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ABSTRACT
A distributed constraint optimization problem (DCOP) is a formal-
ism that captures the rewards and costs of local interactions within
a team of agents, each of whom is choosing an individual action.
When rapidly selecting a single joint action for a team, we typically
solve DCOPs (often using locally optimal algorithms) to generate
a single solution. However, in scenarios where a set of joint actions
(i.e. a set of assignments to a DCOP) is to be generated, metrics are
needed to help appropriately select this set and efficiently allocate
resources for the joint actions in the set. To address this need, we
introducek-optimality, a metric that captures the desirable prop-
erties of diversity and relative quality of a set of locally-optimal
solutions using a parameter that can be tuned based on the level of
these properties required. To achieve effective resource allocation
for this set, we introduce several upper bounds on the cardinali-
ties ofk-optimal joint action sets. These bounds are computable in
constant time if we ignore the graph structure, but tighter, graph-
based bounds are feasible with higher computation cost. Bounds
help choose the appropriate level ofk-optimality for settings with
fixed resources and help determine appropriate resource allocation
for settings where a fixed level ofk-optimality is desired. In addi-
tion, our bounds for a 1-optimal joint action set for a DCOP also
apply to the number of pure-strategy Nash equilibria in a graphical
game of noncooperative agents.

1. INTRODUCTION
In a large class of multi-agent scenarios, a set of agents chooses

a joint action (JA) as a combination of individual actions. Often,
the locality of agents’ interactions means that the utility generated
by each agent’s action depends only on the actions of a subset of
the other agents. In this case, the outcomes of possible JAs can
be compactly represented in cooperative domains by a distributed
constraint optimization problem (DCOP)[12, 20] or, in noncoop-
erative domains, by a graphical game [6]. Each of these models
can take the form of a graph (or hypergraph) in which each node is
an agent and each edge (or hyperedge) denotes a subset of agents
whose actions, when taken together, incur costs or rewards, either
to the agent team (in DCOPs) or to individual agents (in graphi-
cal games). In the case of DCOP, if each agent controls a single
variable, then a single JA is a complete assignment of values to
variables (i.e. every agent chooses an individual action for itself).
We focus primarily on the team setting, using DCOP, whose appli-
cations include multi-agent plan coordination [4], sensor networks
[12], and RoboCup soccer [17].

Traditionally, researchers have focused on obtaining a single JA,

expressed as a single assignment of actions to agents in a DCOP.
However, in this paper, we consider a multi-agent system that gen-
erates asetof JAs, i.e. multiple assignments to the same DCOP.
Generating sets of JAs is useful in multi-agent domains such as dis-
aster rescue (to provide multiple rescue options to a human com-
mander) [15], patrolling (to execute multiple patrols in the same
area) [14], training simulations (to provide several possible options
to a student) and others [16]. We provide three key contributions
to address such domains. The first contribution is to determine the
appropriate metric for evaluating a set of JAs. While high abso-
lute reward is an appropriate metric in single-solution domains, re-
ward alone is a poor metric for these multiple-JA domains, as it
often yields clusters of very similar JAs, as shown in Section 2 of
this paper. Clustering is undesirable, as diversity, the difference
among JAs, is a key property for a JA set in many domains [16].
Diversity alone is undesirable, because it leads to solutions of low
quality. Hence, this paper introduces a new metric,k-optimality,
that naturally captures the diversity and relative quality of a JA set.
A k-optimal JA has the highest reward within a neighborhood of
other JAs that differ from it by at mostk individual actions; i.e. no
k-optimal JA can be improved ifk or fewer agents change their ac-
tions. Therefore,k-optimality quantifies the neighborhood in which
a JA is optimal. In ak-optimal JA set, defined as a set of JAs, each
of which is itselfk-optimal, all JAs in the set are guaranteed a par-
ticular level of relative quality (best in their neighborhoods), as well
as diversity (every two JAs must be separated by at leastk+ 1 indi-
vidual actions).

Domains requiring repeated patrols in an area by a team of UAVs
(unmanned air vehicles), UGVs (unmanned ground vehicles), or
robots, for peacekeeping or law enforcement after a disaster, pro-
vide one key illustration of the utility ofk-optimality. For example,
given a team of patrol robots in charge of executing multiple joint
patrols in an area as in [14], each robot may be assigned a region
within the area. Each robot is controlled by a single agent, and
hence, for one joint patrol, each agent must choose one of several
possible routes to patrol within its region. A joint patrol is a JA,
where each agent’s action is the route it has chosen to patrol, and
rewards and costs arise from the combination of routes patrolled
by agents in adjacent or overlapping regions. For example, if two
nearby agents choose routes that largely overlap on a low-activity
street, the constraint between those agents would incur a cost, while
routes that overlap on a high-activity street would generate a re-
ward. Agents in distant regions would not share a constraint. If
reward alone is used as a metric to select joint patrols, then all se-
lected joint patrols could be the same, except for the action of one
agent. This set of patrols would be repetitive and predictable to ad-
versaries. If we pick some diverse joint patrols at random, they may



be very low-quality patrols. Usingk-optimality directly addresses
such circumstances;k-optimality ensures that all joint patrols differ
by at leastk+ 1 agents’ actions, as well as ensuring that this diver-
sity would not come at the expense of obviously bad joint patrols,
as each is optimal within a radius of at leastk agents’ actions.

