DESY 05-104 math-ph/050800§
SFB/CPP-05-24
CERN-PH-TH/2005-124

— XSUMMER -
Transcendental Functions and Symbolic Summation in
FORM

S. Mochf and P. Uwef

“Deutsches Elektronensynchrotron DESY
Platanenallee 6, D—15735 Zeuthen, Germany

bDepartment of Physics, TH Division, CERN
CH-1211 Geneva 23, Switzerland

July 2005

arXiv:math-ph/0508008vl 2 Aug 2005

Abstract

Harmonic sums and their generalizations are extremelyuugefthe evaluation of
higher-order perturbative corrections in quantum fieldtlie Of particular interest
have been the so-called nested sums, where the harmonicaswhkeir generaliza-
tions appear as building blocks, originating for examptarfrthe expansion of gener-
alized hypergeometric functions around integer valuee@ptarameters. In this Letter
we discuss the implementation of several algorithms toestilese sums by algebraic
means, using the computer algebra syskemm.

http://arxiv.org/abs/math-ph/0508008v1
http://arxiv.org/abs/math-ph/0508008

Program summary

Title of program: XSUMMER
Version: 1.0

Catalogue number:

E-mail: sven-olaf.moch@desy.de, peter.uwer@cern.ch
License: GNU Public License an&orm License
Computers: all

Operating system: all

Program language: FORM

Memory required to execute: Depending on the complexity of the problem, recom-
mended at least 64 MB RAM.

Other programs called: none
External files needed: none
Keywords: Symbolic summation, Multiple polylogarithms, Transcemiaé functions.

Nature of the physical problem: Systematic expansion of higher transcendental func-
tions in a small parameter. The expansions arise in the ledilon of loop integrals in
perturbative quantum field theory.

Method of solution: Algebraic manipulations of nested sums.

Restrictions on complexity of the problem: Usually limited only by the available disk
space.

Typical running time: Dependent on the complexity of the problem.

http://www-zeuthen.desy.de/~moch/xsummer

1. Introduction

Symbolic summation amounts to finding a closed-form expoedsr a given sum or
series. Systematic studies have been pioneered by Eulend Jor specific sums, ex-
act formulae have been known for a long time, series reptasens of transcendental
functions being a prominent example. Today, general ckasbsums, for example
so-called harmonic sums, have been investigated (see e@fg. R]) and symbolic
summation has further advanced through the developmengofidams suitable for
computer algebra systems. Here, the possibility to obteactesolutions by means of
recursive methods has lead to significant progress, foamestin the summation of
rational or hypergeometric series, see e.g. Ref. [3].

In quantum field theory, higher-order corrections in pdyation theory require the
evaluation of so-called Feynman diagrams, which descebéand virtual particles
in a given scattering process. In mathematical terms, Fayrsiagrams are given as
integrals over the loop momenta of the associated partidpggators. These inte-
grals may depend on multiple scales and are usually divergams requiring some
regularization. The standard choice is dimensional regaton, i.e. an analytical
continuation of the dimensions of space-time from 4Dtowhich keeps underlying
gauge symmetries manifestly invariant. Analytical expiass for Feynman integrals
in D dimensions may lead to transcendental or generalized ggpsretric functions,
which have a series representation through nested sumsymitholic arguments. The
main computational task is then to obtain the Laurent senps expansion of the
relevant functions in the small parameter (D —4)/2.

It is the aim of the present Letter to discuss the implemenmtabf several algo-
rithms [4] for these tasks in the computer algebra systemm [5,8]. The result-
ing packageXSuMMER has already been used in full-fledged calculations in gartic
physics, for instance in calculating higher-order peratiste corrections in Quantum
Chromodynamics, see e.g. Ref. [7]. We hope that it may alsaskéul for a larger
community, as it exceeds current built-in capabilitiesaienercial computer algebra
systems such adAPLE or MATHEMATICA in the expansion of (generalized) hypergeo-
metric functions.

To give a concrete example for the kind of problems we aimatsitler the hyperge-
ometric functiompF1, which has a series representation for argumpits 1:

00 € j be Jxd
oF1(ag,be,1— cg,x) = Z)M
o (L—ce)dj!

— 1+ablip(x)e? +ab{cLiz(x) + (a+b+c)Si2(x)}e3+0(Y, (1.1)

where the(ag)’ = I (j +a€) /T (a€) are so-called rising factorials (in the literature also
known as Pochhammer symbols). Here, we have expressed d¢ffecients of the
Laurent series iz through standard polylogarithms,Land Nielsen functions,$,,
see e.g. Ref:[8].

Our choice ofForwm for the implementation is based on two reasons, one beirig tha
Forwm is extremely fast and flexible when dealing with large expi@ss.Form allows
for a very compact notation and is equipped with a patterrcheatwell suited to solve
our problem. The ability to handle large-size expressiohthe order of the computer
memory) is crucial, as they generally occur at intermeditdges in the quantum field
theory calculations mentioned above, for instance wherLghgent expansions ia
have to be done to very high order.

