for the assembly of cilia, but that is not the case for cell division. Several cell types divide
without centrioles, the classical examples being higher plants and oocytes (reviewed in 7).
However, other cells depend on these structures for accurate cell division, such as embryos
and spermatocytes from a variety of species, suggesting that centrioles might have been co-
opted for cell division in certain tissues 8 (discussed in 7).

Cilia can be motile, in which case they are sometimes also called flagella, such as in the
sperm, or immotile, such as primary cilia that exist in most of our cells. Both types of cilia
have sensory functions, with some being specialised in that function, such as
photoreceptors 9–11. In recent years an interplay between several signalling pathways and
primary cilia has been shown 9–11 (Fig. 2B). For example, the absence of cilia leads to many
Hedgehog related phenotypes, as part of the signaling occurs in this structure. The binding
of Hedgehog ligand to Patched-1 leads to Smoothened translocation to the ciliary
membrane, activation of the Gli1 and Gli2 transcription factors and Hh pathway activation
(reviewed in 10). Primary cilia have been proposed to play a role in Wnt signaling pathways
(reviewed in 12). Wnt can act via the canonical pathway through Dishevelled, by repressing
the degradation of β-catenin and promoting proliferation and differentiation. Wnt can also
act through non-canonical pathways, such as the planar cell polarity (PCP) pathway, which
regulates the cytoskeleton and is important to organize cells in the plane of the epithelium,
through the orientation of cell divisions. The role of cilia in Wnt signaling is controversial
(for an extensive discussion please refer to12), it is however clear that proteins involved in
PCP can affect ciliogenesis, in particular basal body docking and orientation12. Finally,
localization of the PDGF receptor-alpha to cilia is important for cell migration mediated
through this signaling pathway (reviewed in 10).

Theodor Boveri first established a link between centrosome abnormalities and disease more
than 100 years ago by proposing that an abnormal increase in centrosome number could lead
to abnormal mitotic spindles, hence be a source of chromosome instability that could cause
cancer 13. Other roles of centrioles and centrosomes in human disease have mostly been
driven by the discovery in recent years that centrosomal genes are associated with a variety
of human diseases, such as ciliopathies and diseases of brain development. Here, we discuss
the very recent findings of the role of centrosomes and centrioles in cancer, brain
development and ciliopathies and what they tell us about the functions of those organelles in
tissue development and homeostasis.
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Centrosome abnormalities in tumors
While most of the cancer field has focused on the understanding of specific gene
malfunctions that lead to cancer, Boveri’s early predictions only recently became an area of
active investigation. The idea that centrosome abnormalities play a role in tumorigenesis
was revived by the observation that knockdown of the tumor suppressor p53 leads to
centrosome amplification in mouse fibroblasts and in skin tumors 14. It was also established
that centrosome abnormalities are common in a variety of human tumors, such as breast,
prostate, lung, colon and brain 15, 16. Extensive analysis of a variety of solid tumors and
hematological malignancies has further reinforced these observations 17–19.

Generally, centrosome defects can be classified as structural or numerical aberrations 20.
Structural defects, likely a result of altered expression of centrosomal proteins, can lead to
abnormally enlarged centrosomes and enhancement or reduction of MT nucleation.
Numerical abnormalities, such as centrosome amplification, are perhaps the best
characterized centrosomal defects in cancer. However, assessing centrosome numbers is not
always an easy task. Most studies rely on counting PCM foci to quantify centrosome
number, which is not the most adequate as PCM fragmentation can lead to an increase of
acentriolar foci structures, or clustering of extra centrosomes may mask centrosome
amplification, reducing them to one PCM foci. Using electron microscopy, an accurate
method to quantify centrosome number 15, would be too laborious for large numbers of
cells, as serial sections would be needed to determine precisely the degree of centrosome
amplification. The development of systematic approaches to quantify centrosome number
would be a significant advance and might prove valuable as a biomarker and prognostic
factor for many human cancers 17–19.

