
ar
X

iv
:m

at
h-

ph
/0

50
80

08
v1

 2
 A

ug
 2

00
5

DESY 05-104 math-ph/0508008

SFB/CPP-05-24
CERN-PH-TH/2005-124

– XSUMMER –

Transcendental Functions and Symbolic Summation in

FORM

S. Mocha and P. Uwerb

aDeutsches Elektronensynchrotron DESY

Platanenallee 6, D–15735 Zeuthen, Germany

bDepartment of Physics, TH Division, CERN

CH-1211 Geneva 23, Switzerland

July 2005

Abstract

Harmonic sums and their generalizations are extremely useful in the evaluation of
higher-order perturbative corrections in quantum field theory. Of particular interest
have been the so-called nested sums, where the harmonic sumsand their generaliza-
tions appear as building blocks, originating for example from the expansion of gener-
alized hypergeometric functions around integer values of the parameters. In this Letter
we discuss the implementation of several algorithms to solve these sums by algebraic
means, using the computer algebra systemFORM.

http://arxiv.org/abs/math-ph/0508008v1
http://arxiv.org/abs/math-ph/0508008

Program summary

Title of program: XSUMMER

Version: 1.0

Catalogue number:

Program summary URL: http://www-zeuthen.desy.de/˜moch/xsummer

E-mail: sven-olaf.moch@desy.de, peter.uwer@cern.ch

License: GNU Public License andFORM License

Computers: all

Operating system: all

Program language: FORM

Memory required to execute: Depending on the complexity of the problem, recom-
mended at least 64 MB RAM.

Other programs called: none

External files needed: none

Keywords: Symbolic summation, Multiple polylogarithms, Transcendental functions.

Nature of the physical problem: Systematic expansion of higher transcendental func-
tions in a small parameter. The expansions arise in the calculation of loop integrals in
perturbative quantum field theory.

Method of solution: Algebraic manipulations of nested sums.

Restrictions on complexity of the problem: Usually limited only by the available disk
space.

Typical running time: Dependent on the complexity of the problem.

1

http://www-zeuthen.desy.de/~moch/xsummer

1. Introduction

Symbolic summation amounts to finding a closed-form expression for a given sum or
series. Systematic studies have been pioneered by Euler [1], and for specific sums, ex-
act formulae have been known for a long time, series representations of transcendental
functions being a prominent example. Today, general classes of sums, for example
so-called harmonic sums, have been investigated (see e.g. Refs. [2]) and symbolic
summation has further advanced through the development of algorithms suitable for
computer algebra systems. Here, the possibility to obtain exact solutions by means of
recursive methods has lead to significant progress, for instance in the summation of
rational or hypergeometric series, see e.g. Ref. [3].
In quantum field theory, higher-order corrections in perturbation theory require the
evaluation of so-called Feynman diagrams, which describe real and virtual particles
in a given scattering process. In mathematical terms, Feynman diagrams are given as
integrals over the loop momenta of the associated particle propagators. These inte-
grals may depend on multiple scales and are usually divergent, thus requiring some
regularization. The standard choice is dimensional regularization, i.e. an analytical
continuation of the dimensions of space-time from 4 toD, which keeps underlying
gauge symmetries manifestly invariant. Analytical expressions for Feynman integrals
in D dimensions may lead to transcendental or generalized hypergeometric functions,
which have a series representation through nested sums withsymbolic arguments. The
main computational task is then to obtain the Laurent seriesupon expansion of the
relevant functions in the small parameterε = (D−4)/2.
It is the aim of the present Letter to discuss the implementation of several algo-
rithms [4] for these tasks in the computer algebra systemFORM [5, 6]. The result-
ing packageXSUMMER has already been used in full-fledged calculations in particle
physics, for instance in calculating higher-order perturbative corrections in Quantum
Chromodynamics, see e.g. Ref. [7]. We hope that it may also beuseful for a larger
community, as it exceeds current built-in capabilities of commercial computer algebra
systems such asMAPLE or MATHEMATICA in the expansion of (generalized) hypergeo-
metric functions.
To give a concrete example for the kind of problems we aim at, consider the hyperge-
ometric function2F1, which has a series representation for arguments|x| ≤ 1:

2F1(aε,bε,1− cε,x) =
∞

∑
j=0

(aε) j(bε) jx j

(1− cε) j j!

= 1+abLi2(x)ε2+ab{cLi3(x)+(a+b+ c)S1,2(x)}ε3+O(ε4) , (1.1)

where the(aε) j = Γ(j +aε)/Γ(aε) are so-called rising factorials (in the literature also
known as Pochhammer symbols). Here, we have expressed the coefficients of the
Laurent series inε through standard polylogarithms Lin and Nielsen functions Sn,p,
see e.g. Ref. [8].

2

Our choice ofFORM for the implementation is based on two reasons, one being that
FORM is extremely fast and flexible when dealing with large expressions.FORM allows
for a very compact notation and is equipped with a pattern matcher well suited to solve
our problem. The ability to handle large-size expressions (of the order of the computer
memory) is crucial, as they generally occur at intermediatestages in the quantum field
theory calculations mentioned above, for instance when theLaurent expansions inε
have to be done to very high order.
The other main motivation for choosingFORM is due to the existingSUMMER pack-
age [9]. TheSUMMER package inFORM is capable of solving nested sums in terms of
harmonic sums, a feature that has also been used extensivelyin recent cutting-edge cal-
culations of structure functions to three loops in Quantum Chromodynamics [10–12].
Here, theXSUMMER package, being capable of handling (multiple) scales, e.g.in
Eq. (1.1), provides the obvious extension. In the development of XSUMMER, we have
also benefited from the fact that some parts of the underlyingalgorithmic structures
could be literally taken fromSUMMER.
A major disadvantage of usingFORM for XSUMMER is certainly the lack of internal
algorithms for particular operations on polynomials, suchas factorization. We will
comment on that in the text. Also, we note that an implementation of the algorithms
of Ref. [4] within the GiNaC framework [13] is available [14].
The outline of the Letter is as follows. In Section 2, we briefly give the basics of
generalized sums and recall the algorithms of Ref. [4]. In Section 3, we present the
XSUMMER package and discuss details of the implementation. Section4 features an
extensive set of tests with various sample calculations, including e.g. Ref. [7]. We
conclude in Section 5.