The other main motivation for choosirigprM is due to the existin@umMmER pack-
age [9]. TheSumMER package irForwm is capable of solving nested sums in terms of
harmonic sums, a feature that has also been used extensivetgnt cutting-edge cal-
culations of structure functions to three loops in Quantumo@odynamics [10—12].
Here, theXSuMMER package, being capable of handling (multiple) scales, @&g.
Eq. (I.1), provides the obvious extension. In the develograEXSuMMER, we have
also benefited from the fact that some parts of the underlgiggrithmic structures
could be literally taken fronSuMMER.

A major disadvantage of usingorm for XSuUMMER is certainly the lack of internal
algorithms for particular operations on polynomials, sashfactorization. We will
comment on that in the text. Also, we note that an implementaif the algorithms
of Ref. [4] within the GiNaC framework [13] is available |14]

The outline of the Letter is as follows. In Section 2, we byiaflve the basics of
generalized sums and recall the algorithms of Ref. [4]. latiSe '3, we present the
XSUMMER package and discuss details of the implementation. Sedtfeatures an
extensive set of tests with various sample calculatiorduding e.g. Ref.[[7]. We
conclude in Section; 5.

2. Harmonic sums and their generalizations

The basic recursive definition 6fsums is given by [4]

1, n>0,
Stn) = {o n<0

n xll

S(nyma,...,mg;x1,..., %) = Z S(i;mp, ...,my; X2, ..., Xg) - (2.1)

1= iml
These are the basic objects that we will manipulate in theiahg. Generally, we
have all|x;| <1 in Eq. (Z.1). The sum of alk; is called the weight of the sum, while
the indexk denotes the depth. This definition actually includes asiapegses the se-
ries representations of classical polylogarithms, Niefsmctions, as well as multiple
and harmonic polylogarithms [15-17]. For all= 1, the above definition reduces to
harmonic sums:[1,9,18] and, if additionally the upper surtiomaboundaryn — oo,
one recovers the (multiple) zeta values associated to Rieihaeta-function[2].

An equivalent representation Sfsums reads

xi]_ xik
. . 1 k

S(n,ml,...,mk,X]_,...,Xk) = —ml—mk (22)

n>ii>izs.. > >1 1 Tk

We note thatS-sums are closely related to so-callégums, the difference being the
upper summation boundary for the nested sufys: 1) for Z-sums,i; for S-sums,
see Ref.J4]. One can algebraically conv&rsums taS-sums and vice versa[19,20].
We rely entirely onS-sums in our discussions, but nevertheless provide theeduve
ConvStoZ since, in some cases;sums may be more favourable.

TheS-sums obey the well-known algebra of multiplication, aigtnéforward general-
ization of the results on the multiplication of harmonic =uf]. The basic formula
reads

S(nyma, .o, my; X1, .. x5) X S(nmy, .., mp; Xy, .., X))

n 11
= Z WllS(il;mz,...,mk;xz,...,xk)S(il;mll,...,m};x’l,...,x;)

=111
n x/iz

+ Z ;}1’ S(igima, ..., my; X1, ., Xi)S (i2; M, ..oy X5, .o X))
L ax))' .

_ Zl P S(i;m2, ..oy X2, ., X)S (i3, ..My X, .y X)) (2.3)
1=

which works recursively in the depth of the individual sunihe algorithm allows
the expression of any product of nested sums as a sum of siegted sums, hence
in a canonical form, which is an important feature for preatiapplications. The
underlying algebraic structure in EQ. (2.3) is a Hopf algebeing realized as a quasi-
shuffle algebra here, see e.g. Refs:[2,4] . The algorithmbeaimplemented very
efficiently on a computer, see the procedBesisS in Section 3.

In our applications, such as in Eq. (1.1), we encounter Gaiffiumetions, which we
have to expand in the small parameddyefore the actual manipulation of the nested
sums. This proceeds according to the well-known formulattierexpansion of the
Gamma-function around positive integer values,

n o q\k
% — T+) exp(—k;sk%skm)). 2.4

Similarly, the expansion of the Gamma-function around tieganteger values can be
reduced to the case in Eg. (2.4) with the help of the followiglgtion (e.g. Ref.i[21]
p. 3),

M(—n+1+¢) n
“rarg - Ve

(2.5)

which yields

—n _1\n—1 o
% = :_sL(Fl()n) exp(Z sk}Sk(n—1)>. (2.6)

2.1. Algorithms

For the manipulation of thd-sums, we classify four types of transcendental sums.
These types of sums are dealt with in the algorithms A to Drglvelow. All sums in
these classes can be solved recursively, i.e. they can besseal in canonical form.
The underlying algorithms realize a creative telescopifigey either reduce succes-
sively the depth or the weight of the inner sum, so that eahytthe inner nestings
vanish and the results can be written in the basis of Eq..(2Ihe procedure gen-
erally relies on algebraic manipulations, such as pantaitioning of denominators,
shifts of the summation ranges and synchronization of summéaoundaries of the
individual sums. Another crucial ingredient is, of courdes quasi-shuffle algebra of
multiplication in Eq. {2.3).