Regulators of centrosome number
The observation that centrosome amplification occurs in human tumors raised the question
of how extra centrosomes arise. Although there are several routes that lead to centrosome
amplification, it is still unclear which mechanisms are more prevalent in cancer cells 17, 21.
Centrosome overduplication in S-phase induces the formation of multiple centrioles, for
example through overexpression of regulators of centrosome duplication (e.g. PLK4/SAK)
(Fig. 2A) or mutations in oncogenes or tumor suppressors (e.g. p53, BRCA1)1, 14.
Additionally, prolonged G2 cell cycle arrest can also increase centrosome number 22, 23.
Centrosome amplification can be achieved through cell division failure (e.g. mitotic slippage
and cytokinesis failure) and cell-cell fusion, which would also induce tetraploidization 24.
Intriguingly, tumors are composed of heterogeneous populations of cells with normal and
increased centrosome number. Thus, how this balance is achieved and how it affects the
tumor are interesting open questions.

Centrosomes and cancer: cause, consequence or both?
The observation that centrosome abnormalities can occur early in pre-malignant lesions and
that these defects are extensively correlated with aneuploidy, supports a direct role for extra
centrosomes in tumorigenesis 25, 26. Although to date it is still unclear whether centrosome
defects are a byproduct of mitotic abnormalities or if they actively contribute to
tumorigenesis, significant progress has been made in the field.

Recently, a mechanistic link between extra centrosomes and aneuploidy was
established 27, 28. The process of clustering multiple centrosomes at two poles during
mitosis, which allows cells to undergo a bipolar division, promotes the formation of
chromosome attachment errors, called merotely, which are not sensed by the spindle
assembly checkpoint and thus lead to lagging chromosomes and whole chromosome
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aneuploidy 27, 28 (Fig. 3A). These studies have established a causal role for centrosome
amplification in the generation of chromosome instability, two of the most prominent
features of human tumors. Although in primary cells chromosome instability seems to be
detrimental, it can promote tumorigenesis in several mouse models 29. While the mechanism
is uncertain, the idea that chromosome instability provides an evolutionary platform
important for cancer progression is certainly an exciting possibility 29. Thus, it is tempting to
speculate that the chromosome instability generated by extra centrosomes can contribute to
tumorigenesis.

It is important to acknowledge that centrosomes and centrioles have many functions,
including their role in polarity and cell migration, and their behavior as signaling platforms
in cell cycle transitions and checkpoints 30, 31, all processes affected in tumorigenesis.
Moreover, centrosome amplification can lead to the formation of extra cilia, which could
potentially modulate signaling output (Fig. 3B). Consistently, the modulation of cilia
assembly has been suggested to play an important role in pancreatic cancer potentially
through changes in Hh signaling 32. Hence, alternative roles for centrosome amplification in
cancer should not be ignored.

Work in Drosophila using neuroblasts injection has shown that centrosome abnormalities
can also promote tumorigenesis by a mechanism that is likely independent of
aneuploidy 33, 34(Fig. 3c). In this system, extra centrosomes caused overproliferation of
neuroblasts and tumorigenesis due to defects in asymmetric cell division where only minor
aneuploidy was detected 33. Mutations in several centrosomal genes also led to
tumorigenesis whereas inducing genomic instability independent of centrosome
amplification did not 34. This suggests that the role of centrosome abnormalities in cancer
may ultimately depend on the cellular context from which cancer cells are originated.

Targeting centrosome amplification as a putative therapeutic strategy
The initial idea that supernumerary centrosomes lead to multipolar cell divisions and
aneuploidy does not account for the fact that the gross aneuploidy resulting from multipolar
mitoses is likely detrimental to cancer cells 35. While still a topic of intense discussion,
several studies suggests that high levels of aneuploidy could have a tumor suppressor effect
at least in certain cellular contexts 29. Moreover, the progeny of cancer cells that undergo
multipolar division are unviable, lending support to the idea that multipolar divisions are a
dead end for cancer cells 27. Thus, it is not surprising that cells have mechanisms that limit
the detrimental effects of centrosome amplification, such as centrosome inactivation,
centrosome loss and centrosome clustering 21. Of these, the clustering of extra centrosomes
during mitosis which suppresses multipolar divisions, is the best described and has been
observed in a variety of tumors (Fig. 3A) 33, 36–40. Thus cells with extra centrosomes might
have unique requirements for their survival. Indeed, recent work has shown that centrosome
clustering is essential for the survival of cells with supernumerary centrosomes 33, 36, 38, 39.
Furthermore, inhibition of proteins that are essential for centrosome clustering, such as the
minus-end directed motor HSET/KIFC1 or the integrin-linked kinase (ILK), selectively kills
cancer cells with extra centrosomes, while sparing cells with normal centrosome
numbers 36, 39. While inhibitors that target centrosome clustering still require further in vivo
validation, these observations open a new possible venue for the development of selective
cancer therapeutic strategies.

