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ABSTRACT expressed as a single assignment of actions to agents in a DCOP.

However, in this paper, we consider a multi-agent system that gen-
erates asetof JAs, i.e. multiple assignments to the same DCOP.

Generating sets of JAs is useful in multi-agent domains such as dis-
aster rescue (to provide multiple rescue options to a human com-

solve DCOPs (often using locally optimal algorithms) to generate mander) [15]’_ p_atrol_ling (t_o execute multiple patrols iq the same
a single solution. However, in scenarios where a set of joint actions 2€@) [14], training simulations (to provide several possible options

(i.e. a set of assignments to a DCOP) i to be generated, metrics ard® @ Student) and others [16]. We provide three key contributions
needed to help appropriately select this set afidiently allocate to address such domains. The first contribution is to determine the

resources for the joint actions in the set. To address this need, we2PPropriate metric for evaluating a set of JAs. While high abso-
introducek-optimality, a metric that captures the desirable prop- lute reward IS an appropna@e metric in smglg-solutlon donﬁa'”s’ re-
erties of diversity and relative quality of a set of locally-optimal Ward alone is a poor metric for these multiple-JA domains, as it

solutions using a parameter that can be tuned based on the level offtén ields clusters of very similar JAs, as shown in Section 2 of

these properties required. To achieykeetive resource allocation this paper. (_Zlustering is undesirable, as (_jiversity, th*f}am_'nce
for this set, we introduce several upper bounds on the cardinali- @M0Nd JAS, is a key property for a JA set in many domains [16].

ties ofk-optimal joint action sets. These bounds are computable in Diversity alone is undesirable, because it leads to solutions of low
constant time if we ignore the graph structure, but tighter, graph- duality. Hence, this paper introduces a new mekioptimality,

based bounds are feasible with higher computation cost. Boundsthat nat_urally captures the_ diversity and re_Iat_lve qua_llty of a JA set.
help choose the appropriate levellebptimality for settings with A k-optimal JA has the highest reward within a neighborhood of

fixed resources and help determine appropriate resource allocatio ther_ JAT tgat dfebr frpm it bydaltfmofsk individual aﬁtions; i.he._ no
for settings where a fixed level &foptimality is desired. In addi- -optimal JA can be improved K or fewer agents change their ac-

tion, our bounds for a 1-optimal joint action set for a DCOP also tions. Thereforek-optimality quantifies the neighborhood in which

apply to the number of pure-strategy Nash equilibria in a graphical afJAhi_s ﬁptir_nal.lﬂl(n d(—_optilmalllJA Set’ ?}efined as a set of JAj' each
game of noncooperative agents. of which is itselfk-optimal, all JAs in the set are guaranteed a par-

ticular level of relative quality (best in their neighborhoods), as well
as diversity (every two JAs must be separated by at leadtindi-

1. INTRODUCTION vidual actions). .

In a large class of multi-agent scenarios, a set of agents chooses Domalnz re_qum?]_g lrepeaLtJngi\}oatrols Inan ‘Zrea by ‘Zteam ?f UAVs
a joint action (JA) as a combination of individual actions. Often, (ugmanpe ar vek icles), : S (u?manne grfc:un (‘j’? icles), or
the locality of agents’ interactions means that the utility generated M0P0tS: for peacekeeping or law enforcement after a disaster, pro-

by each agent’s action depends only on the actions of a subset ofVi,Cle one key illustration of the.utility ai-optimality. .For examplg, .

the other agents. In this case, the outcomes of possible JAs card'Ven a_team of patrol_ robots in charge of executing _mu|t|p|e Jom_t
be compactly represented in cooperative domains by a distributedp"?‘tr:‘.)IS r']n an areaEas r']n [1;1]’ _each rob ﬂt (rjnzy be gssllgned a regn()jn
constraint optimization problem (DCOP)[12, 20] or, in noncoop- within the area. kach ro otis controlled by a single agent, an
erative domains, by a graphical game [6]. Each of these models hence, for one joint patrol, each agent must choose one of several

can take the form of a graph (or hypergraph) in which each node is possible routes to patrql wij[hin its regiqn. A joint patrol is a JA,
an agent and each edge (or hyperedge) denotes a subset of agenYLLhere each agent's a_ct|on is the route 't. ha_s chosen to patrol, and
ewards and costs arise from the combination of routes patrolled

whose actions, when taken together, incur costs or rewards, either’

to the agent team (in DCOPSs) or to individual agents (in graphi- by agents in adjacent or overlapping regions. For example, if two
cal games). In the case of DCOP, if each agent controls a single nearby agents choose routes that largely overlap on a low-activity
variable, then a single JA is a cor,nplete assignment of values to street, the constraint between those agents would incur a cost, while

variables (i.e. every agent chooses an individual action for itself). routes that overlap on a high-activity street would generate a re-