Basic definition (type A):
Here we consider sums oveinvolving only S(i; ...), of the form,

n

Xy
S(nyma, .c.,mp;x1, .., X)) = Zl

WS(i—f—b;mz,...,mk;xz,...,.Xk), (27)

1

where we assume thatb are (non-symbolic) integers. The upper summation limit is
allowed to be infinity.

Convolution (type B):

Here we consider convolutions, i.e. sums averolving bothS(i;...) andS(n—i;...),
of the form,

i+a)™

()

(n—i+a)™

Zl ((xilS(i—f—b;mz, ey M X2, ooy X))
S(n—i-l—b';m'z,...,m;;xlz,...,x;)), (2.8)

where alla,a’,b andb’ must be (non-symbolic) integers. Note that the upper summa-
tion limit is (n — 1) and thus consistent with the defining range ofSksums.

Conjugation (type C):

Here we consider conjugations, i.e. sums avavolving

(=1)'S(i;my,...;x1,...)
(1)

n) xi .
_ (rll) (—1)l(i+7611)mlS(l—|—b;m2,...,mk;x2,...,xk), (2.9)

and a binomial
of the form,

=

wherea,b are (non-symbolic) integers. The upper summation limitusthanot be
infinity. Again, the upper summation limit is consistent with the defining range of
the binomial. Sums of this type cannot be reduced-sums with upper summation
limit » alone. However, they can be reducedtsums with upper summation lirmit
and multiple polylogarithms (which afesums to infinity).

Binomial convolution (type D):

Here we consider binomial convolutions, i.e. sums avawolving (—1)'S(i;...),
S(n—i;...) and a binomial, of the form,

n—1 i
_ n i M C g :
2 (i)(1) (l_+a)mlS(z+b,m2,...,mk,xz,...,Xk)
/ \n—i
L,S(n—i—l—b';mlz,...,m;;xlz,...,x;). (2.10)
(n—i+a)™m
Here, alla,d’,h andb’ must be (non-symbolic) integers. Yet again, the upper summa
tion limit (n — 1) reflects the defining range of the binomial and sheums. As for
sums of type C, we cannot relate themStsums with upper summation limjz — 1)
alone, but we can reduce them §esums with upper summation lim{z — 1) and
multiple polylogarithms (which ar§-sums to infinity).

3. The XSUMMER package

In this section we give a short description of th®umMMER package. In particular we
explain the notation that we use in the package and the matmes that act as a
front-end to a bunch of smaller routines used internallyth&t end of this section we
also comment briefly on the internal routines, although e might not want to call
them directly.

3.1. Basic syntax — form follows function

The XSuMMER package is written using the computer algebra sydtemm. Unlike
programs such aBIAPLE or MATHEMATICA the programFoRrwm provides only a very
limited set of built-in capabilitiesForm is mainly a highly efficient pattern matcher.
In choosing a syntax/notation for td€SuMMER package it is therefore important to
ensure that all basic algorithms can be implemented as sipgitern matching and,
at the same time, make this pattern matching as simple agbf®ss

Generically, we use the functid® with an arbitrary number of arguments to denote
a list of integer parameters. Similarly, is used to denote a list of symbolic argu-
ments. Due to the internal limitations BORM with respect to polynomial algebra, it
is of some advantage to define, for various functions, ardistnultiplicative inverse,
which helps in bringing expressions to a normal form. Exaspglre the pairGamma
andinvGamma. Also note, that the summation symbol simply appears as etibm
multiplying all terms that should be summed over. For insgara sum of the form
shown in Eq. {2.9),

n n 4
1L S§(j14+2:4,7,1,1;xp,....x5), 3.1
3 (3) v gtgpsraarite 9. G0

would be written as:

sum(jl,1,n) * bino(n,jl) * pow(-x1,731) * den(jl+3)"2 *
S(R(4,7,1,1),X(x2,x3,x4,x5),31+2);

Tabler3.1 shows the complete set of keywords for XiseMMeR package. All the
objects in Table 3.1 are defined in the fleclvars.h which should be included when
using theXSumMER package.

Note that thepow function is reserved for symbolic variables to some powea of
summation index. Writing

pow(jl+3l -2)
instead of
den (j1+3) "2

would not work. This is just due to the way the pattern matghsirealized in the
package.

Furthermore, itis assumed that the summation variablesl\asg/sj, j», ... where the
outermost sum runs ovey, the next sum runs ovgp and so on. The innermost sum is
the sum over the highegt Upon summation of a nested sum the innermost sum must
be done first and we then work through to the outer sums. Tleissentially done by
calling the procedurBoSum, which takes as arguments the summation indexes of the
innermost and the outermost sum. For example:

Name Description Example

bino binomial coefficient bino(n,i) — ()
delta Kronecker delta delta(x) — { (1): ﬁ;g
deltap inverse Kronecker delta deltap(x) — (1 —delta(x))
den denominator function den(x) — 1

ep expansion parameter ep—¢€

epow powers of epsilon epow(n) — €"

fac factorial function fac(n) — n!