Centrosomes and diseases of brain development
Several diseases of brain development have been linked to centrosome and MT-regulating
proteins (reviewed in 41). The three most common phenotypes are: disorders of neural
migration (e.g. lissencephaly caused by heterozygous mutations in the microtubule binding
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protein LIS1); generalized disorders of growth where the brain is disproportionately affected
(e.g. microcephalic osteodysplastic primordial dwarfism type II due to mutations in the
PCM protein pericentrin (PCNT) 42, 43); and the primary microcephalies where the brain
alone is affected and significantly reduced in size, which we now discuss in more detail.

The primary microcephalies
The crucial role of centrosome proteins in mammalian neurogenesis was discovered through
the study of individuals with "autosomal recessive primary microcephaly" (MCPH) where
brain growth is significantly reduced. MCPH is caused by bi-allelic null mutations in any
one of seven genes: MICROCEPHALIN, CDK5RAP2, ASPM, CPAP and STIL (reviewed
in44), and newly reported genes CEP152 and WDR62. These MCPH genes all encode
ubiquitously expressed proteins that localize to the centrosome at least in some parts of the
cell cycle.

Cellular and developmental mechanisms in primary microcephalies
The human brain is populated by 16 billion neurons generated from a pseudostratified
neuroepithelium within the developing brain. The genes affected in MCPH can be
subdivided in two classes according to their function: genes involved in centriole duplication
and genes involved in centrosome maturation and spindle pole formation. Three MCPH
proteins play an important role in centriole duplication, CPAP, STIL and CEP152 (Fig. 2A).
CEP152 acts as a scaffold protein to recruit the PLK4 kinase, a trigger of centriole
biogenesis, and CPAP, a regulator of centriole-microtubule recruitment and
elongation 45–47(Fig. 2A). Besides CPAP and CEP152 that play also a role in centrosome
maturation, two additional MCPH proteins are required for this process: CDK5RAP2 and
ASPM (Fig. 2A). CDK5RAP2 tethers the centrosome and spindle pole during mitosis,
which is essential to maintain centriole cohesion 48–50. In its absence, centrioles detach from
the PCM and, as consequence, from the spindle. The orthologue of ASPM has also been
shown to be important for spindle pole focusing in Drosophila, and its knockdown also
leads to centrosome detachment51. Mutations in the gene WDR62 have also been associated
with MCPH, although in this case mutations are predominantly missense 52–54. Nonsense
mutations give rise to severe mental retardation and defective neuronal migration 53, 54.
WDR62 accumulates at the spindle poles in neural precursors undergoing mitosis, mirroring
the localization of ASPM, suggesting a role in centrosome maturation.

Many of the MCPH proteins have been shown to play a role in spindle positioning
suggesting that this process is critical for disease development 55–58. Vertebrate
neurogenesis starts with an expansion phase, where symmetric divisions generate neural
precursors. This is followed by a phase of differentiation, where neuronal precursors divide
asymmetrically to give rise to neurons or basal progenitors. A decrease in the pool of neural
precursors is thought to be a cause of MCPH. Although the mechanism is still unclear, one
possibility is that proper centrosome functioning might be essential to ensure that divisions
are symmetric during the expansion phase and defects in this process would lead to a
decrease in neural precursors and MCPH. However, it is puzzling that the MCPH
centrosome proteins participate in mitosis in most cell types, yet their mutation results in a
specific reduction in brain size. An emerging theme that might help solving that paradox is
that the severity of the mutations could lead to different phenotypes, with hypomorphic
mutations in CPAP and CEP152 leading to MCPH, but functional null mutations causing a
reduction in whole body, as well as the brain 59, 60. It is possible that centrosome structure
and function might be affected differently in different tissues or that different tissues
compensate differently for the lack of centrosome function during development. It will be
very important in the future to correlate each mutation to cellular and developmental
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phenotypes to understand how different tissues might be affected. Animal models of the
human mutations should also play an important role in solving this puzzle.