After introducingk-optimality, our second key contribution in
this paper is addressing efficient resource allocation for the multi-
ple JAs in ak-optimal set, by defining tight upper bounds on the
number ofk-optimal JAs that can exist for a given DCOP. These
bounds are necessitated by two key features of the typical domains
where ak-optimal set is applicable. First, each JA in the set con-
sumes some resources that must be allocated in advance. Such re-
source consumption arises because: (i) a team actually executes
each JA in the set, as in our patrolling example above, or (ii) the
JA set is presented to a human user (or another agent) as a list of
options to choose from, requiring time. In each case, resources are
consumed based on the JA set size. Second, while the existence
of the constraints between agents is knowna priori, the actual re-
wards and costs on the constraints depend on conditions that are
not known until runtime, and so resources must be allocated before
the rewards and costs are known and before the agents generate the
k-optimal JA set. In the patrolling domain, constraints are known
to exist between patrol robots assigned to adjacent or overlapping
regions. However, their costs and rewards depend on recent field
reports of adversarial activity that are not known until the robots
are deployed. At this point the robots must already be fueled in or-
der for them to immediately generate and execute a set ofk-optimal
patrols. The resource to be allocated to the robots is the amount of
fuel required to execute each patrol; thus it is critical to ensure that
enough fuel is given to each robot so that each JA found can be
executed, without burdening the robots with wasted fuel that will
go unused. Consider another domain involving a team of disaster
rescue agents that must generate a set ofk-optimal JAs in order
to present a set of diverse options to a human commander, where
each option represents the best JA within a neighborhood of similar
JAs. The commander will choose one JA for the team to actually
execute. Constraints exist between agents whose actions must be
coordinated (i.e. members of subteams) but their costs and rewards
depend on conditions on the ground that are unknown until the time
when the agents must be deployed. Here, the resource is the time
the commander has to make the decision. Presenting too many
options will cause the commander to run out of time before con-
sidering them all, and presenting too few may cause high-quality
options to be omitted.

Because each JA consumes resources, knowing the maximal num-
ber ofk-optimal JAs that could exist for a given DCOP would al-
low us to allocate sufficient resources for a given level ofk. Un-
fortunately, we cannot predict this number because the costs and
rewards for the DCOP are not known in advance. Despite this un-
certainty, reward-independent bounds can be obtained on the size
of a k-optimal JA set, i.e. to safely allocate enough resources for
a given value ofk for any DCOP with a particular graph strucutre.
We first identify a mapping to coding theory, yielding bounds in-
dependent of both reward and graph structure. We then provide a
method to use the structure of the DCOP graph (or hypergraph of
arbitrary arity) to obtain significantly tighter bounds.

The third key contribution in this paper is to establish a connec-
tion to noncooperative settings by proving that our bounds for 1-
optima also apply to the number of pure-strategy Nash equilibria in
any graphical game on a given graph, which remains an open prob-
lem. In addition to their uses in resource allocation, these bounds
provide insight into the problem landscapes that can exist in both
cooperative and noncooperative settings.

2. k-OPTIMALITY
We introduce the notion ofk-optimalityas a metric that captures

both relative quality and diversity when selecting a set of JAs. We
begin with our model of the multi-agent team problem, which is a
DCOP in which each agent controls a single variable to which it
must assign a value. These values correspond to individual actions
that can be taken by the agents. Subgroups of agents, whose com-
bined actions generate a cost or reward to the team, define the con-
straints between agents. Because we assume that each agent con-
trols a single variable, we will use the terms “agent” and “variable”
interchangeably. More formally, for a set of agentsI := {1, . . . , I },
the i th agent takes actionai ∈ Ai . We denote the joint action
of a subgroup of agentsS ⊂ I by aS := ×i∈Sai ∈ AS where
AS :=

�
i∈SAi and the joint actions (JAs) of the entire multi-agent

team bya = [a1 · · · aI ] ∈ A whereA :=
�

i∈IAi . The team re-
ward for taking a particular JA,a, is an aggregation of the rewards
obtained by subgroups in the team:

R(a) =
∑
S∈θ

RS(a) =
∑
S∈θ

RS(aS)

where S is a minimal subgroup that generates a reward (or in-
curs a cost) in an n-ary DCOP (i.e. a constraint),θ is the col-
lection of all such minimal subgroups for a given problem and
RS(·) denotes a function that mapsAS to �. By minimality, we
mean that the reward componentRS cannot be decomposed fur-
ther. Mathematically:∀S ∈ θ,RS(aS) , RS1(aS1) + RS2(aS2) for
any RS1(·) : AS1 → �,RS2(·) : AS2 → �,S1,S2 ⊂ I such that
S1 ∪ S2 = S,S1,S2 , ∅. It is important to express the constraints
minimally to accurately represent dependencies among agents.

To evaluate JA sets, specifically JAs with respect to each other,
we need notions of neighborhood and distance among JAs. For
two JAs, a and ã, we define the following terms. Thedeviating
group is D(a, ã) := {i ∈ I : ai , ãi}, i.e. the set of agents whose
actions in JA ˜a differ from their actions in JAa. The distanceis
d(a, ã) := |D(a, ã)| where| · | denotes the cardinality of the set. The
relative rewardof a JAa with respect to another JA ˜a is

∆(a, ã) := R(a) − R(ã) =
∑

S∈θ:S∩D(a,ã),∅

[RS(aS) − RS(ãS)] .

In this summation, only the rewards on constraints incident on de-
viating agents are considered, since the other rewards remain the
same. We assume every subgroup of agentsG has a unique optimal
subgroup joint actiona∗G for any context, where a context consists
of aGC , the actions of the agents not inG, i.e. the complement of
G. Mathematically, ifG ⊂ I whereG , ∅ andG , I, then

∃ a∗G ∈ AG s.t. R(a∗G; aGC ) > R(aG; aGC )∀aG , a∗G

Here the notationR(aG; aGC ) is used to indicate the overall team
reward generated when subgroupG takes the JAaG with respect to
a fixed context ofaGC . The above assumption is natural for domains
where rewards come from precise measurements, and is common
in work on bounds and estimates for numbers of local optima [2]
and Nash equilibria [11]. Given this assumption, we now classifya
as ak-optimal JAor k-optimumif ∆(a, ã) > 0 ∀ã s.t d(a, ã) ≤ k.
Equivalently, if the set of agents have reached ak-optimum, then
no subgroup of cardinality≤ k can improve the overall reward by
choosing different actions; every such subgroup is acting optimally
with respect to its context.

A collection of k-optimal JAs must be mutually separated by a
distance≥ k+1 as they each have the highest reward within a radius
of k. Thus, a higherk-optimality of a collection implies a greater
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Figure 1: DCOP example

level of relative reward and diversity. Let

Aq(I , k) = {a ∈ A : ∆(a, ã) > 0 ∀ã s.t d(a, ã) ≤ k}

be the set of allk-optimal JAs for a team ofI agents with domains
of cardinalityq. It is straightforward to showAq(I , k+1) ⊆ Aq(I , k).