We focus primarily on the team setting, using DCOP, whose appli- ward. Agents in distant regions would not share a constraint. If

cations include multi-agent plan coordination [4], sensor networks lrewa;d_ a_lone IS ulsed i‘j‘jim?”c to select jom:‘ patr:ols, then e}" Se-
[12], and RoboCup soccer [17]. ected joint patrols could be the same, except for the action of one

Traditionally, researchers have focused on obtaining a single JA agent. This set of patrols would be repetitive and predictable to ad-
' "versaries. If we pick some diverse joint patrols at random, they may

A distributed constraint optimization problem (DCOP) is a formal-
ism that captures the rewards and costs of local interactions within
a team of agents, each of whom is choosing an individual action.
When rapidly selecting a single joint action for a team, we typically



be very low-quality patrols. Using-optimality directly addresses 2. K-OPTIMALITY
such circumstancek;optimality ensures that all joint patrolsftér We introduce the notion df-optimalityas a metric that captures
by at leask + 1 agents’ actions, as well as ensuring that this diver- poth relative quality and diversity when selecting a set of JAs. We
sity would not come at the expense of obviously bad joint patrols, pegin with our model of the multi-agent team problem, which is a
as each is optimal within a radius of at leastgents’ actions. ~ pCOP in which each agent controls a single variable to which it
After introducingk-optimality, our second key contribution in st assign a value. These values correspond to individual actions
this paper is addressingfieient resource allocation for the multi-  that can be taken by the agents. Subgroups of agents, whose com-
ple JAs in ak-optimal set, by defining tight upper bounds on the  pined actions generate a cost or reward to the team, define the con-
number ofk-optimal JAs that can exist for a given DCOP. These  straints between agents. Because we assume that each agent con-
bounds are necessitated by two key features of the typical domainsyro|s a single variable, we will use the terms “agent” and “variable”
where ak-optimal set is applicable. First, each JA in the set con- jnterchangeably. More formally, for a set of agefits= {1,..., 1},
sumes some resources that must be allocated in advance. Such repe jth agent takes actiom € A. We denote the joint action
source consumption arises because: (i) a team actually executegf 5 subgroup of agentS c I by as = xisa € As where
each JA in the set, as in our patrolling example above, or (i) the 74 := %, ¢ 7, and the joint actions (JAs) of the entire multi-agent
JA set is presented to a human user (or another agent) as a list Oteam bya = [a;---a] € A whereA = X;.; A;. The team re-

options to choose from, requiring time. In each case, resources arqyard for taking a particular JAg, is an aggregation of the rewards
consumed based on the JA set size. Second, while the existencgptained by subgroups in the team:

of the constraints between agents is knavpriori, the actual re-

wards and costs on the constraints depend on conditions that are R@) = Z Rs(a) = Z Rs(as)

not known until runtime, and so resources must be allocated before 3] &

the rewards and costs are known and before the agents generate the

k-optimal JA set. In the patrolling domain, constraints are known whereS is a minimal subgroup that generates a reward (or in-

to exist between patrol robots assigned to adjacent or overlappingcurs a cost) in an n-ary DCOP (i.e. a constraidt)s the col-

regions. However, their costs and rewards depend on recent fieldlection of all such minimal subgroups for a given problem and

reports of adversarial activity that are not known until the robots Rs(-) denotes a function that mapss to R. By minimality, we

are deployed. At this point the robots must already be fueled in or- mean that the reward componeR$ cannot be decomposed fur-

der for them to immediately generate and execute a sebpfimal ther. Mathematically:¥S € 6,Rs(as) # Rs,(as,) + Rs,(as,) for

patrols. The resource to be allocated to the robots is the amount ofany Rs, (-) : As;, — R,Rs,() : As, = R,S1, S, ¢ I such that

fuel required to execute each patrol; thus it is critical to ensure that S1 U S, = S, 51, S; # 0. It is important to express the constraints

enough fuel is given to each robot so that each JA found can be minimally to accurately represent dependencies among agents.