From the clinical perspective, it is now possible to expect that all genetic (mutations) and
genomic (copy number variants) alterations leading to primary microcephaly will be
diagnosable in the near future. In addition, MCPH genes may turn out to be valuable
markers and tools to manipulate human neural stem cells, which could potentially be used to
treat many neurodegenerative disorders.

Centrosomes, cilia and ciliopathies
Diseases of motile cilia have been known since ciliary assembly defects were associated
with Kartagener syndrome, characterized by bronchitis and sinusitis that result from defects
in mucus-clearing cilia and often accompanied by sperm immotility 61. Pathologies caused
by defects in motile cilia are referred to as primary ciliary dyskinesia (PCD), which are rare.
Ciliary ultrastructural defects are identified in approximately 90% of PCD patients 61.
Changes in body symmetry, manifested in approximately 50% of patients with PCD, have
shown that ciliary motility is essential to create directional flow in the early embryo
initiating the normal left-right developmental program62.

In recent years, positional cloning of several other single-gene disorders led to the inclusion
of a variety of syndromes in the “ciliopathies list”, where mutations lead to abnormal ciliary
structure and function and/or the gene product is located at the primary cilia and/or
centrosome 63. This is the case of several rare disorders such as polycystic kidney disease,
nephronophthisis, retinitis pigmentosa, Bardet-Biedl, Joubert and Meckel syndromes. Many
of these disorders are clinically perplexing as they affect multiple organs including the
kidney, retina, brain, bones, liver, and cause kidney failure, blindness, liver fibrosis, obesity
or diabetes. The study of the cellular and developmental function of those proteins is
contributing to a better understanding of the genesis of those diseases and the function of
immotile cilia. In particular in several of those diseases the microtubule-based structure of
the cilia is not altered, while its sensory function might be. Recent evidence suggests that
this multitude of phenotypes arises from suboptimal ciliary signaling 64, as discussed below.

Autosomal dominant polycystic kidney disease (ADPKD) is the most frequent lethal
dominant disease in the United States and Europe, caused by mutations in the genes PKD-1
and PKD-2, which code for the proteins polycystin-1 (PC1) and polycystin-1 (PC2)
respectively. The localization of PC1 and PC2 in cilia6566(Fig. 2B) and the identification of
ciliary defects as a cause for renal cystic phenotypes in the mouse model Tg737 suggested a
role for primary cilia in the pathogenesis of renal cystic disease 67. Studies of conditional
knockout mouse models for PKD-168 have demonstrated a central role of PC1 in renal
tubular morphogenesis as well as tissue maintenance and repair69. The product of the gene
PKHD1 (polycystic kidney and hepatic disease 1) which is mutated in autosomal recessive
polycystic kidney disease (ARPKD) 70, 71, also localizes to primary cilia72.

Nephronophthisis (NPHP), a recessive kidney disease, which leads to renal fibrosis and
corticomedullary cysts, is the most frequent genetic cause for end stage renal failure in the
first three decades of life 73. Mutations in 11 different recessive genes, the Nephrocystins,
(NPHP1–NPHP11) have been identified (reviewed in 63, 73). NPHP is often associated with
other organs besides the kidney. Association with retinal degeneration, known as Senior-
Loken syndrome (SLSN), is always seen in cases with mutations of nephrocystin-5
(NPHP5)74. Interestingly, the protein NPHP5 interacts with the retinitis pigmentosa GTPase
regulator (RPGR) which is mutated in X-linked retinitis pigmentosa and present in the
connecting cilia of photoreceptors74, 75,. The association between both proteins might
explain how mutations in NPHP5 lead to retinal phenotypes.
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Meckel-Gruber syndrome (MKS) is an autosomal recessive disease that leads to perinatal
death due to dysplasia and malformation in multiple organs. It now appears that multiple
recessive mutations in many different genes causing this disease may lead to a wide
spectrum of organ involvement. The phenotype depends on the severity of the mutated allele
involved. Bardet–Biedl syndrome (BBS) is another disorder that involves many organs.
Twelve BBS-associated genes (BBS1–BBS12) have been identified so far and many
associate in a complex that sorts membrane proteins, including receptors, to primary cilia76,
suggesting that defective signaling is at the origin of the disease (Fig. 2B). In the case of
Orofaciodigital syndrome type 1 (OFD1) and Jeune’s asphyxiating thoracic dystrophy, the
defective proteins OFD1 and IFT80 are involved in basal body and cilia formation (Fig. 2B)
(63, 73, 77).