E 1. Figure 1 is a binary DCOP in which agents choose
actions from{0,1}, with rewards shown for the two constraints
(minimal subgroups) S1 = {1,2} and S2 = {2,3}. The assignment
a = [1 1 1] is 1-optimal because any single agent that deviates re-
duces the team reward. However,[1 1 1] is not2-optimal because
if the group{2,3} deviated, making the assignmentã = [1 0 0],
team reward would increase from 16 to 20. The globally optimal
solution, a∗ = [0 0 0] is k-optimal for all k∈ {1,2,3}.�

We now show, in an experiment, the advantages ofk-optimal JA
sets as capturing both diversity and high reward compared with JA
sets chosen by other metrics. The lower half of Figure 2(a) shows
a DCOP graph representing a team of 10 patrol robots, each of
whom must choose one of two routes to patrol in its region. The
nodes are agents and the edges represent binary constraints between
agents assigned to overlapping regions. The actions (i.e. the cho-
sen routes) of these agents combine to produce a cost or reward to
the team. For each of 20 runs, the edges were initialized with re-
wards from a uniform random distribution. The set of all 1-optima
was enumerated. Then, for the same DCOP, we found equal-sized
sets of JAs using two other metrics. In one metric, the set of JAs
with highest reward are included, and in the next, JAs were selected
purely for diversity by the following method. We repeatedly cycled
through all possible JAs in lexicographic order, and included a JA
in the set if the distance between it and every JA already in the set
was not less than a specified distance; in this case 2. The average
reward and the diversity (expressed as the minimum distance be-
tween any pair of JAs in the set) for the JA sets chosen using each
of the three metrics over all 20 runs is shown in the upper half of
Figure 2(a). While the sets of 1-optima come close to the reward
level of the sets chosen purely according to reward, they are clearly
more diverse (T-tests for this claim showed a significance within
.0001%). If a minimum distance of 2 is required in order to guar-
antee diversity, then using reward alone as a metric is insufficient;
in fact the JA sets generated using that metric had an average min-
imum distance of 1.21, compared with 2.25 for 1-optimal JA sets
(which guarantee a minimum distance ofk+1 = 2). The 1-optimal
JA set also provides significantly higher average reward than the
sets chosen to maintain a given minimum distance, which had an
average reward of 0.037 (T-test significance within .0001%.). Sim-
ilar results with equal significance were observed for the 10-agent
graph in Figure 2(b) and the nine-agent graph in Figure 2(c). Note
also that this experiment usedk = 1, the lowest possiblek. Increas-
ing k would, by definition, increase the diversity of thek-optimal JA
set as well as the neighborhood size for which each JA is optimal.

In addition to categorizing local optima in a DCOP,k-optimality
provides a natural classification for DCOP algorithms. Many known
algorithms are guaranteed to converge tok-optima for somek > 0,
including DBA [20], DSA [5], and coordinate ascent [17] fork = 1,
MGM-2 and SCA-2 [9] fork = 2, and Adopt [12], OptAPO [10]
and DPOP [13] fork = I . For k < I , random restarts of these
“k-optimal algorithms” can be used to find sets ofk-optimal JAs.
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Figure 2: 1-optima vs. JA sets chosen using other metrics
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Figure 3: Hypothetical example illustrating the advantages of
tighter bounds

3. UPPER BOUNDS ONk-OPTIMA
Upper bounds on the number of possiblek-optimal JAs,|Aq(I , k)|

are useful for two reasons: they yield resource savings in domains
where a particular level ofk-optimality is desired, and help deter-
mine the appropriate level ofk-optimality to prevent guaranteed
waste of resources (fuel, time, etc.) in settings with fixed resources.

First, a particular level ofk-optimality may be desired for a JA
set: a highk will include JAs that are more diverse, and opti-
mal within a larger radius, but high-k algorithms have significantly
higher coordination/communication overheads [12, 10, 9]; hence
lower k is preferable under time pressure. Lowerk may also be
preferable if an agent team or a human user wants a more detailed
set of JAs, for example, more joint patrols, more disaster rescue
options, etc. For a given level ofk-optimality, bounds indicate the
maximum resource requirement for anyk-optimal JA set. Thus,
tighter bounds provide savings by allowing fewer resources to be
allocateda priori while ensuring enough will be available for allk-
optimal JAs, regardless of the rewards and costs on the constraints.
Figure 3 is a hypothetical example, withk on thex-axis and the
number of resources to be allocated on they-axis. β1 andβ2 are
two different upper bounds on the number ofk-optimal JAs that
can exist for a given DCOP. Part (a) shows how the tighter bound
β2 indicates that a resource level ofr2 is sufficient for all k̂-optimal
JAs, if each JA consumes one resource, yielding resource savings
of r1 − r2 over usingβ1.

Second, if resource availability is fixed, tighter bounds help us
choose an appropriate level ofk-optimality. If k is too low, we may
exhaust our resources on bad JAs (similar JAs with poor relative
quality). In contrast, fewerk-optimal JAs can exist ask increases,
and so ifk is too high, available resources that could be spent on
additional JAs are guaranteed to go unused. Tighter bounds provide
a more accurate measure of this kind of guaranteed waste and thus,
allow a more appropriatek to be chosen. In Figure 3(b), under fixed
resource level ˆr, the looser boundβ1 hides the resources guaranteed
to go unused whenk1 is used. This waste is revealed byβ2, with the
thick line indicating the resources that, if allocated, will never be
used, as there cannot exist enoughk-optima to use them all; instead,
we now see that usingk2 will reduce this guaranteed waste.

To find the first upper bounds on the number ofk-optima for
a given DCOP graph, we discovered a correspondence to coding
theory [8]. In error-correcting codes, a set of codewords must be
chosen from the space of all possible words, where each word is
a string of characters from an alphabet. All codewords are suffi-
ciently different from one another so that transmission errors will



not cause one to be confused for another. Finding the maximum
possible number ofk-optima can be mapped to finding the maxi-
mum number of codewords in a space ofqI words where the min-
imum distance between any two codewords isd = k + 1. We can
map JAs (complete DCOP assignments) to words andk-optima to
codewords as follows: A JAa taken byI agents each with a domain
of cardinalityq is analogous to a word of lengthI from an alphabet
of cardinalityq. The distanced(a, ã) can then be interpreted as a
Hamming distance between two words. Then, ifa is k-optimal, and
d(a, ã) ≤ k, thenã cannot also bek-optimal by definition. Thus, any
two k-optima must be separated by distance≥ k+ 1.