executed, without burdening the robots with wasted fuel that will ~ To evaluate JA sets, specifically JAs with respect to each other,

go unused. Consider another domain involving a team of disasterwe need notions of neighborhood and distance among JAs. For

rescue agents that must generate a sd¢@ftimal JAs in order  two JAs,a and &, we define the following terms. Thaeviating

to present a set of diverse options to a human commander, wheregroupis D(a,d) := {i € 7 : a # &}, i.e. the set of agents whose

each option represents the best JA within a neighborhood of similar actions in JAa differ from their actions in JA. The distanceis

JAs. The commander will choose one JA for the team to actually d(a, &) := |D(a, &)| where| - | denotes the cardinality of the set. The

execute. Constraints exist between agents whose actions must béelative rewardof a JAa with respect to another JAiS

coordinated (i.e. members of subteams) but their costs and rewards

depend on conditions on the ground that are unknown until the time A(a,d) :=R(@) - R@) = Z [Rs(as) — Rs(as)] .

when the agents must be deployed. Here, the resource is the time Se0:SND(a,8)20

the commander has to make the decision. Presenting too many ) o

options will cause the commander to run out of time before con- !N this summation, only the rewards on constraints incident on de-

sidering them all, and presenting too few may cause high-quality viating agents are considered, since the other revyards remain the

options to be omitted. same. We assume every subgroup of agéritas a unique optimal
Because each JA consumes resources, knowing the maximal nun$4Pgroup joint actiomy, for any context, where a context consists

ber ofk-optimal JAs that could exist for a given DCOP would al-  ©f @ce, the actions of the agents not@ i.e. the complement of

low us to allocate sflicient resources for a given level kf Un- G. Mathematically, ifG c 7 whereG # 0 andG # 7, then
fortunately, we cannot predict this number because the costs and Q4 € A st.R@EL: R(ae: v ,
rewards for the DCOP are not known in advance. Despite this un- 3 € Ao St R(@8s; asc) > R(as; age)Vae # &g

certainty, reward-independent bounds can be obtained on the siz
of a k-optimal JA set, i.e. to safely allocate enough resources for

\6/‘\/2'\;5 Qt\i/ggjrﬁi%kgor;gnyigcgpcgvétilg a tﬂig'f”'ire?(;;phbsc:;unc du;rii " afixed context obsc. The above assumption is natural for domains
pping 9 iy 9 where rewards come from precise measurements, and is common

dependent of both reward and graph structure. We then provide a. . .

in work on bounds and estimates for numbers of local optima [2]
met_hod to use the str_uctl_Jre_c_)f the D.COP graph (or hypergraph of and Nash equilibria [11]. Given this assumption, we now classify
arbitrary arity) to obtain significantly tighter bounds.

. L2 . . _ as ak-optimal JAor k-optimumif A(a, &) >0Vva s.t d(ad) <k
_ The third key cont_rlbutlor_l in this paper is to establish a connec Equivalently, if the set of agents have reachddaptimum, then
tion to noncooperative settings by proving that our bounds for 1-

optima also apply to the number of pure-strategy Nash equilibriain "2 subgroup of cardinalitye k can improve the overall reward by
p 0 apply . P 8 gy i q choosing diferent actions; every such subgroup is acting optimally
any graphical game on a given graph, which remains an open prob-_ . .
o . . : with respect to its context.
lem. In addition to their uses in resource allocation, these bounds

rovide insight into the problem landscapes that can exist in both A collection ofk-optimal JAs must be mutually separated by a
P nsig P ; 'scap distance> k+1 as they each have the highest reward within a radius
cooperative and noncooperative settings.

of k. Thus, a highek-optimality of a collection implies a greater

Here the notatiorR(ag; agc) is used to indicate the overall team
reward generated when subgrapakes the JAss with respect to
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Figure 1: DCOP example