Broad genetic locus heterogeneity has posed a problem for molecular genetic diagnostics of
ciliopathies in the past. However, the availability of high-throughput sequencing techniques
now offers to individuals with ciliopathies rapid screening for all known ciliopathy-causing
genes. This approach, in conjunction with whole exome and genome sequencing will
facilitate detection of the remaining unknown ciliopathy genes77. Therapeutic options in
degenerative ciliopathies are being developed in animal models. In cystic kidneys diseases
therapeutic trials are ongoing studying the effects of rapamycin, octreotide, and a
vasopressin receptor antagonist. The time interval of almost 10 years between onset of first
renal symptoms and terminal renal failure offers a theoretical time window for treatment or
prevention. Knowledge of an individual's specific mutation will permit classification of
particular genetic subsets of patients for specific future therapeutic trials.

Cellular and developmental mechanisms in ciliopathies
Genes that are mutated in ciliopathies, as discussed above, can affect ciliary signaling in
different ways: through changes in cilia structure, in targeting signaling molecules
appropriately, or at the level of the sensory/signaling molecules (Fig. 2B). Changes in the
Hh pathway are associated with several developmental defects, including polydactily, neural
tube and craniofacial defects. Mouse mutants deficient in specific genes involved in
intraflagellar transport (IFT) including Kif3a exhibit Hedgehog mutant phenotypes with
cystic kidneys (reviewed in 10). Mutations in the NPHP7/Glis2 gene, were identified as the
cause of NPHP type 7 78. Glis2 mutant mice showed severe renal atrophy and fibrosis
resembling human nephronophthisis78. How this cystogenic phenotype arises is still not
clear, but it has been suggested to be mediated by a Hh role in epithelial to mesenchymal
transition79. Several molecules, which have been associated with cilia-related diseases, play
a role in the Wnt pathway. For instance, Inversin/NPHP2 function is necessary to switch
from the canonical to the non-canonical Wnt/planar cell polarity (PCP) pathway (Fig. 2B).
Moreover, several BBS proteins cooperate with non-canonical Wnt signaling in PCP80, 81.
There is aberrant orientation of the mitotic spindle in mouse or rat models with mutation of
the cystic kidney disease genes Hnf182, Pkhd182, and Kif3a83 suggesting that defective
spindle orientation could contribute to kidney cysts. However, this model has not been
confirmed for PKD84, 85, where loss of oriented cell division is neither sufficient to produce
kidney cysts nor required to initiate cyst formation. The role of proliferation in the genesis
of ciliopathies phenotypes is supported by the fact that the cyclin-dependent kinase inhibitor
roscovitine can efficiently treat two renal cystic mouse models (jck and cpk)86. It is not clear
whether all ciliopathies phenotypes result from dysfunctional ciliary signaling, or whether in
some cases dysfunctional centrosome signaling and/or cytoskeleton disorganization alone
trigger the disease.
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Dysplasia versus degeneration in ciliopathies
Very recently the surprising discovery was made that mutation of the same recessive gene
(this includes NPHP3, NPHP6 or NPHP8) may cause very different NPHP-like ciliopathy
phenotypes. In these genes, the presence of 2 null alleles causes the severe, early-onset
phenotype of perinatal lethal Meckel syndrome with dysplasia/malformation in most organs,
whereas individuals with hypomorphic (missense) alleles are normal at birth and over years
develop degenerative phenotypes of nephronophthisis, retinal degeneration and liver
fibrosis 87–90. It appears that null mutation already manifests during organ development
resulting in dysplasia, whereas, hypomorphic mutations manifest in adult tissue during tissue
maintenance and repair. A similar effect was described for Pkd1, where the occurrence of
cysts in the kidney depends on developmental status68, 83. These data suggest that tissues
have very different requirements for the function of those genes in development and
homeostasis.