2. Harmonic sums and their generalizations

The basic recursive definition ofS-sums is given by [4]

S(n) =

{

1, n > 0,
0, n ≤ 0,

S(n;m1, ...,mk;x1, ...,xk) =
n

∑
i=1

xi
1

im1
S(i;m2, ...,mk;x2, ...,xk) . (2.1)

These are the basic objects that we will manipulate in the following. Generally, we
have all|xi| ≤ 1 in Eq. (2.1). The sum of allmi is called the weight of the sum, while
the indexk denotes the depth. This definition actually includes as special cases the se-
ries representations of classical polylogarithms, Nielsen functions, as well as multiple
and harmonic polylogarithms [15–17]. For allxi = 1, the above definition reduces to
harmonic sums [1, 9, 18] and, if additionally the upper summation boundaryn → ∞,
one recovers the (multiple) zeta values associated to Riemann’s zeta-function [2].

3

An equivalent representation ofS-sums reads

S(n;m1, ...,mk;x1, ...,xk) = ∑
n≥i1≥i2≥...≥ik≥1

x
i1
1

i1
m1

. . .
x

ik
k

ik
mk

. (2.2)

We note thatS-sums are closely related to so-calledZ-sums, the difference being the
upper summation boundary for the nested sums:(ik −1) for Z-sums,ik for S-sums,
see Ref. [4]. One can algebraically convertZ-sums toS-sums and vice versa [19, 20].
We rely entirely onS-sums in our discussions, but nevertheless provide the procedure
ConvStoZ since, in some cases,Z-sums may be more favourable.
TheS-sums obey the well-known algebra of multiplication, a straightforward general-
ization of the results on the multiplication of harmonic sums [9]. The basic formula
reads

S(n;m1, ...,mk;x1, ...,xk)×S(n;m′
1, ...,m

′
l;x′1, ...,x

′
l)

=
n

∑
i1=1

x
i1
1

i
m1
1

S(i1;m2, ...,mk;x2, ...,xk)S(i1;m′
1, ...,m

′
l;x′1, ...,x

′
l)

+
n

∑
i2=1

x′1
i2

i
m′

1
2

S(i2;m1, ...,mk;x1, ...,xk)S(i2;m′
2, ...,m

′
l;x′2, ...,x

′
l)

−
n

∑
i=1

(x1x′1)
i

im1+m′
1

S(i;m2, ...,mk;x2, ...,xk)S(i;m′
2, ...,m

′
l;x′2, ...,x

′
l) , (2.3)

which works recursively in the depth of the individual sums.The algorithm allows
the expression of any product of nested sums as a sum of singlenested sums, hence
in a canonical form, which is an important feature for practical applications. The
underlying algebraic structure in Eq. (2.3) is a Hopf algebra, being realized as a quasi-
shuffle algebra here, see e.g. Refs. [2, 4] . The algorithm canbe implemented very
efficiently on a computer, see the procedureBasisS in Section 3.
In our applications, such as in Eq. (1.1), we encounter Gamma-functions, which we
have to expand in the small parameterε before the actual manipulation of the nested
sums. This proceeds according to the well-known formula forthe expansion of the
Gamma-function around positive integer values,

Γ(n+1+ ε)
Γ(1+ ε)

= Γ(n+1) exp

(

−
∞

∑
k=1

εk (−1)k

k
Sk(n)

)

. (2.4)

Similarly, the expansion of the Gamma-function around negative integer values can be
reduced to the case in Eq. (2.4) with the help of the followingrelation (e.g. Ref. [21]
p. 3),

Γ(−n+1+ ε)
Γ(1+ ε)

= (−1)n Γ(−ε)
Γ(n− ε)

, (2.5)

4

which yields

Γ(−n+1+ ε)
Γ(1+ ε)

=
1
ε

(−1)n−1

Γ(n)
exp

(

∞

∑
k=1

εk 1
k

Sk(n−1)

)

. (2.6)

2.1. Algorithms

For the manipulation of theS-sums, we classify four types of transcendental sums.
These types of sums are dealt with in the algorithms A to D given below. All sums in
these classes can be solved recursively, i.e. they can be expressed in canonical form.
The underlying algorithms realize a creative telescoping.They either reduce succes-
sively the depth or the weight of the inner sum, so that eventually the inner nestings
vanish and the results can be written in the basis of Eq. (2.1). The procedure gen-
erally relies on algebraic manipulations, such as partial fractioning of denominators,
shifts of the summation ranges and synchronization of summation boundaries of the
individual sums. Another crucial ingredient is, of course,the quasi-shuffle algebra of
multiplication in Eq. (2.3).

Basic definition (type A):

Here we consider sums overi involving onlyS(i; ...), of the form,

S(n;m1, ...,mk;x1, ...,xk) =
n

∑
i=1

xi
1

(i+a)m1
S(i+b;m2, ...,mk;x2, ...,xk) , (2.7)

where we assume thata,b are (non-symbolic) integers. The upper summation limit is
allowed to be infinity.