inf parameter foro inf — oo

invfac inverse factorial function invfac(n) — n—l,

num numerator function num(X) — x

pow power function pow(x,a) — x*

sign sign function sign(n) — (—1)"
sum summation symbol sum(j,i,i2) — y2,
theta theta function theta(x) — {(1): =0
z2,2z3,... values of the zeta-functionz2— {(2),...
Gamma Gamma-function Gamma(x) — I'(x)
InvGamma inverse Gamma-function InvGamma(x) — ﬁlx)

S(R(my,...),X(x1,...),n) S-sum

Z(R(WL]_, .- .),X(X]_,

...),n) Z-sum

S(R(my,....),X(x1,...),n)

— S(nyma, ... ,my;x1,.. . Xg)
Z(R(ml7 cee ,),X(X]_, .. ')sn)
— Z(nyma, ... ,mg;x1,...,X)

Table 1: Basic objects appearing in the input/output ofXBeMMER package

#call DoSum(3,1)

would evaluate the sums containigg j», j1 (in this order). Note that, when doing the
sum over a specifig;, all the objects relevant for this sum are dressed intgrmath

an additional index as part of the names of the symbols. For example the sum shown
in Eq. (3.1) would be converted internally to

suml (j1,1,n) * binol(n,jl) * powl(-x1,73l) * denl(j1+3)"2 *
S1(R(4,7,1,1),X(x2,x3,x4,x5),31+2);

This is just to simplify the pattern matching. However, i fimal result theiressed
objects should never occur. The followirgorm script solves a much easier version of
the example shown above (otherwise the result would be gthgrio be reproduced
here):

#define MAXSUM "1"
#define MAXWEIGHT "20"
#include declvars.h
nwrite stat;

L demo = sum(jl,1,n) * bino(n,jl) * pow(-x1,jl) * den(jl+1)
* S(R(1,1),X(x2,x3),]1+1);

id bino(x1?,x2?) = fac(xl)*invfac(x2)*invfac (x1-x2);
#call DoSum(1l,1)
print;

.end;

The result obtained from runnirfgprM™ is given by:

demo =
+ acc(-1)*pow(l - x1,1 + n)*den(- x1)*den(l + n)
*S(R(1,1),X(den(l - x1) - den(l - x1)*x1*x2,den(l - x1*x2))
;1 + n)*theta(- 1 + n)+ acc(l)*pow(l - x1,1 + n)*den(- x1)
*den(l + n)*S(R(1,1),X(den(l - x1)- den(l - x1)*x1*x2,
den(l - x1*x2) - den(l - x1*x2)*x1*x2*x3),1 + n)*theta(- 1 + n)
+ acc(l)*den(- x1)*theta(- 1 + n)*x1*x2*x3

Theacc function is defined internally with thEorm declaratiorPolyFun to collect
similar objects together, in particular to accumulate poved the expansion parameter

€. Its use is actually described in tRerm manual and the expanded result is simply
obtained with

id acc(x?) = x;

As mentioned earlier the integer parameters ofStsems are collected iR, while the
symbolic arguments are collectedXnNote that only basic simplifications are applied
to the symbolic arguments. This is due to the fact th@tm does not provide built-in
routines to factorize or normalize expressions. Such ghaes must be provided by
the user and are highly dependent on the problem studied. iMdiscuss this issue
in Section 4.

Our example, converted back to a more human readable notativen by

i (n)(—xl>j15(j1+1;1,1;x2,xs) =

=1 j1) ji+1l
—xq)" 1
e(n—1>{ni1<1 x11) ’ S0+ 21,051 x2) /(1 20). 1/(1—x122))

—S(n+1;1,1;(1—x1x2)/(1—x1),(1—x1x2x3)/<1—x1x2))}—xm}. (3.2)

Upon replacement — j1, the right-hand side of Eq: (3.2) could serve as input to
another summation, thus nicely illustrating the telesegmharacter of the recursions
discussed in Section 2.

In passing, we note that in some cases finite polynomial syypsaa. For example we
may encounter sums of the types

no . n " n—1 " n—1 "
js . i k-
J;x J J;J , J;x 7 J;J

Internally they are callespowsum, powsum, xpowsum1, powsum1. For positive
integer values ok up to 10 these sums are tabulated in the déelsums.h. Gen-
erally, for any integek, these types of sums can easily be obtained with programs
such asMAapLE or MATHEMATICA, where the corresponding recursive algorithms are
implemented, see e.g. Ref. [22].

3.2. List of procedures provided by XSUMMER

As briefly mentioned above, we distinguish two sets of pracest those easily acces-
sible to the user and those for internal use only.

3.2.1. Procedures to be called directly
BasisS

Express products &f-sums into single&-sums of higher weight.
ConvStoZ

ConvertS-sums intaZ-sums.