Concluding remarks and future perspectives
In this review, we highlighted the role of centrosomes, centrioles and cilia in a broad
spectrum of genetic and acquired diseases. The recent identification of genes involved in
ciliopathies and diseases of brain development helps to clarify how organelle biogenesis and
function are targeted, as well as their developmental implications. In primary
microcephalies, proteins participating in the centrosome cycle are affected. It has been
suggested that the most plausible explanation for the observed small brain is the
deregulation of the balance between symmetric and asymmetric divisions of neural
progenitors, which normally guarantees genesis of the right cell type, at the right time. In
primary cilia dyskinesia, cilia structure and motility are affected with clear implications in
processes that involve cilia motility. Finally, in the majority of ciliopathies, there is either
disruption of primary cilia assembly or of the transport of signalling molecules to
centrosomes and cilia, suggesting overall problems in signalling that affect cell proliferation,
polarity and/or orientation of cell division.

While certain diseases of centrosomes and cilia may be manifested in the same tissues and
share phenotypes, others are dramatically different and diverse. Mutations in the same gene
may lead to strongly different phenotypes. Moreover, microcephaly only rarely and
inconsistently occurs in other disease phenotypes caused by bi-allelic mutation of
centrosomal proteins, e.g. Joubert, Bardet-Biedl, Meckel syndromes. And the corollary
holds true, that the extra-cerebral features of these diseases do not occur in MCPH.
Strikingly, both molecules as well as the tissues that are affected in each disease are
different. Overall these studies highlight that developmental and homeostasis pathways vary
between tissues and developmental stages, leading to different sensitivity to the failure of
particular pathways and gene interactions. In particular it is very unlikely that the mutations
observed in microcephaly completely disrupt centriole formation in all tissues, as this would
generally impair cilia formation1, leading to ciliopathies.