Convolution (type B):

Here we consider convolutions, i.e. sums overi involving bothS(i; ...) andS(n− i; ...),
of the form,

n−1

∑
i=1

(xi
1

(i+a)m1
S(i+b;m2, ...,mk;x2, ...,xk)

×
(x′1)

n−i

(n− i+a′)m′
1
S(n− i+b′;m′

2, ...,m
′
l;x′2, ...,x

′
l)
)

, (2.8)

where alla,a′,b andb′ must be (non-symbolic) integers. Note that the upper summa-
tion limit is (n−1) and thus consistent with the defining range of theS-sums.

5

Conjugation (type C):

Here we consider conjugations, i.e. sums overi involving

(−1)i S(i ;m1, . . . ;x1, . . .)

and a binomial
(

n

i

)

,

of the form,

−
n

∑
i=1

(

n

i

)

(−1)i xi
1

(i+a)m1
S(i+b;m2, ...,mk;x2, ...,xk) , (2.9)

wherea,b are (non-symbolic) integers. The upper summation limit should not be
infinity. Again, the upper summation limitn is consistent with the defining range of
the binomial. Sums of this type cannot be reduced toS-sums with upper summation
limit n alone. However, they can be reduced toS-sums with upper summation limitn

and multiple polylogarithms (which areS-sums to infinity).

Binomial convolution (type D):

Here we consider binomial convolutions, i.e. sums overi involving (−1)i S(i; ...),
S(n− i; ...) and a binomial, of the form,

−
n−1

∑
i=1

(

n

i

)

(−1)i xi
1

(i+a)m1
S(i+b;m2, ...,mk;x2, ...,xk)

×
(x′1)

n−i

(n− i+a′)m′
1
S(n− i+b′;m′

2, ...,m
′
l;x′2, ...,x

′
l) . (2.10)

Here, alla,a′,b andb′ must be (non-symbolic) integers. Yet again, the upper summa-
tion limit (n−1) reflects the defining range of the binomial and theS-sums. As for
sums of type C, we cannot relate them toS-sums with upper summation limit(n−1)
alone, but we can reduce them toS-sums with upper summation limit(n − 1) and
multiple polylogarithms (which areS-sums to infinity).

3. The XSUMMER package

In this section we give a short description of theXSUMMER package. In particular we
explain the notation that we use in the package and the main routines that act as a
front-end to a bunch of smaller routines used internally. Atthe end of this section we
also comment briefly on the internal routines, although the user might not want to call
them directly.

6

3.1. Basic syntax — form follows function

The XSUMMER package is written using the computer algebra systemFORM. Unlike
programs such asMAPLE or MATHEMATICA the programFORM provides only a very
limited set of built-in capabilities.FORM is mainly a highly efficient pattern matcher.
In choosing a syntax/notation for theXSUMMER package it is therefore important to
ensure that all basic algorithms can be implemented as simple pattern matching and,
at the same time, make this pattern matching as simple as possible.
Generically, we use the functionR with an arbitrary number of arguments to denote
a list of integer parameters. Similarly,X is used to denote a list of symbolic argu-
ments. Due to the internal limitations ofFORM with respect to polynomial algebra, it
is of some advantage to define, for various functions, a distinct multiplicative inverse,
which helps in bringing expressions to a normal form. Examples are the pairsGamma

andInvGamma. Also note, that the summation symbol simply appears as a function
multiplying all terms that should be summed over. For instance, a sum of the form
shown in Eq. (2.9),

n

∑
j1=1

(

n

j1

)

(−1) j1
x

j1
1

(j1+3)2S(j1+2;4,7,1,1;x2, ...,x5) , (3.1)

would be written as:

sum(j1,1,n) * bino(n,j1) * pow(-x1,j1) * den(j1+3)^2 *

S(R(4,7,1,1),X(x2,x3,x4,x5),j1+2);

Table 3.1 shows the complete set of keywords for theXSUMMER package. All the
objects in Table 3.1 are defined in the filedeclvars.h which should be included when
using theXSUMMER package.
Note that thepow function is reserved for symbolic variables to some power ofa
summation index. Writing

pow(j1+3,-2)

instead of

den(j1+3)^2

would not work. This is just due to the way the pattern matching is realized in the
package.
Furthermore, it is assumed that the summation variables arealwaysj1, j2, ... where the
outermost sum runs overj1, the next sum runs overj2 and so on. The innermost sum is
the sum over the highestji. Upon summation of a nested sum the innermost sum must
be done first and we then work through to the outer sums. This isessentially done by
calling the procedureDoSum, which takes as arguments the summation indexes of the
innermost and the outermost sum. For example:

7

Name Description Example

bino binomial coefficient bino(n,i) →
(

n
i

)

delta Kronecker delta delta(x) →
{

1, x=0
0, x6=0

deltap inverse Kronecker delta deltap(x) → (1−delta(x))

den denominator function den(x) → 1
x

ep expansion parameterε ep → ε
epow powers of epsilon epow(n)→ εn

fac factorial function fac(n)→ n!

inf parameter for∞ inf → ∞
invfac inverse factorial function invfac(n)→ 1

n!

num numerator function num(x) → x

pow power function pow(x,a)→ xa

sign sign function sign(n) → (−1)n

sum summation symbol sum(j,i1,i2) → ∑i2
j=i1

theta theta function theta(x) →
{

1, x≥0
0, x<0

z2, z3,. . . values of the zeta-functionz2→ ζ(2), . . .