Three well-known bounds [8] on codewords are Hamming:βH =

qI/
(∑bk/2c

j=0

(
I
j

)
(q− 1)j

)
, Singleton: βS = qI−k, and Plotkin: βP =⌊

k+1
k+1−(1−q−1)I

⌋
, which is only valid when (1− 1/q)n < k + 1. Note

that for the special case ofq = 2, it is possible to use the relation
βH(I , k,q) = βH(I − 1, k− 1,q)[8] to obtain a tighter bound for odd
k using the Hamming bound. Now, to find a reward-independent
bound on the number of 1-optima for three agents withq = 2, (e.g.,
the system in Example 1), we obtain min{βH , βS, βP} = βH = 4,
without knowingR12 andR23 explicitly.

Unfortunately, problems of evend (oddk), are not of interest for
error-correcting codes, andβH , the Hamming bound, is very loose
or useless for DCOP whenq > 2, e.g., for 1-optima (solutions
reached by DSA) the bound is equal to the number of possible as-
signments in this case. Hence, for DCOP, we pursue an improved
bound forq > 2 and oddk. βH is derived by using a sphere-packing
argument stating that the total number of wordsqI must be greater
than the number of codewordsAq(I , k) multiplied by the size of a
sphere of radiusbk/2c centered around each codeword. A sphere
SA(a∗, r) with centera∗ and radiusr is the set of JAs ˜a such that
d(a∗, ã) ≤ r, and represents words that cannot be codewords (ex-
cept for its center). It can be shown thatSA(a∗, bk/2c) contains
exactly

∑bk/2c
j=0

(
I
j

)
(q − 1)j words. If k is even, the tightest packing

occurs with spheres of radiusk/2 and each word can be uniquely
assigned to the sphere of its closest codeword. Ifk is odd, it is
possible for a word to be equidistant from two codewords and it is
unclear how to assign it to a sphere. The Hamming bound addresses
this issue by using the bound fork−1 whenk is odd, which leads to
smaller spheres and a bound larger than necessary. This ignores the
contribution of a word that lies on the “boundary” between several
spheres. These boundary assignments can be appropriately parti-
tioned to achieve a tighter bound on the number ofk-optima for
oddk, called theModified Hamming bound.

P 1. For odd k, Aq(I , k) ≤ min{A1,A2} where

A1 =
qI −

(
I

(k+1)/2

)
(q− 1)(k+1)/2∑bk/2c

j=0

(
I
j

)
(q− 1)j

A2 =
qI∑bk/2c

j=0

(
I
j

)
(q− 1)j +

(
I

(k+1)/2

)
(q− 1)(k+1)/2(I−1)

Proof. Any word that has Hamming distancebk/2c or less from
a codeword belongs in that codeword’s sphere, because belong-
ing to more than one sphere would violate the code’s distance re-
quirement. Given an odd value ofk, each codeword will have(

I
(k+1)/2

)
(q − 1)(k+1)/2 words that are a distance of (k + 1)/2 away

from it. It cannot claim all these words for its sphere exclusively, as
they may be equidistant from other codewords. We do know how-
ever that each of these words can be on the boundary of at most
I spheres (i.e. can be equidistant from at mostI codewords) be-
cause they are of lengthI . Furthermore, each of these words can be
equidistant from at mostAq(I , k) codewords, i.e. the total number

of codewords in the space. Thus, each codeword can safely incor-
porate 1/min {I ,Aq(I , k)} of each of these boundary words into its
sphere without any portion being claimed by more than one sphere.
Aggregating over all the words on the boundary, we can increase
the volume of the sphere by

(
I

(k+1)/2

)
(q − 1)(k+1)/2/min {I ,Aq(I , k)}.

Using the sphere-packing argument with the portions of the bound-
ary words added to each sphere, ifAq(I , k) ≤ I , we have

qI ≥ Aq(I , k)

[bk/2c∑
j=0

(
I
j

)
(q− 1)j +

(
I

(k+1)/2

)
(q− 1)(k+1)/2

Aq(I , k)

]

⇒ Aq(I , k) ≤
qI −

(
I

(k+1)/2

)
(q− 1)(k+1)/2∑bk/2c

j=0

(
I
j

)
(q− 1)j

≡ A1,

and if Aq(I , k) ≥ I , we have

qI ≥ Aq(I , k)

[bk/2c∑
j=0

(
I
j

)
(q− 1)j +

(
I

(k+1)/2

)
(q− 1)(k+1)/2

I

]

⇒ Aq(I , k) ≤
qI∑bk/2c

j=0

(
I
j

)
(q− 1)j +

(
I

(k+1)/2

)
(q− 1)(k+1)/2(I−1)

≡ A2.

We haveAq(I , k) ≤ I ⇒ Aq(I , k) ≤ A1 andAq(I , k) ≥ I ⇒ Aq(I , k) ≤
A2. We can show thatA1�I ⇔ A2�I , ∀� ∈ {<, >,=}. Furthermore,
A1 � I ,A2 � I ⇔ A1 � A2. Thus, whenA1 ≤ I , thenA2 ≤ I and
A1 ≤ A2. So,Aq(I , k) ≤ A1 = min{A1,A2} whenA1 ≤ I . And, when
A1 > I , thenA2 > I andA1 > A2. So,Aq(I , k) ≤ A2 = min{A1,A2}

whenA1 > I . Therefore,Aq(I , k) ≤ min{A1,A2}.�
We call the Modified Hamming boundβMH and defineβHS P =

min{βH , βS, βP, βMH}, including the relation forβH for q = 2; i.e.
βHS P gives the best of all the (graph-independent) bounds so far.