Despite significant progress made in the field of centrosomes and cancer, the role of
centrosomal abnormalities in human tumorigenesis still remains uncertain. Several mouse
models that target centrosomal proteins can form tumors. However, in these models, the
observed centrosome defects are usually accompanied by increase in ploidy91–94. Thus, the
development of new models that can disentangle the increase in ploidy from the centrosomal
defects is crucial to fully address this question. It will be also important to understand the
consequences of centrosome abnormalities in situ, in particular whether some of the defects
observed in the genetic diseases, such as abnormal cell proliferation and centrosome/ciliary
signaling, are also observed.
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An interesting lesson to learn from the genetic diseases discussed here is that the
requirements for centrosome and cilia normal function are likely to be tissue-specific.
Perhaps different centrosome and cilia functions might also be targeted in different types of
cancer, depending on tissue type and time of appearance of their abnormalities. Regardless
of substantial advances, we are only starting to unveil the role of centrosomes and cilia in
human diseases and many exciting questions still lie ahead in the field.
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Figure 1. Centrosome and cilia structure
The centriole is a structural constituent of centrosomes, cilia and flagella. (A) The canonical
centriole has nine MT triplets and is ~0.5 µm long and 0.2 µm in diameter. Each centrosome
is composed by a mother and daugther centriole present in an orthogonal configuration and
surrounded by a matrix of proteins called the pericentriolar material (PCM). The older
centriole (mother) shows subdistal appendages, where MTs are docked, and distal
appendages, which are important for docking to the plasma membrane. Satellites are
granular structures surrounding the centrosome that are implicated in trafficking of material
involved in centriole assembly. (A’) Electron micrograph of a centrosome; scale bar: 0.2 µm
(reproduced with permission from 95). (B) In many cells the centriole, then called basal
body, migrates and tethers to the plasma membrane via its appendages and seeds the growth
of cilia and flagella. The skeleton of cilia and flagella, called the axoneme, results from a
continuation of the basal body structure and might be composed of nine doublets with no
dynein arms nor central pair, as it is in the case of most immotile cilia; or nine MT doublets
with dynein arms and a central MT pair, as it is for most motile cilia. The distal part of the
basal body is called transition zone, where the outer tubule stops growing. During centriole
to basal body differentiation the acquisition of specialized structures such as striated rootlets,
basal feet and transitional fibres, will provide mechanical support to cilia, anchor the basal
body to the apical cytoskeleton and serve as platforms for the docking of ciliary
components, respectively 11.
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Figure 2. Centrosome and cilia biogenesis and human disease
A. Centriole biogenesis. PLK4 triggers centriole biogenesis. It is recruited to the centrosome
by CEP152. CEP152 also binds other molecules essential to this process, such as CPAP
(also called SAS4 in Caenohabditis elegans). Procentriole formation begins in S phase upon
recruitment of SAS6, CEP135 and STIL (also called SAS5), which are needed to form the
cartwheel, a structure that helps in defining the centriole nine-fold symmetry. CPAP also
plays a role in centriole elongation (for a review see 1, 96). CDK2 activity may be necessary
for speeding up procentriole formation and elongation, hence coordinating this event with
DNA replication. In G2, the daughter centriole reaches full elongation and maturation with
the recruitment of several molecules that are needed for microtubule nucleation, stability and
focusing to the pericentriolar material (PCM), including pericentrin (PCTN), CEP192 (also
called SPD2 in C. elegans), CDK5RAP2 (also called CNN in Drosophila) and ASPM.
CDK1 activity increases in G2, regulating a variety of molecules and processes needed for
entry into mitosis, such as changes in microtubule dynamics. Through the concerted action
of molecules such as the kinase Nek2, the two centrosomes separate. When a cell exits
mitosis, the centrioles within the centrosome disengage through the action of PLK1 and
separase. That process may allow recruitment or activation of molecules necessary for
duplication and ensures that daughter centrioles can only form after this point, preventing
reduplication. Molecules involved in preventing DNA rereplication, such as ORC1 have a
similar role in preventing centriole reduplication (for a review see 1, 96). B. Cilia assembly/
function and human disease. Mother centriole appendices dock to a vesicle, after which
axoneme growth starts, followed by fusion of the vesicle to the plasma membrane.
Migration of the centriole is dependent on the actin cytoskeleton and molecules such as
MKS1, which is mutated in Meckel-Grueber syndrome. Several signalling pathways operate
in ciliated cells, some of which are dependent on the presence of the cilium. Calcium
signalling operates through membrane receptors and calcium channels on the ciliary
membrane such as polycystin 1 and 2 respectively (PC1 and PC2). Hedgehog (Hh)
signalling operates through the cilium in vertebrates: upon binding of Hh to its receptor
Patched (Ptch1) a cascade of events starts within cilia and the body of the cell leading to the
expression of target genes (see text; for a review see 10). Wnt signalling is modulated
through several components that localise at the centrosome and cilia. Several players in
human disease, such as inversin (also called NPHP2) and the BBS proteins, which are part
of the BBsome and are involved in protein trafficking, have been shown to play an
important role in the switch between canonical and non-canonical Wnt pathways, through
the regulation of β-catenin degradation, hence potentially regulating polarity, spindle
positioning and proliferation (for a review see 11, 12). The centriolar satellites may play an
important role in human disease as several ciliopathy proteins, such as BBS4, CEP290 (also
called NPHP6) and OFD1 have been shown to localise both to centrioles and satellites.
Several proteins mutated in human disease, such as the NPHP1,3,4,5 and 10 localise to the
transition zone. IFT components, which are involved in transporting molecules in and out of
the cilia, including molecules involved in cilia assembly are also mutated in ciliopathies
(e.g. IFT80, Dync2h1).
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Figure 3. Centrosome and cancer
Possible mechanisms of how extra centrosomes could affect tumorigenesis. (A) Extra
centrosomes can directly induce aneuploidy by forcing cells to undergo a multipolar
intermediate during spindle assembly that lead to an increase of merotelic chromosome
attachments and lagging chromosomes during mitosis. (B) Centrosome amplification can
affect signalling, for example by modulating cilia number. (C) The presence of extra
centrosomes can cause defects in asymmetric cell division in Drosophila neuroblasts,
leading to an overproliferation of the stem cell population.
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