Gamma Gamma-function Gamma(x) → Γ(x)

InvGamma inverse Gamma-function InvGamma(x) → 1
Γ(x)

S(R(m1, . . .),X(x1, . . .),n) S-sum S(R(m1, . . . ,),X(x1, . . .),n)

→ S(n;m1, . . . ,mk;x1, . . . ,xk)

Z(R(m1, . . .),X(x1, . . .),n) Z-sum Z(R(m1, . . . ,),X(x1, . . .),n)

→ Z(n;m1, . . . ,mk;x1, . . . ,xk)

Table 1: Basic objects appearing in the input/output of theXSUMMER package

8

#call DoSum(3,1)

would evaluate the sums containingj3, j2, j1 (in this order). Note that, when doing the
sum over a specificji, all the objects relevant for this sum are dressed internally with
an additional indexi as part of the names of the symbols. For example the sum shown
in Eq. (3.1) would be converted internally to

sum1(j1,1,n) * bino1(n,j1) * pow1(-x1,j1) * den1(j1+3)^2 *

S1(R(4,7,1,1),X(x2,x3,x4,x5),j1+2);

This is just to simplify the pattern matching. However, in the final result thedressed

objects should never occur. The followingFORM script solves a much easier version of
the example shown above (otherwise the result would be to lengthy to be reproduced
here):

#define MAXSUM "1"

#define MAXWEIGHT "20"

#include declvars.h

nwrite stat;

L demo = sum(j1,1,n) * bino(n,j1) * pow(-x1,j1) * den(j1+1)

* S(R(1,1),X(x2,x3),j1+1);

id bino(x1?,x2?) = fac(x1)*invfac(x2)*invfac(x1-x2);

#call DoSum(1,1)

print;

.end;

The result obtained from runningFORM is given by:

demo =

+ acc(-1)*pow(1 - x1,1 + n)*den(- x1)*den(1 + n)

*S(R(1,1),X(den(1 - x1) - den(1 - x1)*x1*x2,den(1 - x1*x2))

,1 + n)*theta(- 1 + n)+ acc(1)*pow(1 - x1,1 + n)*den(- x1)

*den(1 + n)*S(R(1,1),X(den(1 - x1)- den(1 - x1)*x1*x2,

den(1 - x1*x2) - den(1 - x1*x2)*x1*x2*x3),1 + n)*theta(- 1 + n)

+ acc(1)*den(- x1)*theta(- 1 + n)*x1*x2*x3

;

Theacc function is defined internally with theFORM declarationPolyFun to collect
similar objects together, in particular to accumulate powers of the expansion parameter
ε. Its use is actually described in theFORM manual and the expanded result is simply
obtained with

9

id acc(x?) = x;

As mentioned earlier the integer parameters of theS-sums are collected inR, while the
symbolic arguments are collected inX. Note that only basic simplifications are applied
to the symbolic arguments. This is due to the fact thatFORM does not provide built-in
routines to factorize or normalize expressions. Such procedures must be provided by
the user and are highly dependent on the problem studied. We will discuss this issue
in Section 4.
Our example, converted back to a more human readable notation is given by

n

∑
j1=1

(

n

j1

)

(−x1)
j1

j1+1
S(j1+1;1,1;x2,x3) =

θ(n−1)
{ 1

n+1
(1− x1)

n+1

x1

[

S(n+1;1,1;(1− x1x2)/(1− x1),1/(1− x1x2))

−S(n+1;1,1;(1− x1x2)/(1− x1),(1− x1x2x3)/(1− x1x2))
]

− x2x3

}

. (3.2)

Upon replacementn → j1, the right-hand side of Eq. (3.2) could serve as input to
another summation, thus nicely illustrating the telescoping character of the recursions
discussed in Section 2.
In passing, we note that in some cases finite polynomial sums appear. For example we
may encounter sums of the types

n

∑
j=1

x j jk,
n

∑
j=1

jk,
n−1

∑
j=1

x j jk,
n−1

∑
j=1

jk.

Internally they are calledxpowsum, powsum, xpowsum1, powsum1. For positive
integer values ofk up to 10 these sums are tabulated in the filedeclsums.h. Gen-
erally, for any integerk, these types of sums can easily be obtained with programs
such asMAPLE or MATHEMATICA, where the corresponding recursive algorithms are
implemented, see e.g. Ref. [22].

3.2. List of procedures provided by XSUMMER

As briefly mentioned above, we distinguish two sets of procedures: those easily acces-
sible to the user and those for internal use only.

3.2.1. Procedures to be called directly

BasisS

Express products ofS-sums into singleS-sums of higher weight.

ConvStoZ

ConvertS-sums intoZ-sums.

10

DoSum
Makej

DoTheta

DoSynch

SplitDen

DoTheta

RegSum

SumIt

SimplifyFacGam

SimplifySumArgs

SubsS

BasisS

DoSynch

SynchSS

NormDen

SplitDen

Flipj

Movej

SynchNumFac

SynchDenS

SynchDenFac

SynchFacS

SplitDen

DoTheta

SynchNumFac

Flipj

SynchDenS

AdjustSum

RegSum

Flipj

SynchDenS

Movej

Flipj

Movej

DoTheta

SubsS

SumIt
AlgD

AlgC

AlgB0

AlgB

SumPosPow

SynchSS

BasisS

SynchNumFac

SubsS

AdjustSum

DoTheta

SubsS

Movej

SubsS

Movej

SubsS

AlgD

AlgC

AlgC

SimpleArgs

AlgB0

AlgB

Figure 3.1: Internal structure of theXSUMMER package

11

DoSum

User front-end to theXSUMMER package. The first parameter denotes the
index of the innermost summation, the second is the index of the outermost
sum, which should be summed. For example

#call DoSum(3,1)

would do the sums overj3, j2, j1 in this order.