(a) (b) (c)
Figure 2: 1-optima vs. JA sets chosen using other metrics

level of relative reward and diversity. Let
Aq(l,K)={aeA:A(a,8) >0Vva s.t d(ad) <k}

2 resource c guaranteed
be the set of alk-optimal JAs for a team df agents with domains 2 savings 5 resource waste
of cardinalityq. Itis straightforward to show(l, k+1) C Ay(l, k). g ) Rt By gr B
oy l-------= I}
Exampie 1. Figure 1 is a binary DCOP in which agents choose ¢ "2 B2 e — B2
actions from{0, 1}, with rewards shown for the two constraints k ky ki
(minimal subgroups) 8= {1,2} and $ = {2, 3}. The assignment k-optimality of JA set k-optimality of JA set
a=[11 1]is 1-optimal because any single agent that deviates re- (a) (b)
duces the team reward. Howevir,1 1] is not2-optimal because Figure 3: Hypothetical example illustrating the advantages of
if the group{2, 3} deviated, making the assignment= [1 0 0], tighter bounds

team reward would increase from 16 to 20. The globally optimal 3. UPPER BOUNDS ONK-OPTIMA

solution, & = [0 0 O] is k-optimal for all ke {1, 2, 3}.0 ] )
) . ) Upper bounds on the number of possikleptimal JAs |Aq(1, K)|

We now show, in an experiment, the advantagesafftimal JA are useful for two reasons: they yield resource savings in domains
sets as capturing both diversity and high reward compared with JA yhere a particular level df-optimality is desired, and help deter-
sets chosen by other metr_ics. The lower half of Figure 2(a) shows mine the appropriate level dtoptimality to prevent guaranteed
a DCOP graph representing a team of 10 patrol robots, each ofyaste of resources (fuel, time, etc.) in settings with fixed resources.
whom must choose one of two routes to pa_ltrol in its region. The First, a particular level ok-optimality may be desired for a JA
nodes are agents and the edges represent binary constraints betwegpy- 5 highk will include JAs that are more diverse, and opti-
agents assigned to overlapping regions. The actions (i.e. the cho-ma| within a larger radius, but higkalgorithms have significantly
sen routes) of these agents combine to produce a cost or reward tchigher coordinatioftommunication overheads [12, 10, 9]; hence
the team. For each of 20 runs, the edges were initialized with re- |gwer k is preferable under time pressure. Lovkemay also be
wards from a uniform random distribution. The set of all 1-optima preferaple if an agent team or a human user wants a more detailed
was enumerated. Then, for the same DCOP, we found equal-saetﬁet of JAs, for example, more joint patrols, more disaster rescue

sets of JAs using two other metrics. In one metric, the set of JAS gptions, etc. For a given level &foptimality, bounds indicate the
with highest reward are included, and in the next, JAs were selectedaximum resource requirement for akyoptimal JA set. Thus,
purely for diversity by the following method. We repeatedly cycled tighter bounds provide savings by allowing fewer resources to be
through all possible JAs in lexicographic order, and included a JA ajiocateda priori while ensuring enough will be available for &

in the set if the distance between it and every JA already in the set gptimal JAs, regardless of the rewards and costs on the constraints.
was not less than a specified distance; in this case 2. The averaggigure 3 is a hypothetical example, wikhon the x-axis and the
reward and the diversity (expressed as the minimum distance be-n,mber of resources to be allocated on yhexis. B, andp, are
tween any pair of JAs in the set) for the JA sets chosen using eachyyg different upper bounds on the numberkebptimal JAs that

of the three metrics over all 20 runs is shown in the upper half of can exist for a given DCOP. Part (a) shows how the tighter bound
Figure 2(a). While the sets of 1-optima come close to the reward s, ingjcates that a resource levelrfis sufficient for allk-optimal

level of the sets chosen purely according to reward, they are cIearIyJAS’ if each JA consumes one resource, yielding resource savings
more diverse (T-tests for this claim showed a significance within ¢ r1— I, OVer usingg;.