4. GRAPH-BASED ANALYSIS: k-OPTIMA
TheβHS P bound and its components depend only on the values

for I , k andq, regardless of how the team reward is decomposed
onto constraints (i.e., the bounds are the same for allθ). For in-
stance, the bound on 1-optima for Example 1 (found to be 4 in the
previous section) ignored the fact that agent 1 does not have a con-
straint with agent 3, and yields the same result independent of the
graph structure of the DCOP. However, taking this graph structure
(as captured byθ) into account can significantly tighten the bounds
on{|Aq(I , k)|}Ik=1. In particular, in obtaining the bounds in Section 3,
pairs of JAs were mutually exclusive ask-optima (only one of the
two could bek-optimal) if they were separated by a distance ofk or
less. We now show how some JAs that are separated by a distance
≥ k+ 1 must also be mutually exclusive ask-optima.

We defineDG(a, ã) := {i ∈ G : ai , ãi} andV(G) := ∪S∈θ:G∩S,∅S.
Intuitively, DG(a, ã) is the set of agents within the subgroupG who
have chosen different actions betweena and ã, and V(G) is the
set of agents (including those inG) who are a member of some
constraintS ∈ θ incident on a member ofG (e.g.,G and the agents
who share a constraint with some member ofG). Then, V(G)C

is the set of all agents whose contribution to the team reward is
independent of the values taken byG.

P 2. Let there be a JA a∗ ∈ Aq(I , k) and letã ∈ A be
another JA for which d(a∗, ã) > k. If ∃ G ⊂ I, G , ∅ for which
|G| ≤ k and DV(G)(a∗, ã) = G, thenã < Aq(I , k).

Proof. Givena∗, ã, andG with the properties stated above, we have
that∀a : d(a∗,a) ≤ k, ∆(a∗,a) > 0. If a is defined such thatai = ãi

for i ∈ V(G) and ai = a∗i for i < V(G), thenD(a∗,a) = G and
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ã1 :
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Figure 4: A visual representation of the effect of Proposition 2.

d(a∗,a) ≤ k which implies

∆(a∗,a) =
∑

S∈θ:S∩D(a∗ ,a),∅

RS(a∗S) − RS(aS) =
∑

S∈θ:S∩G,∅

RS(a∗S) − RS(aS)

=
∑

S∈θ:S∩G,∅

RS(a∗S) − RS(ãS) > 0.

If â is defined such that ˆai = a∗i for i ∈ V(G) and âi = ãi for
i < V(G), thenD(ã, â) = G andd(ã, â) ≤ k, and

∆(ã, â) =
∑

S∈θ:S∩D(ã,â),∅

RS(ãS) − RS(âS) =
∑

S∈θ:S∩G,∅

RS(ãS) − RS(âS)

=
∑

S∈θ:S∩G,∅

RS(ãS) − RS(a∗S) < 0,

thus,ã < Aq(I , k) because∆(ã, â) < 0 andd(ã, â) ≤ k.�
Proposition 2 provides conditions where ifa∗ is k-optimal then ˜a,

which may be separated froma∗ by a distance greater thank+1 may
not bek-optimal, thus tightening bounds onk-optimal JA sets. With
Proposition 2, since agents are typically not fully connected to all
other agents, therelevant contexta subgroup faces is not the entire
set of other agents. Thus, the subgroup and its relevant context form
a view (captured byV(G)) that is not the entire team. We consider
the case where a JA ˜a hasd(a∗, ã) > k. We also have groupG of
sizek within whose viewV(G), G are the only deviators between
a∗ andã (although agents outside the view must also have deviated,
becaused(a∗, ã) > k). We then know that ˜a contains a groupG of
sizek or less that has taken a suboptimal subgroup joint action with
respect to its relevant context and thus ˜a cannot bek-optimal, i.e.
if the groupG chosea∗G instead of ˜aG under its relevant context
V(G) \G for ã, then team reward would increase.

Figure 4(a) showsG, V(G), andV(G)C for a sample DCOP of
six agents, each with a domain of two actions, white and gray.
Without Proposition 2, ˜a1, ã2, and ã3 could all potentially be 2-
optimal. However, Proposition 2 guarantees that they are not 2-
optimal, leading to a tighter bound on the number of 2-optima that
could exist. To see the effect, note that ifa∗ is 2-optimal, then
G = {1,2}, a subgroup of size 2, must have taken an optimal sub-
group joint action (all white) given its relevant context (all white).
Even though ˜a1, ã2, andã3 are a distance greater than 2 froma∗,
they cannot be 2-optimal, since in each of them,G faces the same
relevant context (all white) but is now taking a suboptimal subgroup
joint action (all gray).

To explain the significance of Proposition 2 to bounds, we intro-
duce the notion of anexclusivity relation E⊂ I which captures the
restriction that if deviating groupD(a, ã) = E, then at most one ofa
andã can bek-optimal. Anexclusivity relation setfor k-optimality,
Ek ⊂ P(I), is a collection of such relations that limits|Aq(I , k)|,
the number of JAs that can bek-optimal in a reward-independent
setting (otherwise every JA could potentially bek-optimal). In par-
ticular, the setEk defines anexclusivity graph Hk where each node
corresponds uniquely to one of allqI possible JAs. Edges are de-
fined between pairs of JAs,a and ã, if D(a, ã) ∈ Ek. The size of
the maximum independent set (MIS) ofHk, the largest subset of
nodes such that no pair defines an edge, gives an upper bound on

a1 a3

000 010

001a2 011

100 110

101 111

(a) (b)
000 010

001 011

100 110

101 111

Figure 5: Exclusivity graphs for 1-optima for Example 1 with
MIS shown in gray, (a) not using Proposition 2 and (b) using it.

|Aq(I , k)|. Naturally, an expandedEk implies a more connected ex-
clusivity graph and thus a tighter bound on|Aq(I , k)|.

Without introducing graph-based analysis,βHS P for eachk pro-
vides a bound on the MIS ofHk whenEk =

⋃
E⊂I:1≤|E|≤k E. This set

Ek captures only the restriction that no two JAs within a distance of
k can both bek-optimal. Consider Example 1, but with unknown
rewards on the links. Here, the exclusivity relation set for 1-optima
without considering the DCOP graph isE1 = {{1}, {2}, {3}}, mean-
ing that no two JAs differing only by the action taken by either
agent 1, 2, or 3, can both be 1-optimal. This leads to the exclusivity
graph in Figure 5(a) whose MIS implies a bound of 4.