An overview of the internal structure ofDoSum is shown in Fig. 3.1.

3.2.2. Internal procedures

AdjustSum

Adjusts the sum boundaries. The argument specifies the indexi of the sum to
be adjusted.

AlgB

Implementation of the convolution algorithm (type B) to perform sums of the
type

n−1

∑
i=1

xi
1

im1
S(i;m2, ...,mk;x2, ...,xk)

(x′1)
n−i

(n− i)m′
1
S(n− i;m′

2, ...,m
′
l;x′2, ...,x

′
l) ,

for any (integer) values ofmi,m
′
i andm1 > 0. The argument specifies the index

i of the sum to be done. The special casem1 = 0 is handled inAlgB0.

AlgB0

Special case of the convolution algorithm (type B), for details seeAlgB.

AlgC

Implementation of the conjugation algorithm (type C) to perform sums of the
form

n

∑
i=1

(

n

i

)

(−1)i xi
1

im1
S(i;m2, ...,mk;x2, ...,xk)

for any (integer) values ofmi andm1 > 0. The argument specifies the indexi

of the sum to be done. The special casem1 = 0 is treated inAlgC0.

AlgC0

Special case of the conjugation algorithm (type C), for details seeAlgC.

12

AlgD

Implementation of the binomial convolution algorithm (type D) to perform
sums of the form

n−1

∑
i=1

(

n

i

)

(−1)i xi
1

im1
S(i;m2, ...,mk;x2, ...,xk)

×
(x′1)

n−i

(n− i)m′
1
S(n− i;m′

2, ...,m
′
l;x′2, ...,x

′
l)

for any (integer) values ofmi,m
′
i ≥ 0 andm1 > 0. The argument specifies the

indexi of the sum to be done. The special casem1 = 0 is treated inAlgD0.

AlgD0

Special case of the binomial convolution algorithm (type D); seeAlgD.

DoSynch

Procedure to synchronize the arguments ofnum, den, fac, invfac andS. The
argument specifies the indexi of the sum to be adjusted. Start with synchro-
nizing products ofS functions, then do the combinations

1. ji andfac, invfac

2. den andS

3. den andfac, invfac

4. S andfac, invfac.

Finally summation boundaries are synchronized.

DoTheta

Simplifies combinations oftheta, delta, deltap andsum functions, defined
for each sum overji. The argument specifies the indexi of the sum to be
adjusted (argumenti = 0 implies no sum).

ExpandDen

Expandsden function in small parameterep, i.e. 1/(a + bε) in terms ofε.
If the argument provided toExpandDen is 0 then denominators with integer
values ofa are expanded. If the argument is 1, we expand for symbolica.

ExpandGam

ExpandsGamma and InvGamma functions in the small parameterep, i.e.
Γ(i+aε) and 1/Γ(i+aε) in ε, wherei anda take integer values. The argument
specifies the number of the highest sum in the expression. We choose the
MS-scheme, i.e. exp(−γEaε) = 1, whereγE is Euler’s constant.

13

Flipj

Reverses the direction of summation. The argument specifiesthe indexi of
the sum to be flipped.

Makej

Creates thedressed objects, for example thepow functionpow(x,j3) is con-
verted topow3(x,j3). The argument specifies the summation index to be
treated.

Movej

Makes a translation ofji +n → ji. The first argument specifies which index
i of the summation variable which should be used. The shift is determined
by the argument of the function specified by the second argument passed to
Movej.

NormDen

Convertsden functions to normal form, i.e. fixes the sign of the summation
index appearing in the denominator. The argument specifies the highest sum-
mation indexi to be treated. The hierarchy is such thatj1 is more important
than j2 etc.

NormalizeGam

Normalizes products ofGamma andInvGamma functions.

RegSum

Performs final regularization of a sum. The argument specifies the indexi of
the sum to be regularized.

SimpleArgs

Applies some trivial simplifications. If the argument passed toSimpleArgs is
0 these simplifications are applied to the prefactors multiplying functions. If
the argument passed is C the simplifications are applied to the arguments ofS
andpow functions.

Simplify

Calls different simplification and normalization routinesto simplify or nor-
malize the expresssions.

SimplifyFacGam

Procedure to simplify products offac, invfac andGamma, InvGamma func-
tions.

SimplifySumArgs

Procedure to simplify polynomials in arguments ofS functions. This proce-
dure is user accessible and should be edited if optimizationis needed.

14

SplitDen

Partial fractioning of products of denominators involvingthe summation vari-
able ji, wherei is the argument passed toSplitDen. This routine is optimized
for higher powers of the denominators and uses the sum formula rather than
repeated splitting of pairs.

SubsS

EvaluatesS functions with a numerical last argument into polynomials in the
variables (if possible, with numerical values). For argument i = 0 only nu-
merical values are realized; fori = 1 the procedure also expands polynomials.
S functions with symbolic last argument are untouched, of course.

SumIt

Calls the various procedures for summation algorithms. Theargument speci-
fies the indexi of the sum to be done.

SumPosPow

Sums positive (or zero) powers ofji possibly in combination with oneS or
pow function. The argument specifies the indexi of the sum to be done.

SynchDenFac

Synchronizes combinations ofden and fac, invfac functions, i.e. factorials
and denominators. The argument specifies the associated summation indexi.

SynchDenS

Synchronizes combinations ofden and S functions, i.e. denominators and
S-sums. The argument specifies the associated summation index i.

SynchFacS

Synchronizes combinations ofS andfac, invfac functions, i.e. factorials and
S-sums. The argument specifies the associated summation index i.