10

r— DoSynch

SynchSS SynchSS
NormDen BasisS
SplitDen
Flipj
Movej
SynchNumFac
SynchDenS
SynchDenFac EyERNGIEAE
SynchFacS SubsS
SplitDen ubs
oS DoTheta
0
Makej El).ln.chNumFac
DoTheta S'pj hDenS
DoSynch — ynch-en .
. AdjustSum AdjustSum
SplitDen
DoTheta
DoTheta
SubsS
RegSum RegSum .
. Movej
Sumlt — Flipj SubsS
SimplifyFacGam SynchDenS . S.
L . Movej
SimplifySumArgs Movej SubsS
SubsS Flipj uos
BasisS Movej
DoTheta AlgD
SubsS AlgC
— Sumlt AlaC
Al | ’ SimpleArgs
AlgC
AlgB0
AlgB AlgB0
SumPosPow AlgB

Figure 3.1: Internal structure of théSUMMER package

11

DoSum
User front-end to theXSumMmER package. The first parameter denotes the
index of the innermost summation, the second is the indekebutermost
sum, which should be summed. For example

#call DoSum(3,1)

would do the sums oves, j»2, j1 in this order.

An overview of the internal structure @oSum is shown in Fig; 3:1.

3.2.2. Internal procedures

AdjustSum

Adjusts the sum boundaries. The argument specifies the inafdke sum to
be adjusted.

AlgB
Implementation of the convolution algorithm (type B) to foem sums of the
type

n—1 xé- (x3->n7i

,-; im—lS(i;mg, ceey M X2, ...,xk)mS(n — i mYy, . My Xy, X))

for any (integer) values of;, m; andm > 0. The argument specifies the index
i of the sum to be done. The special cage= 0 is handled imlgBO0.

AlgB0
Special case of the convolution algorithm (type B), for dstseeAlgB.

AlgC
Implementation of the conjugation algorithm (type C) tofpen sums of the
form

n n .xi '
Z(;) (—1)li,n—115(l;m2,---,Mk;xz,---,xk)
1=

for any (integer) values of;; andm1 > 0. The argument specifies the index
of the sum to be done. The special cage= 0 is treated imAlgCO0.

AlgCo
Special case of the conjugation algorithm (type C), for itketzeAlgC.

12

AlgD
Implementation of the binomial convolution algorithm (&P) to perform
sums of the form

n—1 i

n iX ..)
Z <)) (-1) im—llS(l,mz,...,mk,xg,...,xk)
P

i
i '
ﬁS(m — iy MYyy ey M) Xy ey X))

for any (integer) values ofi;, m; > 0 andmj > 0. The argument specifies the
indexi of the sum to be done. The special cage= 0 is treated inAlgDO.

AlgDO
Special case of the binomial convolution algorithm (type $2eAigD.

DoSynch

Procedure to synchronize the argumentawrh, den, fac, invfac andS. The
argument specifies the indéxf the sum to be adjusted. Start with synchro-
nizing products o6 functions, then do the combinations

1. j; andfac, invfac
2. den andS

3. den andfac, invfac
4. S andfac, invfac.

Finally summation boundaries are synchronized.

DoTheta
Simplifies combinations ofheta, delta, deltap andsum functions, defined
for each sum ovey;. The argument specifies the indexf the sum to be
adjusted (argumerit= 0 implies no sum).

ExpandDen
Expandsden function in small parametesp, i.e. 1/(a+ be) in terms ofe.

If the argument provided tExpandDen is O then denominators with integer
values ofu are expanded. If the argument is 1, we expand for symholic

ExpandGam
ExpandsGamma andInvGamma functions in the small parametep, i.e.
[(i+ag) and YT (i+ag) in g, wherei anda take integer values. The argument
specifies the number of the highest sum in the expression. hdese the
MS-scheme, i.e. eXp-yra€) = 1, whereyg is Euler’s constant.

13

Flipj
Reverses the direction of summation. The argument spethieegdex: of
the sum to be flipped.

Makej
Creates thdressed objects, for example thgpow functionpow (x, j3) is con-
verted topow3 (x, j3). The argument specifies the summation index to be
treated.

Movej

Makes a translation of; +n — j;. The first argument specifies which index
i of the summation variable which should be used. The shifetemined
by the argument of the function specified by the second argupessed to
Move;j.

NormDen
Convertsden functions to normal form, i.e. fixes the sign of the summation
index appearing in the denominator. The argument spedifeekighest sum-
mation indexi to be treated. The hierarchy is such thiats more important
than j, etc.

NormalizeGam

Normalizes products diamma andinvGamma functions.

RegSum

Performs final regularization of a sum. The argument spadifie index of
the sum to be regularized.

SimpleArgs
Applies some trivial simplifications. If the argument passeSimpleArgs is
0 these simplifications are applied to the prefactors mylhg functions. If
the argument passed is C the simplifications are appliecetartjuments dé
andpow functions.

Simplify

Calls different simplification and normalization routinessimplify or nor-
malize the expresssions.

SimplifyFacGam

Procedure to simplify products édc, invfac andGamma, InvGamma func-
tions.

SimplifySumArgs
Procedure to simplify polynomials in argumentsSfunctions. This proce-
dure is user accessible and should be edited if optimizédioreded.

14

SplitDen
Partial fractioning of products of denominators involvihg summation vari-
able j;, wherei is the argument passed$plitDen. This routine is optimized
for higher powers of the denominators and uses the sum farratter than
repeated splitting of pairs.