:0001%). If @ minimum distance of 2 is required in order to guar-  second, if resource availability is fixed, tighter bounds help us
antee diversity, then using reward alone as a metric idfie®nt;  chgose an appropriate levellobptimality. If k is too low, we may

in fact the JA sets generated using that metric had an average minexhaust our resources on bad JAs (similar JAs with poor relative
imum distance of 1.2_1,_compa_red with 2.25 for 1-optimal JA sets quality). In contrast, fewek-optimal JAs can exist dsincreases,
(which guarantee a minimum distancekof 1 = 2). The 1-optimal and so ifk is too high, available resources that could be spent on
JA set also provides significantly higher average reward than the yqgitional JAs are guaranteed to go unused. Tighter bounds provide
sets chosen to maintain a given minimum distance, which had an 3 more accurate measure of this kind of guaranteed waste and thus,
average reward of 0.037 (T-test significance within .0001%.). Sim- gj1ow a more appropriateto be chosen. In Figure 3(b), under fixed
ilar results with equal significance were observed for the 10-agent ragoyurce level, the looser boung; hides the resources guaranteed
graph in Figure 2(b) and the nine-agent graph in Figure 2(c). Note {4 go unused wheky is used. This waste is revealedy with the

also that this experiment uskd- 1, the lowest possible Increas- ik line indicating the resources that, if allocated, will never be
ing kwould, by definition, increase the diversity of tkeptimal JA used, as there cannot exist enolgptima to use them all; instead,
set as well as the neighborhood size for which each JA is optimal. \ye now see that usinig will reduce this guaranteed waste.

In addition to categorizing local optima in a DCOFpptimality To find the first upper bounds on the numberkedptima for
provides a natural classification for DCOP algorithms. Many known 4 given DCOP graph, we discovered a correspondence to coding
algorithms are guaranteed to convergé-mptima for somek > 0, theory [8]. In error-correcting codes, a set of codewords must be
including DBA [20], DSA [5], and coordinate ascent [17] for 1, chosen from the space of all possible words, where each word is
MGM-2 and SCA-2 [9] fork = 2, and Adopt [12], OptAPO [10] 3 string of characters from an alphabet. All codewords afé-su
and DPOP [13] foik = I. Fork < I, random restarts of these  cjently different from one another so that transmission errors will

“k-optimal algorithms” can be used to find setkedptimal JAs.



not cause one to be confused for another. Finding the maximum of codewords in the space. Thus, each codeword can safely incor-

possible number of-optima can be mapped to finding the maxi-
mum number of codewords in a spacegbfvords where the min-
imum distance between any two codewordsd is k + 1. We can
map JAs (complete DCOP assignments) to wordslkaaptima to
codewords as follows: A JAtaken byl agents each with a domain
of cardinalityq is analogous to a word of lengtifrom an alphabet
of cardinalityg. The distancel(a, & can then be interpreted as a
Hamming distance between two words. Ther,ig k-optimal, and
d(a, &) < k, thendcannot also bk-optimal by definition. Thus, any
two k-optima must be separated by distancke+ 1.

Three well-known bounds [8] on codewords are Hammjg=
q/ (%2 ()@ 1)), Singleton: Bs = ¥, and Plotkin: gp
| ety |, which is only valid when (& 1/g)n < k + 1. Note
that for the special case of= 2, it is possible to use the relation
Bu(l,k q) =Bu(l —1,k-1,0)[8] to obtain a tighter bound for odd
k using the Hamming bound. Now, to find a reward-independent
bound on the number of 1-optima for three agents gith2, (e.g.,
the system in Example 1), we obtain rj8n,8s,8e} = Bu = 4,
without knowingR;, andR,3 explicitly.

Unfortunately, problems of evah(oddk), are not of interest for
error-correcting codes, afft};, the Hamming bound, is very loose
or useless for DCOP wheq > 2, e.g., for 1-optima (solutions

reached by DSA) the bound is equal to the number of possible as-

porate ¥ min{l, Aq(l, K)} of each of these boundary words into its
sphere without any portion being claimed by more than one sphere.
Aggregating over all the words on the boundary, we can increase
the volume of the sphere Ky, ;, ,)(@ — 1)*2/2/ min{l, Ay(l, K)}.
Using the sphere-packing argument with the portions of the bound-
ary words added to each spheredifl, k) < I, we have

&% 1y

(q _ 1)(k+1)/2

Lk/2]

@ ALK ),

=0
|
B ((k+1)/2)
EE ()@ - 1)
and if Aq(l, k) > I, we have

|
= A(l,K) < a

X}

Lk/2]