SynchNumFac

Synchronizes combinations of (positive) powers ofji and fac, invfac func-
tions. The argument specifies the associated summation index i.

SynchSS

Synchronizes products ofS-sums. The argument specifies the associated sum-
mation indexi.

As discussed in Section 2 theS-sums can be treated as generalization of the harmonic
sums investigated in Refs. [1,9,18]. It is therefore evident that some of the procedures
presented here are similar to those in theSUMMER package [9] written by J.A.M. Ver-
maseren. In particular the proceduresAdjustSum, BasisS, DoSynch, DoTheta, Flipj,
Makej, SubsS, SynchDenFac andSynchSS are adapted versions of similar proce-

15

dures inSUMMER.

3.2.3. Harmonic sums in infinity

A special class of sums, occurring as a result of the summation algorithms, are har-
monic sums in infinity. These are related to multiple zeta values [2], which for a given
weight are reducible to a small set of transcendental numbers using, for example, the
algebraic properties in Eq. (2.3).
Together with theXSUMMER package, we provide the tables of harmonic sums in
infinity (limited to weight six). These procedures are called tables, table1, ... , table6

and the corresponding files are directly extracted from theSUMMER package [9]. This
facilitates interfacing with routines of the current package.
Let us also note that the reduction of multiple zeta values ofa given weight to some
irreducible set of constants is currently an active field of mathematical research. Cur-
rently, downloads of tables up to weight nine inFORM [23] or MAPLE format [24] are
publicly available and extensions are known up to weight 16 [25,26].

4. Examples

Along with the distribution of theXSUMMER package, we provide also a number of
non-trivial examples. These examples can either be run withthe help of the shell
script TestIt in a standard Linux/Unix environment or with the help ofTestItXP.bat

under the Microsoft Windows XP operating system. (For either of the scripts the user
might have to make small adaptations, though.)
The respective script executes theFORM filesExamples.frm andDoIntegrals.frm (dis-
cussed in detail below) and performs a check on the output of the former computations
against tabulated results with the help of the fileCheckResults.frm. In this way, the
user can verify the correctness of the installation of theXSUMMER package. At the
same time, the examples are meant to illustrate the usage of sums with theXSUM-

MER package. In particular, we want to clarify the conventions for the input to the
procedures of Section 3.
We provide in the fileExamples.frm a number of (generalized) hypergeometric func-
tions from the original Ref. [4],

hypergeom2F1(a*ep,b*ep,1-c*ep,x1)

hypergeom2F1(1,-ep,1-ep,x1)

hypergeom3F2(-2*ep,-2*ep,1-ep,1-2*ep,1-2*ep,x1)

appel2(1,1,ep,1+ep,1-ep,x1,x2)

where the coefficients of Laurent series inε are calculated up to a given order in terms
of multiple polylogarithms. The first examplehypergeom2F1(a*ep,b*ep,1-c*ep,x1)
was actually given in Eq. (1.1). InExamples.frm it is realized by the following set of
substitutions:

16

id hypergeom2F1(a?,b?,c?,x1?) = sum1(j1,0,inf) *

Po(j1+a,a)*Po(j1+b,b)*InvPo(j1+c,c)*invfac(j1)* pow(x1,j1);

id Po(x1?,x2?) = Gamma(x1)*InvGamma(x2);

id InvPo(x1?,x2?) = Gamma(x2)*InvGamma(x1);

HerePo(x1,x2) andInvPo(x1,x2) denote the Pochhammer symbols, see Eq. (1.1).
Next, the fileDoIntegrals.frm calculates certain one- and two-loop Feynman integrals
used in a complete calculation of higher-order perturbative corrections in Quantum
Chromodynamics [7]. To that end, integrals of various topologies had to be considered.
The respective analytical representations in terms of nested sums valid for arbitrary
powers of denominators for the so-called C-topology [4], the B-box (one-loop box with
one external mass [27]) and one-loop triangles with up to twoexternal masses [28] are
all given in the procedureInt2Sum. The input toDoIntegrals.frm, i.e. the information
on the topology and on the particular values for the powers ofdenominators, is passed
on by preprocessor variables inFORM. The explicit lists of all inputs are contained in
SelectIntegral.
In the actual calculation, we choose dimensional regularization [29–32] withD = 4−
2ε and the modified [33] minimal subtraction [34] scheme for allloop integrals in this
section. For illustration we give here the explicit series representation as we use it in
Int2Sum for the one-loop triangle with two external masses Tri(m,ν1,ν2,ν3;x1). It is
defined by

Tri(m,ν1,ν2,ν3;x1) = (−s12)
−m+ε+ν123

∫

dDk1

iπD/2

1
(

−k2
1

)ν1

1
(

−k2
2

)ν2

1
(

−k2
3

)ν3
(4.1)

and, in the following, we use the short-hand notationνi j = νi +ν j for sums of powers
of propagators. We havek2 = k1− p1, k3 = k2− p2, and we define the quantities

s12 = (p1+ p2)
2 , x =

p2
1

s12
. (4.2)

Equation (4.1) can be written as a combination of hypergeometric functions2F1. The
series representation for this integral with|x| ≤ 1 is given by

Tri(m,ν1,ν2,ν3;x) =
Γ(ε−m+ν23)Γ(1− ε+m−ν23)Γ(m− ε−ν13)

Γ(ν1)Γ(ν2)Γ(ν3)Γ(2m−2ε−ν123)

×
∞

∑
i=0

xi

i!