SubsS
Evaluatess functions with a numerical last argument into polynomialghe
variables (if possible, with numerical values). For argaime= 0 only nu-
merical values are realized; for= 1 the procedure also expands polynomials.
S functions with symbolic last argument are untouched, ofseu

Sumlt
Calls the various procedures for summation algorithms. argament speci-
fies the index of the sum to be done.

SumPosPow
Sums positive (or zero) powers @f possibly in combination with on8 or
pow function. The argument specifies the indef the sum to be done.

SynchDenFac

Synchronizes combinations dén andfac, invfac functions, i.e. factorials
and denominators. The argument specifies the associatedation index.

SynchDen$S

Synchronizes combinations den andS functions, i.e. denominators and
S-sums. The argument specifies the associated summaticniinde

SynchFac$S

Synchronizes combinations 8fandfac, invfac functions, i.e. factorials and
S-sums. The argument specifies the associated summaticniinde

SynchNumFac

Synchronizes combinations of (positive) powersjpoandfac, invfac func-
tions. The argument specifies the associated summatior inde

SynchSS

Synchronizes products 8fsums. The argument specifies the associated sum-
mation index.

As discussed in Section 2 tifesums can be treated as generalization of the harmonic
sums investigated in Refs. [1:9,18]. It is therefore evidirat some of the procedures
presented here are similar to those in $umMer package 9] written by J.A.M. Ver-
maseren. In particular the procedufatjustSum, BasisS, DoSynch, DoTheta, Flipj,
Makej, SubsS, SynchDenFac and SynchSS are adapted versions of similar proce-

15

dures inSUMMER.

3.2.3. Harmonic sums in infinity

A special class of sums, occurring as a result of the summalgorithms, are har-
monic sums in infinity. These are related to multiple zetaeal[2], which for a given
weight are reducible to a small set of transcendental nusning, for example, the
algebraic properties in Ed.(2.3).

Together with theXSumMER package, we provide the tables of harmonic sums in
infinity (limited to weight six). These procedures are céligbles, tablet, ... ,table6
and the corresponding files are directly extracted fronSthiemeRr package[9]. This
facilitates interfacing with routines of the current pag&a

Let us also note that the reduction of multiple zeta values given weight to some
irreducible set of constants is currently an active field atmematical research. Cur-
rently, downloads of tables up to weight nineform [23] or MAPLE format [24] are
publicly available and extensions are known up to weigh2B:76].

4. Examples

Along with the distribution of theXSummER package, we provide also a number of
non-trivial examples. These examples can either be run tghhelp of the shell
script Testlt in a standard Linux/Unix environment or with the helpTastitXP.bat
under the Microsoft Windows XP operating system. (For eitifehe scripts the user
might have to make small adaptations, though.)

The respective script executes therM files Examples.frm andDolntegrals.frm (dis-
cussed in detail below) and performs a check on the outpliediormer computations
against tabulated results with the help of the @leeckResults.frm. In this way, the
user can verify the correctness of the installation of Xis&MMER package. At the
same time, the examples are meant to illustrate the usagents with theXSum-
MER package. In particular, we want to clarify the conventiomsthe input to the
procedures of Section 3.

We provide in the filEExamples.frm a number of (generalized) hypergeometric func-
tions from the original Ref.’{4],

hypergeom2F1 (a*ep,b*ep, 1-c*ep, x1)

hypergeom2F1 (1, -ep, 1-ep, x1)

hypergeom3F2 (-2*ep, -2*ep, 1-ep, 1-2*ep, 1-2*ep, x1)
appel2(1,1,ep,ltep,l-ep,xl,x2)

where the coefficients of Laurent seriesiare calculated up to a given order in terms
of multiple polylogarithms. The first exampl@pergeom2F1 (a*ep, b*ep, 1-c*ep, x1)
was actually given in Eq: (1.1). [Bxamples.frm it is realized by the following set of
substitutions:

16

id hypergeom2F1 (a?,b?,c?,x1?) = suml (jl,0,inf) *
Po(jl+a,a)*Po(jl+b,b) *InvPo(jl+c,c)*invfac(jl1)* pow(xl, jl1);

id Po (x1?,x27?) Gamma (x1) *InvGamma (x2) ;
id InvPo (x1?,x2?) = Gamma (x2)*InvGamma (x1);

HerePo (x1,x2) andInvPo (x1,x2) denote the Pochhammer symbols, see Eq. (1.1).
Next, the fileDolntegrals.frm calculates certain one- and two-loop Feynman integrals
used in a complete calculation of higher-order perturlgatiorrections in Quantum
Chromodynamicg[7]. To that end, integrals of various tog@s had to be considered.
The respective analytical representations in terms ofedestims valid for arbitrary
powers of denominators for the so-called C-topolagyy [43,Bhbox (one-loop box with
one external mass J27]) and one-loop triangles with up toexternal masses [28] are
all given in the procedurmt2Sum. The input toDolntegrals.frm, i.e. the information

on the topology and on the particular values for the powedeabminators, is passed
on by preprocessor variableskiorm. The explicit lists of all inputs are contained in
Selectintegral.