The significance of Proposition 2 is that it provides additional ex-
clusivity relations for solutions separated by distance≥ k+1, which
arise only because we considered the structure of the DCOP graph,
which will allow a tighter bound to be computed. This graph-
based exclusivity relation set is̃Ek =

⋃
E⊂I:1≤|E|≤k

⋃
F∈P(V(E)C)[E∪F]

which is a superset ofEk. Additional relations exist because mul-
tiple exclusivity relations (

⋃
F∈P(V(E)C)[E ∪ F]) appear the same to

the subgroupE because of its reduced viewV(E). Now, for Exam-
ple 1, the exclusivity relation set for 1-optima when considering the
DCOP graph is̃E1 = {{1}{2}, {3}, {1,3}}, which now has the addi-
tional relation{1,3}. This relation, included because of the realiza-
tion that agents 1 and 3 are not connected, says that no two JAs can
both be 1-optimal if they differ only in the actions of both agent
1 and agent 3. This leads to the exclusivity graph in Figure 5(b)
whose MIS implies a bound of 2. Algorithms for obtaining bounds
usingẼk will be discussed in Section 6.

5. APPLICATION TO NASH EQUILIBRIA
Our graph-based bounds can be extended beyond agent teams to

noncooperative settings. It is possible to employ the same exclusiv-
ity relations for 1-optimal DCOP assignments to bound the number
of pure-strategy Nash equilibria in a graphical game (of the same
graph structure) using any of our bounds for|Aq(I ,1)|. Bounds on
Nash equilibria [11] are useful for design and analysis of mecha-
nisms as they predict the maximum number of outcomes of a game.

We begin with a set of noncooperative agentsI = {1, . . . I },
where thei th agent’s utility isU i(ai ; a{I\i}) =

∑
Si∈θi

U i
Si

(ai ; a{Si\i})
which is a decomposition into an aggregation of component utili-
ties generated from minimal subgroups. Note that the combination
of actions taken by any subgroup of agents may generate utility for
any agenti, therefore the subgroups are denoted asSi rather thanS,
as in the cooperative case, where the utility went to the entire team.
The notationai anda{G\i} refers to thei th agent’s action and the ac-
tions of the groupG with i removed, respectively. We refer toa as a
joint action (JA), with the understanding that it is composed of ac-
tions motivated by individual utilities. Let theviewof the i th agent
in a noncooperative setting to beV(i) = ∪Si∈θi Si . The deviating
group with respect toG is: DG(a, ã) := {i ∈ G : ai , ãi}. As-
suming every player has a unique optimal response to its context,
then if a∗ is a pure-strategy Nash equilibrium, andd(a∗,a) = 1,
i = D(a∗,a), we know thatU i(a∗i ; a∗

{I\i}) > U i(ai ; a∗
{I\i}) anda is not



a pure-strategy Nash equilibrium. However, applying the graph (or
hypergraph) structure of the game, captured by the sets{θi}, we get
exclusivity relations between JAs with distance> 1 as follows.

P 3. If a∗ is a pure-strategy Nash equilibrium,ã ∈ A
such that d(a∗, ã) > 1, and∃i ∈ I such that DV(i)(a∗, ã) = i, thenã
is not a pure-strategy Nash equilibrium.

Proof. We haveU i(ãi ; ã{I\i})

=
∑
Si∈θi

U i
Si

(ãi ; ã{Si\i}) =
∑
Si∈θi

U i
Si

(ãi ; a∗{Si\i}
)

<
∑
Si∈θi

U i
Si

(a∗i ; a∗{Si\i}
) =

∑
Si∈θi

U i
Si

(a∗i ; ã{Si\i}) = U i(a∗i ; ã{I\i}).

The first and last equalities are by definition. The second and third
equalities are becauseDV(i)(a∗, ã) = i. The inequality is becausea∗

is a pure-strategy Nash equilibrium. The result is that ˜ai is not an
optimal response to ˜a{I\i} and thus cannot be a Nash equilibrium.�

Proposition 3 states thata∗ and ã cannot both be Nash equilib-
ria if ∃i, DV(i)(a∗, ã) = i, which is identical to the condition that
prevents two JAs (in a team setting) from being 1-optimal. The
commonality is that in both the cooperative and noncooperative set-
tings, agents have optimal actions for any given context, and in both
settings there is a notion of relevant context,V(i) \ i, which can be
a subset of other agents{I \ i}. The difference is that the views are
generated in different manners:V(i) = ∪S∈θ:i∩S,∅S in a cooperative
setting, whileV(i) = ∪Si∈θi Si in a noncooperative setting. Given
the views, we can generate the exclusivity relation set in the same
manner,E1 =

⋃
i∈I

⋃
F∈P(V(i)C)[i∪F]. Given the exclusivity relation

set, we can create an exclusivity graph for a noncooperative setting
in a fashion similar to the one in Section 4. Thus, the bound on the
number of Nash equilibria for a noncooperative graphical game is
identical to the bound on 1-optimal JAs for a cooperative DCOP, if
both share the same exclusivity relation setE1.

6. GRAPH-BASED BOUNDS
As seen earlier, the graph structure expands the exclusivity rela-

tion set fork-optimality in cooperative (DCOP) settings and Nash
equilibria in noncooperative (graphical-game) settings. This set de-
fines exclusivity graphHk whose maximum independent set (MIS)
provides a bound for the number ofk-optimal JAs (or alternatively,
for the number of Nash equilibria). Finding the size of the MIS is
NP-complete in the general case [1], so we investigated heuristic
techniques to obtain an upper bound on|Aq(I , k)|. We observe that
any fully-connected subset (clique) ofHk can contain at most one
k-optimum. Thus, the number of cliques in any clique partitioning
of Hk also provides an upper bound on|Aq(I , k)|, where a partition-
ing yielding fewer cliques will provide a tighter bound. Hence, our
first approach is the polynomial-timeFCLIQUE clique-partitioning
algorithm, shown in [7] to outperform several competitors.