[

xm−ε−ν23
Γ(i1+ν1)Γ(i1− ε+m−ν2)

Γ(i1+1+m− ε−ν23)

−
Γ(i1+ν3)Γ(i1−m+ ε+ν123)

Γ(i1+1−m+ ε+ν23)

]

. (4.3)

Equation (4.3) is implemented in the procedureInt2Sum and prepared for the input
to theXSUMMER package with a set of substitutions similar to those briefly discussed
above for the2F1 hypergeometric function.

17

Now, with the examples at hand, we would like to discuss the efficiency of the imple-
mentation of theXSUMMER package inFORM. As already mentioned above, certainly
one major disadvantage in usingFORM is the lack of internal algorithms for polynomial
algebra. As a consequence, we cannot easily bring rational functions of polynomials
to a normal form. For that purpose, we would need operations such as factorization,
polynomial division or combinations thereof as used for instance in partial fractioning.
In applications of the algorithms A–D to sums with multiple scales, this problem be-
comes apparent when trying to normalize the arguments of theS-sums. In particular,
the recursions of the conjugation algorithm (type C) are sensitive to this issue. Here,
efficient simplifications of polynomials can have a significant impact on the execution
time for a given sum.
Since no really elegant way for simplifying polynomials exists withinFORM, we have
provided a case-by-case solution. Inside the procedureAlgC we do have the (user-
accessible) procedureSimpleArgs (described in the previous section). There, depend-
ing on the scales involved, appropriate substitutions for tuning or optimizations should
be added. Then, we do have the procedureCustomizeDen. It uses partial fractioning
and normalizes the ubiquitous denominators to standard factors. In a similar spirit, we
also use the procedureParFrac, which brings two-scale polynomials to normal form
in DoIntegrals.frm by means of partial fractioning at the end of the calculation.
Another more generic approach to this problem, which the experienced user might
consider, is the following.FORM provides the preprocessor statements#system and
#pipe, which invoke a call to the operating system. This provides the opportunity to
realize a link to external programs, in particular to computer algebra systems such as
MAPLE or MATHEMATICA along with their functionalities in polynomial algebra. How-
ever, both the detailed description and the implementationof these features is beyond
the scope of the present work.
Finally, we would like to give some information on the use of computer resources.
Typically, the execution times and the use of memory or disk space depend very much
on the problem under consideration. As a general rule, the expression size and there-
fore the execution time correlate strongly with the depth ofthe Laurent expansion in
ε. In the examples, we can control this with the preprocessor variableEXPANDEP. This
effectively cuts the series expansion inε at the specified power. Note that for every
individual term the series is cut to the specified order. If additional poles are present it
might thus be necessary to expand individual terms to higherorder to make sure that
no terms are lost. For safeguard, we added a functionorder, which shows the effect
of the truncation. Of course, the run time is also correlatedwith the number of nested
sums. In practical applications it might be advantageous tostart with a low value for
EXPANDEP and increase it until the final result has the desired order. In addition to
this, in practical applications, some tuning may be needed for new large problems,
particularly in bringing polynomials to normal form.
Let us close this section with a few remarks about the runtimeperformance. To give
the interested user a hint on how long the presented exampleswill take, we measured
the runtime on a standard PC. In particular, the machine we used was equipped with a

18

3 GHz P4 (hyperthreading support) with 512 MB of RAM. The considered problems fit
completely into the RAM so that the hard-drive speed plays only a marginal rôle. The
results are shown in Table 4, where we averaged always over 10independent runs.
The differentFORM versions used are available athttp://www.nikhef.nl/˜form.

DoIntegrals.frm

FORM 3.1 executable Examples.frm CTOPO BBOX TRIMASS
gcc, 15-jul-2005 7.9s 20.9s 119.3s 19s
icc, 24-jan-2003 7.5s 19.9s 108.2s 17.4s
gcc, 17-oct-02 8.7s 24.5s 181.3s 27.6s

Table 2: Runtimes of the examples under Linux for differentFORM versions.

We also tried a preliminary version of a native Microsoft Windows XPFORM exe-
cutable. The runtimes are very similar to those obtained with the icc-compiledFORM

executable and the new gcc version. The difference of 5% might be due to the fact that
on Windows XP the total time was measured and not only the usertime.
In applications more involved than the examples shown here,the user is advised to
make a detailed analysis on the actual depth of the expansionin ε needed and on the
particular structure of the polynomials. Furthermore the user should provide additional
routines to simplify the symbolic arguments ofS-sums.

5. Conclusion

Symbolic summation has advanced to an important method, e.g. in perturbative quan-
tum field theory, and significant progress has been made during the past years. In the
present work, we have provided an implementation inFORM of algorithms suitable for
the expansion of transcendental functions in a small parameter around integer values,
such that the resulting (generalized) hypergeometric series can be expressed in closed
form in multiple polylogarithms.
As examples, we have discussed various applications in quantum field theory, particu-
larly in the calculation of Feynman diagrams at higher orders in perturbation theory. In
this context, theXSUMMER package has been used in perturbative calculations exten-
sively and we believe it may be useful for a larger community.We have chosenFORM

for the implementation, because it is a fast and efficient computer algebra system and
because of its capability to handle large expressions. For convenience of the user, we
provide along withXSUMMER a set of sample calculations. These illustrate the use of
the program. An extension of the present implementation to cover also algorithms for
generalized sums from expansions around rational numbers (see e.g. [35]) will be the
subject of a future publication.

19

http://www.nikhef.nl/~form

Note added

Very recently, Ref. [36] appeared, which addresses the problem of expanding hyper-
geometric functionsJFJ−1 around integer parameters to arbitrary order. It provides an
implementation inMATHEMATICA of the algorithms (2.7), (2.8), i.e. type A and B of the
original Ref. [4]. Thus, it is capable of performing some expansions already discussed
in Ref. [4] and discussed also in the present Letter, for instance Eq. (1.1).