In the actual calculation, we choose dimensional regudéion [29-32] withD = 4 —

2¢ and the modified [33] minimal subtraction [34] scheme fol@dlp integrals in this
section. For illustration we give here the explicit seriegresentation as we use it in
Int2Sum for the one-loop triangle with two external massesirvi,va,vs;x1). Itis
defined by

dPk; 1 1 1
i/2 (—k2)" (—k3)" (—K3) ™

and, in the following, we use the short-hand notatign= v; +v; for sums of powers
of propagators. We have = k1 — p1, k3 = ko — p2, and we define the quantities

Tri(m,v1,V2,V3;x1) = (—slz)’"“'*"m/ (4.1)

2
s12= (p1+ p2)?, x= :4112 (4.2)

Equation {4.1) can be written as a combination of hypergeoofenctionsyF;. The

series representation for this integral wiith< 1 is given by

I'(s—m+vz3)l'(1— E+m —V23)r(m— €—V13)
r(Vl)r(Vz) F(v3)l'(2m —2e— V123)

Tri(m,v1,V2,V3;x) =

y 0 x_i[xmszsr(i1+V1)r(i1—8+m_V2)
i; il F(i1+1+m—s—v23)
(i1 +V3)l (i1 —m~+€+V123)

_ . 4.3
Fi14+1—m+e+v23) (4.3)

Equation {4.8) is implemented in the procedint2Sum and prepared for the input
to theXSuMMER package with a set of substitutions similar to those brieftgussed
above for theF; hypergeometric function.

17

Now, with the examples at hand, we would like to discuss theiehcy of the imple-
mentation of theXSuMMER package irForM. As already mentioned above, certainly
one major disadvantage in usiRgrwm is the lack of internal algorithms for polynomial
algebra. As a consequence, we cannot easily bring ratianatibns of polynomials
to a normal form. For that purpose, we would need operatiank as factorization,
polynomial division or combinations thereof as used fotanse in partial fractioning.
In applications of the algorithms A-D to sums with multipteakes, this problem be-
comes apparent when trying to normalize the arguments of-thems. In particular,
the recursions of the conjugation algorithm (type C) aressie to this issue. Here,
efficient simplifications of polynomials can have a significenpact on the execution
time for a given sum.

Since no really elegant way for simplifying polynomials st=iwithinForm, we have
provided a case-by-case solution. Inside the procedig€ we do have the (user-
accessible) proceduBimpleArgs (described in the previous section). There, depend-
ing on the scales involved, appropriate substitutionsufoirtg or optimizations should
be added. Then, we do have the procedtustomizeDen. It uses partial fractioning
and normalizes the ubiquitous denominators to standatdradn a similar spirit, we
also use the proceduRarFrac, which brings two-scale polynomials to normal form
in Dolntegrals.frm by means of partial fractioning at the end of the calculation
Another more generic approach to this problem, which theeegpced user might
consider, is the followingFoRrm provides the preprocessor statemefstgstem and
#pipe, which invoke a call to the operating system. This providesdpportunity to
realize a link to external programs, in particular to conspatigebra systems such as
MAPLE or MATHEMATICA along with their functionalities in polynomial algebra. o
ever, both the detailed description and the implementatidhese features is beyond
the scope of the present work.

Finally, we would like to give some information on the use ofrputer resources.
Typically, the execution times and the use of memory or dislce depend very much
on the problem under consideration. As a general rule, theession size and there-
fore the execution time correlate strongly with the deptithef Laurent expansion in
€. In the examples, we can control this with the preprocesaoableExPANDEP. This
effectively cuts the series expansiongimt the specified power. Note that for every
individual term the series is cut to the specified order. tiidnal poles are present it
might thus be necessary to expand individual terms to higraer to make sure that
no terms are lost. For safeguard, we added a functia@r r, which shows the effect
of the truncation. Of course, the run time is also correlatgd the number of nested
sums. In practical applications it might be advantageowsdd with a low value for
EXPANDEP and increase it until the final result has the desired orderaddition to
this, in practical applications, some tuning may be neededéw large problems,
particularly in bringing polynomials to normal form.

Let us close this section with a few remarks about the runperéormance. To give
the interested user a hint on how long the presented examypléake, we measured
the runtime on a standard PC. In particular, the machine wd wss equipped with a

18

3 GHz P4 (hyperthreading support) with 512 MB of RAM. The ddaesed problems fit
completely into the RAM so that the hard-drive speed playg amarginal réle. The
results are shown in Table 4, where we averaged always overdependent runs.

Dolntegrals.frm
Form 3.1 executable Examples.frm | CTOPO| BBOX | TRIMASS

gcc, 15-jul-2005 7.9s 20.9s | 119.3s 19s
icc, 24-jan-2003 7.5s 19.9s | 108.2s| 17.4s
gcc, 17-oct-02 8.7s 24.5s | 181.3s 27.6s

Table 2: Runtimes of the examples under Linux for diffefléokm versions.