Our second heuristic technique to find a graph-based bound is
Algorithm 1, theSymmetric Region Packing bound, βS RP, which
uses a packing method analogous to Proposition 1, where eachk-
optimum claims a region of the space of all possible JAs (the nodes
of Hk). Because these regions are constructed to be disjoint and
have identical volumes, dividing the space of all JAs by this volume
yields a bound. Figure 6 showsβS RP computed for 1-optima for
Example 1. We choose an arbitrary JAa ∈ A which we assume
to bek-optimal (a = [0 0 0] in Figure 6), around which we will
construct a region claimed bya.

Applying the exclusivity relations from̃Ek, we generate a set
B(a) = ∪E∈Ẽk

f (a,E) where f (a,E) yields the JA that is excluded
from beingk-optimal bya andE. The first two rows of Figure 6

Algorithm 1 for Symmetric Region Packing (SRP) bound

1: Ẽk =
⋃

E⊂I:1≤|E|≤k
⋃

F∈P(V(E)C)[E ∪ F]
2: a= [0 0 0]
3: |Ak| = 1
4: B(a) = ∪E∈Ẽk

f (a,E)
5: for all b ∈ B(a) do
6: B(b) = (∪E∈Ẽk

f (b,E)) \ (a∪ B(a))

7: Hk(b).addNodes(B(b))
8: for all b1,b2 ∈ B(b) do
9: if D(b1,b2) ∈ Ẽk then

10: Hk(b).addEdge(b1,b2)
11: Mb = |cliquePartition(Hk(b))|
12: |Ak| = |Ak| + 1/(1+ Mb)
13: βS RP= (qI )/|Ak|

B([0 0 0]) = { [1 0 0], [0 1 0], [0 0 1], [1 0 1]
{1}, {2}, {3}, {1,3}

B([1 0 0]) B([0 0 1])B([0 1 0]) B([1 0 1])
[0 0 0]
[1 1 0]
[1 0 1]
[0 0 1]

[0 1 1]
[1 1 1] [1 0 0]

[1 1 0]
[0 0 0]

[1 0 1]
[0 1 1]
[0 0 0]

[0 0 1]
[1 1 1]
[1 0 0]
[1 1 1]

(exclusivity 
subgraph)

H1(b)

{1},
{2},
{3},
{1,3}}

}
= { }

= {

{1,3}

{1}
{3}
110

011
111

110 011

Mb =

1/(1+Mb) =
1 1 11
1/2 1/21/21/2

111

Figure 6: Computation of βS RPfor Example 1

showẼ1 and the setB([0 0 0]). Applying the exclusivity relations
again for eachb ∈ B(a), and discarding JAs already included ina or
B(a), we generate a setB(b) = ∪E∈Ẽk

f (b,E) which contains all JAs
that potentially excludeb from beingk-optimal. In Figure 6, we ap-
ply Ẽ1 to findB(b) for all b ∈ B(a) = {[1 0 0], [0 1 0], [0 0 1], [1 0 1]}
where the grayed out JAs are those discarded for being in{a}∪B(a).
To ensure that the region thata claims is disjoint from the regions
claimed by otherk-optima,a should only claim a fraction of each
b ∈ B(a). This can be achieved ifa shares eachb equally with
all otherk-optima that might excludeb. These additionalk-optima
are contained withinB(b). However, not allb ∈ B(b) can actu-
ally bek-optimal as they might exclude each other. If we construct
a graphHk(b) with nodes for allb ∈ B(b) and edges formed us-
ing Ẽk, and we findMb, the size of the MIS, thena can safely
claim 1/(1 + Mb) of b. We again use clique partitioning to safely
estimateMb. In Figure 6, forb = [0 1 0], B([0 1 0]) leads to a
three-node, three-edge exclusivity graphHk([0 1 0]). By adding
the values of 1/(1 + Mb) for all b ∈ B(a) (plus one for itself), we
obtain thata can safely claim a region of size 3, which implies
βS RP = b23/3c = 2. Algorithm 1’s runtime is polynomial in the
number of possible JAs, which is a comparatively small cost for a
bound that applies to every possible instantiation of rewards to ac-
tions. An exhaustive search for the MIS ofHk would be exponential
in this number (doubly exponential in the number of agents).

7. EXPERIMENTAL RESULTS
We performed five evaluationsin addition to the experiment de-

scribed in Section 2. The first evaluates the impact ofk-optimality
for higher values ofk. For each of the three DCOP graphs from
Figure 2(a-c), Figure 7(a-c) shows key properties for 1-, 2- and 3-
optima. The first column of each table shows|Ã|, the size of the
neighborhood containing all JAs within a distance ofk from a k-



1-opt.
2-opt.
3-opt.

10
55
175

avg.
reward
.850
.964
.993

1-opt.
2-opt.
3-opt.

10
55
175

avg.
reward
.809
.961
.986

1-opt.
2-opt.
3-opt.

9
45
129

avg.
reward
.832
.977
.982

(a) (b) (c)

|Ã| |Ã| |Ã|

Figure 7: 1-optima vs. JA sets chosen using other metrics
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Figure 8: βS RPvs. βHS P for DCOP graphs from Figure 2

optimal JAa, and hence of lower reward thana. For example, in
the joint patrol domain described in Section 2, Figure 7(a) shows
that, if agents are arranged as in the DCOP graph from Figure 2 (a),
any 1-optimal joint patrol must have a higher reward than at least 10
other joint patrols. We see that ask increases, thek-optimal set con-
tains JAs that each individually dominate a larger and larger neigh-
borhood. The second column shows, for each of the three graphs,
the average reward of eachk-optimal JA set found over 20 problem
instances, generated by assigning rewards to the links from a uni-
form random distribution. We define the reward of ak-optimal JA
set as the mean reward of allk-optimal JAs that exist for a particu-
lar problem instance; each figure in the second column is therefore
a mean of means. Ask was increased, leading to a larger neighbor-
hood of dominated JAs, the average reward of thek-optimal JA sets
show a significant increase (T-tests showed the increase in average
reward ask increased was significant within 5%.)