> ALK ),

j=0

(;)(q -~ + w]

ql
= Aq(l. k) < - =A
Z%li/ozj (lj)(q -+ ((k+ll)/2)(q — 1)kedr2(]-1) ’

We haveAq(1,K) < 1 = Ag(l,K) < A andAq(1,K) > 1 = Ay(l,K) <
A,. We can show thad, 0l & Ao, Yo € {<, >, =}. Furthermore,

signments in this case. Hence, for DCOP, we pursue an improvedA; o 1, A, 01 & A; © A,. Thus, wherA; < [, thenA, < | and

bound forq > 2 and oddk. B4 is derived by using a sphere-packing
argument stating that the total number of wogfisnust be greater
than the number of codewordg(l, k) multiplied by the size of a
sphere of radiugk/2] centered around each codeword. A sphere
Sa(a“, r) with centera® and radiug is the set of JA&Such that

Ay < Ay S0,Aq(1K) < Ag = min{Aq, Ay} whenA; < |. And, when
Ay > 1, thenAy > | andA; > Ay, S0,Aq(l,K) < Ay = min{A, Ay}
whenA; > |. Therefore Aq(l, k) < min{A, Ay}.m

We call the Modified Hamming bounglyy and defingBusp =
min{By,Bs, Br.Bun}, including the relation fopy for q = 2; i.e.

d(a*,& < r, and represents words that cannot be codewords (ex- 8,5 gives the best of all the (graph-independent) bounds so far.

cept for its center). It can be shown thaf(a*, |[k/2]) contains
exactly 2 ('.)(q - 1)i words. Ifk is even, the tightest packing
j=0 \j . )
occurs with spheres of radikg2 and each word can be uniquely
assigned to the sphere of its closest codewordk iff odd, it is
possible for a word to be equidistant from two codewords and it is

4. GRAPH-BASED ANALYSIS: k-OPTIMA

Thepysp bound and its components depend only on the values
for 1, k andq, regardless of how the team reward is decomposed

unclear how to assign it to a sphere. The Hamming bound addresse©Nto constraints (i.e., the bounds are the same fof)alFor in-

this issue by using the bound fe+ 1 whenk is odd, which leads to

stance, the bound on 1-optima for Example 1 (found to be 4 in the

smaller spheres and a bound larger than necessary. This ignores thBrévious section) ignored the fact that agent 1 does not have a con-
contribution of a word that lies on the “boundary” between several Straint with agent 3, and yields the same result independent of the
spheres. These boundary assignments can be appropriately partidraph structure of the DCOP. However, taking this graph structure
tioned to achieve a tighter bound on the numbek-@iptima for (as captured by) into account can significantly tighten the bounds
oddk, called theModified Hamming bound on{|Aq(l, K)l}i_,. In particular, in obtaining the bounds in Section 3,
pairs of JAs were mutually exclusive koptima (only one of the

two could bek-optimal) if they were separated by a distancé of
less. We now show how some JAs that are separated by a distance

Proposirion 1. For odd k, A(l, k) < min{A, A} where

|
A = q - ((k+1)/2)(q -tz >k + 1 must also be mutually exclusive k®ptima.
1 Zui/on ('.)(q — 1)l We defineDg(a,8) :={i e G: g # &} andV(G) := Uscgens«0S.
= | Intuitively, Dg(a, &) is the set of agents within the subgro@mwho
A q have chosen dierent actions betweea and &, andV(G) is the

IS ('j)(q —1)i + ((k+'1)/2)(q_ 1)ke1y2(] -1) set of agents (including those @) who are a member of some
constraintS € ¢ incident on a member @ (e.g.,G and the agents

Proof. Any word that has Hamming distan¢k/2] or less from who share a constraint with some member@f Then, V(G)©

a codeword belongs in that codeword’s sphere, because belongis the set of all agents whose contribution to the team reward is

ing to more than one sphere would violate the code’s distance re-independent of the values taken ®y

quirement. Given an odd value &f each codeword will have

$<k+ll> 2)(@ — 1)%D72 words that are a distance df ¢ 1)/2 away Proposirion 2. Let there be a JA'ae Aq(l,K) and leta € A be

rom it. It cannot claim all these words for its sphere exclusively, as another JA for which ¢h*,8) > k. If 3G c 7, G # 0 for which

they may be equidistant from other codewords. We do know how- |G| < k and Dyg)(a*, &) = G, thena ¢ Aq(1, K).