We also tried a preliminary version of a native Microsoft \dimvs XP FoRM exe-
cutable. The runtimes are very similar to those obtainet thi¢ icc-compiledorm
executable and the new gcc version. The difference of 5%tbigldue to the fact that
on Windows XP the total time was measured and not only thetimser

In applications more involved than the examples shown hbeepser is advised to
make a detailed analysis on the actual depth of the expams®oneeded and on the
particular structure of the polynomials. Furthermore teerishould provide additional
routines to simplify the symbolic arguments$sums.

5. Conclusion

Symbolic summation has advanced to an important methodinepgrturbative quan-
tum field theory, and significant progress has been madegithiepast years. In the
present work, we have provided an implementatioRarm of algorithms suitable for
the expansion of transcendental functions in a small paemaeound integer values,
such that the resulting (generalized) hypergeometriesean be expressed in closed
form in multiple polylogarithms.

As examples, we have discussed various applications intguomield theory, particu-
larly in the calculation of Feynman diagrams at higher asdeperturbation theory. In
this context, theXSuMMER package has been used in perturbative calculations exten-
sively and we believe it may be useful for a larger commuig. have choseRoRrM

for the implementation, because it is a fast and efficientmaer algebra system and
because of its capability to handle large expressions. Gioranience of the user, we
provide along withKSUMMER a set of sample calculations. These illustrate the use of
the program. An extension of the present implementatiomeicalso algorithms for
generalized sums from expansions around rational numbeese.g.:J35]) will be the
subject of a future publication.

19

http://www.nikhef.nl/~form

Note added

Very recently, Ref.[36] appeared, which addresses thel@mbf expanding hyper-
geometric functiongF;_1 around integer parameters to arbitrary order. It proviges a
implementation ifMATHEMATICA of the algorithmsi(2:7): (2.8), i.e. type A and B of the
original Ref. {4]. Thus, it is capable of performing some amxpions already discussed
in Ref. [4] and discussed also in the present Letter, foaimst Eq.1(1:1).

Acknowledgements

We would like to thank J.A.M Vermaseren for his kind pernossto use some files
of the SuMMER package[9] in the current distribution. The work of S.M. len
supported in part by the Helmholtz Gemeinschaft under eshvyH-NG-105 and by
the Deutsche Forschungsgemeinschaft in Sonderforscheregsh/Transregio 9.

References

[1] L. Euler, Novi Comm. Acad. Sci. Petropol. 20 (1775) 140.

[10] S. Moch, J.A.M. Vermaseren and A. Vogt, Nucl. Phys. B6@804) 101, hep-

b ol ol oTE I R R e L il al ol T T R)

ph/0403192.
[11] A. Vogt, S. Moch and J.A.M. Vermaseren, Nucl. Phys. BG20D04) 129, hep-

http://www.usna.edu/Users/math/meh/biblio.html
http://www.cis.upenn.edu/~wilf/AeqB.html
http://arxiv.org/abs/hep-ph/0110083
http://arxiv.org/abs/math-ph/0010025
http://arxiv.org/abs/hep-ph/0211297
http://arxiv.org/abs/hep-ph/0207043
http://arxiv.org/abs/hep-ph/9806280
http://arxiv.org/abs/hep-ph/0403192
http://arxiv.org/abs/hep-ph/0404111
http://arxiv.org/abs/hep-ph/0504242
http://arxiv.org/abs/cs/0004015
http://arxiv.org/abs/math-ph/0201011
http://www.math.uiuc.edu/K-theory/0297

[21] A. Erdélyi et al., Higher Transcendental Functions). Vo
(McGraw Hill, New York, 1953).

[22] R.L. Graham, D.E. Knuth and O. Patashnik, Concrete Kathtics (Addison-Wesley,
1994).

[27] C. Anastasiou, E.W.N. Glover and C. Oleari, Nucl. Phg&65 (2000) 445, hep-

ph/9907523.
[28] C. Anastasiou, E.W.N. Glover and C. Oleari, Nucl. Phg&72 (2000) 307, hep-

ph/9907494.
[29] G. 't Hooft and M. Veltman, Nucl. Phys. B44 (1972) 189.
[30] C.G. Bollini and J.J. Giambiagi, Nuovo Cim. 12B (1972).2
[31] J.F. Ashmore, Lett. Nuovo Cim. 4 (1972) 289.
[32] G.M. Cicuta and E. Montaldi, Nuovo Cim. Lett. 4 (1972)82
[33] W.A. Bardeen et al., Phys. Rev. D18 (1978) 3998.
[34] G. 't Hooft, Nucl. Phys. B61 (1973) 455.

21

http://arxiv.org/abs/math/9910045
http://arxiv.org/abs/hep-ph/9905237
http://arxiv.org/abs/hep-ph/0311046
http://arxiv.org/abs/math/0406589
http://www.nikhef.nl/~form/FORMdistribution/packages/summer/index.html
http://www.lifl.fr/~petitot/publis/mzv.tar
http://www.nikhef.nl/~t68/FORMapplications/t1-5.ps
http://arxiv.org/abs/hep-ph/9907523
http://arxiv.org/abs/hep-ph/9907494
http://arxiv.org/abs/hep-ph/0402131
http://arxiv.org/abs/hep-ph/0507094