Acknowledgements

We would like to thank J.A.M Vermaseren for his kind permission to use some files
of the SUMMER package [9] in the current distribution. The work of S.M. hasbeen
supported in part by the Helmholtz Gemeinschaft under contract VH-NG-105 and by
the Deutsche Forschungsgemeinschaft in Sonderforschungsbereich/Transregio 9.

References

[1] L. Euler, Novi Comm. Acad. Sci. Petropol. 20 (1775) 140.

[2] M.E. Hoffman, http://www.usna.edu/Users/math/meh/biblio.html.

[3] M. Petkovsek, H. Wilf and D. Zeilberger,
http://www.cis.upenn.edu/˜wilf/AeqB.html, (1997).

[4] S. Moch, P. Uwer and S. Weinzierl, J. Math. Phys. 43 (2002)3363, hep-ph/0110083.

[5] J.A.M. Vermaseren, math-ph/0010025, (2000).

[6] J.A.M. Vermaseren, Nucl. Phys. Proc. Suppl. 116 (2003) 343, hep-ph/0211297.

[7] S. Moch, P. Uwer and S. Weinzierl, Phys. Rev. D66 (2002) 114001, hep-ph/0207043.

[8] L. Lewin, Polylogarithms and Associated Functions (North Holland, New York, 1981).

[9] J.A.M. Vermaseren, Int. J. Mod. Phys. A14 (1999) 2037, hep-ph/9806280.

[10] S. Moch, J.A.M. Vermaseren and A. Vogt, Nucl. Phys. B688(2004) 101, hep-
ph/0403192.

[11] A. Vogt, S. Moch and J.A.M. Vermaseren, Nucl. Phys. B691(2004) 129, hep-
ph/0404111.

[12] J.A.M. Vermaseren, A. Vogt and S. Moch, hep-ph/0504242, (2005).

[13] C. Bauer, A. Frink and R. Kreckel, cs/0004015, (2000).

[14] S. Weinzierl, Comput. Phys. Commun. 145 (2002) 357, math-ph/0201011.

[15] A.B. Goncharov, Math. Res. Lett. 5 (1998) 497,
(available at http://www.math.uiuc.edu/K-theory/0297).

20

http://www.usna.edu/Users/math/meh/biblio.html
http://www.cis.upenn.edu/~wilf/AeqB.html
http://arxiv.org/abs/hep-ph/0110083
http://arxiv.org/abs/math-ph/0010025
http://arxiv.org/abs/hep-ph/0211297
http://arxiv.org/abs/hep-ph/0207043
http://arxiv.org/abs/hep-ph/9806280
http://arxiv.org/abs/hep-ph/0403192
http://arxiv.org/abs/hep-ph/0404111
http://arxiv.org/abs/hep-ph/0504242
http://arxiv.org/abs/cs/0004015
http://arxiv.org/abs/math-ph/0201011
http://www.math.uiuc.edu/K-theory/0297

[16] J.M. Borwein et al., math.CA/9910045.

[17] E. Remiddi and J.A.M. Vermaseren, Int. J. Mod. Phys. A15(2000) 725, hep-ph/9905237.

[18] J. Blümlein, Comput. Phys. Commun. 159 (2004) 19, hep-ph/0311046.

[19] M.E. Hoffman, J. Algebra 194 (1997) 477.

[20] M.E. Hoffman, math.QA/0406589.

[21] A. Erdélyi et al., Higher Transcendental Functions, Vol. I
(McGraw Hill, New York, 1953).

[22] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Mathematics (Addison-Wesley,
1994).

[23] J. Vermaseren, http://www.nikhef.nl/˜form/FORMdistribution/packages/summer/index.html.

[24] M. Petitot, http://www.lifl.fr/˜petitot/publis/mzv.tar.

[25] M. Petitot, private communication.

[26] J. Vermaseren, http://www.nikhef.nl/˜t68/FORMapplications/t1-5.ps.

[27] C. Anastasiou, E.W.N. Glover and C. Oleari, Nucl. Phys.B565 (2000) 445, hep-
ph/9907523.

[28] C. Anastasiou, E.W.N. Glover and C. Oleari, Nucl. Phys.B572 (2000) 307, hep-
ph/9907494.

[29] G. ’t Hooft and M. Veltman, Nucl. Phys. B44 (1972) 189.

[30] C.G. Bollini and J.J. Giambiagi, Nuovo Cim. 12B (1972) 20.

[31] J.F. Ashmore, Lett. Nuovo Cim. 4 (1972) 289.

[32] G.M. Cicuta and E. Montaldi, Nuovo Cim. Lett. 4 (1972) 329.

[33] W.A. Bardeen et al., Phys. Rev. D18 (1978) 3998.

[34] G. ’t Hooft, Nucl. Phys. B61 (1973) 455.

[35] S. Weinzierl, J. Math. Phys. 45 (2004) 2656, hep-ph/0402131.

[36] T. Huber and D. Maitre, hep-ph/0507094.

21

http://arxiv.org/abs/math/9910045
http://arxiv.org/abs/hep-ph/9905237
http://arxiv.org/abs/hep-ph/0311046
http://arxiv.org/abs/math/0406589
http://www.nikhef.nl/~form/FORMdistribution/packages/summer/index.html
http://www.lifl.fr/~petitot/publis/mzv.tar
http://www.nikhef.nl/~t68/FORMapplications/t1-5.ps
http://arxiv.org/abs/hep-ph/9907523
http://arxiv.org/abs/hep-ph/9907494
http://arxiv.org/abs/hep-ph/0402131
http://arxiv.org/abs/hep-ph/0507094