However ask increases, the number of possiblek-optimal JAs
decreases, and hence the next four evaluations explore the effec-
tiveness of the different bounds on the number ofk-optima. For the
three DCOP graphs shown in Figure 2, Figure 8 provides a concrete
demonstration of the gains in resource allocation due to the tighter
bounds made possible with graph-based analysis. Thex axis in
Figure 8 showsk, and they axis shows theβHS P andβS RP bounds
on the number ofk-optima that can exist. To understand the impli-
cations of these results on resource allocation, consider a patrolling
problem where the constraints between agents are shown in the 10-
agent DCOP graph from Figure 2(a), and all agents consume one
unit of fuel for each JA taken. Suppose thatk = 2 has been chosen,
and so at runtime, the agents will use MGM-2 [9], repeatedly, to
find and execute a set of 2-optimal JAs. We must allocate enough
fuel to the agentsa priori so they can execute up to all possible
2-optimal JAs. Figure 8(a) shows that ifβHS P is used, the agents
would be loaded with 93 units of fuel to ensure enough for all 2-
optimal JAs. However,βS RP reveals that only 18 units of fuel are
sufficient, a five-fold savings. (For clarity we note that on all three
graphs, both bounds are 1 whenk = I and 2 whenI − 3 ≤ k < I .)

To systematically investigate the impact of graph structure on
bounds, we generated a large number of DCOP graphs of varying
size and density. We started with complete binary graphs (all pairs
of agents are connected) where each node (agent) had a unique ID.
Edges were repeatedly removed according to the following two-
step process: (1) Find the lowest-ID node that has more than one
incident edge. (2) If such a node exists, find the lowest-ID node
that shares an edge with it, and remove this edge. Figure 9 shows
the βHS P and βS RP bounds fork-optima for k ∈ {1,2,3,4} and
I ∈ {7,8,9,10}. For each of the 16 plots shown, they axis shows

βHSPβSRP

Figure 9: Comparisons ofβS RPvs. βHS P

8 agents 9 agents
k = 1

8 agents 9 agents
k = 4

βSRP βFCLIQUEβHSP

Figure 10: Comparisons ofβS RP, βHS P, βFCLIQUE

the bounds and thex-axis shows the number of links removed from
the graph according to the above method. WhileβHS P < βS RP for
very dense graphs,βS RPprovides significant gains for the vast ma-
jority of cases. For example, for the graph with 10 agents, and
24 links removed, and a fixedk = 1, βHS P implies that we must
equip the agents with 512 resources to ensure that all resources are
not exhausted before all 1-optimal actions are executed. However,
βS RP indicates a that a 15-fold reduction to 34 resources will suf-
fice, yielding a savings of 478 due to the use of graph structure
when computing bounds.

A fourth experiment comparedβHS P andβS RP to the bound ob-
tained by applying FCLIQUE, βFCLIQUE to DCOP graphs from the
previous experiment. Selected results are shown in Figure 10 for
graphs of 8 and 9 agents. WhileβFCLIQUE is marginally better for
k = 1, βS RPhas clear gains fork = 4. Identifying the relative effec-
tiveness of various algorithms that exploit our exclusivity relation
sets is clearly an area for future work.

Finally, Figure 11 compares the constant-time-computable graph-
independent bounds from Section 3, in particular, showing the im-
provement ofβMH over min{βH , βS, βP} for selected odd values of
k, given three possible actions for each agent (q = 3). The x-
axis showsI , the number of agents and they-axis show s 100·
(min{βH , βS, βP} − βMH)/min{βH , βS, βP}. For odd values ofk > 1,
as I increased,βMH provided a tighter bound on the number ofk-



Figure 11: Improvement of βMH on min{βH , βS, βP}

optima. The most improvement was fork = 3; asI increased,βMH

gave a bound 50% tighter than the others,

8. RELATED WORK AND CONCLUSION
This paper provides a theoretical complement to the experimen-

tal analysis of local minima (1-optima) and landscapes in central-
ized constraint satisfaction problems (CSPs) [19] as well as incom-
plete DCOP algorithms [20, 9]. In contrast, we provide catego-
rization and theoretical justification fork-optimality, bounds on the
number ofk-optima (both graph-independent and dependent), algo-
rithms to compute graph-based bounds, and experimental analysis.
We note thatk-optimality can also apply to centralized constraint
reasoning as a measure of the relative quality and diversity of so-
lutions in a set. However, examining properties of solutions that
arise from coordinated value changes of small groups of variables
is especially useful in distributed settings, given the computational
and communication expense of large-scale coordination.

Our research on boundingk-optimal solution sets for DCOPs is
related to estimating numbers of local optima in centralized local
search and evolutionary computing [2, 18]. The key difference is
in the exploitation of constraint graph structure, not harnessed in
previous work, to bound the number of optima.

Given that counting the number of Nash equilibria in a game
with known payoffs is #P-hard [3], bounds have been investigated
for particular types of games [11]. Graph structure is utilized in
algorithms to expedite finding Nash equilibria for a given graphi-
cal game with known payoffs [6]. However, finding tight bounds
on Nash equilibria over all possible games on a given graph (i.e.,
reward-independent bounds) remained an open problem.

In summary, in this paper, (1) we have introducedk-optimality
as a metric that captures diversity and relative quality, properties
desirable for evaluating sets of DCOP assignments, where each as-
signment represents a JA to be considered or executed. Finding
bounds onk-optimal JA sets is useful for resource allocation prob-
lems associated with executing JA sets in sequence or presenting a
JA set as a set of options. (2) We discover a correspondence to cod-
ing theory that yields boundsβH , βS, andβP, independent of reward
and graph structure and (3) introduce a tighter boundβMH for odd
k, all of which are computable in constant time. We introduced (4)
a method to exploit DCOP graph structure to obtain tighter reward-
independent bounds on the number ofk-optima that can exist. (5)
We also show that our method extends to noncooperative settings,
as our bound for 1-optima in a DCOP can be used as a bound on
the number of pure-strategy Nash equilibria in a graphical game of
arbitary payoffs. Finally, (6) we develop techniques for computing
bounds (βS RP, βFCLIQUE) using the graph-based exclusivity relation
sets and (7) illustrate their utility on a diverse collection of graphs.
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