ever that each of these words can be on the boundary of at most

| spheres (i.e. can be equidistant from at mosbdewords) be- Proof. Givena*, &, andG with the properties stated above, we have

cause they are of length Furthermore, each of these words can be thatva: d(a*,a) < k, A(a*,a) > 0. If ais defined such tha; = &

equidistant from at mosiy(l, k) codewords, i.e. the total number fori € V(G) anda; = & fori ¢ V(G), thenD(a*,a) = G and



DCOP graph: Joint actions (JAs):

_______ ! as 696066

. (g) . (b) . Figure 5: Exclusivity graphs for 1-optima for Example 1 with
Figure 4: A visual representation of the dfect of Proposition 2. MIS shown in gray, (a) not using Proposition 2 and (b) using it.

B
2:

d(@’, @) < kwhich implies |A4(1,K)l. Naturally, an expandegl implies a more connected ex-

Aa'. a) = Re(a) — R _ Re(a) — R clusivity graph and thus a tighter bound [@g(1, K)|.
(@.a) Z 5(3) ~ Rs(as) Z s(@s) = Rs(as) Without introducing graph-based analygss p for eachk pro-

Sef:SnD(a*,a)#0 Seb:SNG#0 . A
. vides a bound on the MIS ¢y when&y = Ugcra<g <k E. This set
= Z Rs(as) — Rs(&s) > 0. & captures only the restriction that no two JAs within a distance of
Se8:5nG0 k can both bek-optimal. Consider Example 1, but with unknown
If 2 is defined such that "= a’ fori € V(G) and& = & for rewards on the links. Here, the exclusivity relation set for 1-optima
i ¢ V(G), thenD(a,d) = Gandd(a a) <k, and without considering the DCOP graphds = {{1}, {2}, {3}}, mean-
ing that no two JAs dfering only by the action taken by either
A(B,8) = Z Rs(&s) - Rs(&s) = Z Rs(&s) — Rs(as) agent 1, 2, or 3, can both be 1-optimal. This leads to the exclusivity
Sef:SnD(@a)#0 Sep:SnG#0 graph in Figure 5(a) whose MIS implies a bound of 4.
= Z Rs(8s) — Rs(a%) < 0, The significance of Proposition 2 is that it provides additional ex-
SetSnG0 clusivity relations for solutions separated by distander 1, which

arise only because we considered the structure of the DCOP graph,
which will allow a tighter bound to be computed. This graph-
based exclusivity relation set& = Ugcr.1<g<« Urepvec) [EUF]
which is a superset d@. Additional relations exist because mul-

| tiple exclusivity relations (JeepyExc)[E U F]) appear the same to

thus,& ¢ Aq(l, k) becausé\(d &) < 0 andd(&, &) < km

Proposition 2 provides conditions wheraifis k-optimal there;
which may be separated froan by a distance greater th&m 1 may
not bek-optimal, thus tightening bounds &roptimal JA sets. With
Proposition 2, since agents are typically not fully connected to al . .
other agents, theelevant contexa subgroup faces is not the entire the subgroufe be(?ause O.f its reduced V'ME)‘ Now, for !Exam-
setof other agents. Thus, the subgroup and its relevant context formP!€ 1. the exclusivity relation set for 1-optima when considering the
a view (captured by/(G)) that is not the entire team. We consider DCOP graph i, = {{1}{2}, {3}, {1, 3}}, which now has the addi-
the case where a JAhasd(a’,d) > k. We also have grou@ of tional relation{1,3}. This relation, included because of the realiza-
sizek within whose viewV(G), G are the only deviators between  tion thatagents 1 and 3 are not connected, says that no two JAs can

a* andd (although agents outside the view must also have deviated, Poth be 1-optimal if they dier only in the actions of both agent

becausel(a’, &) > k). We then know thaa tontains a grouf of 1 and agen@ 3. 'This leads to the exclgsivity graph i.n.Figure 5(b)
sizek or less that has taken a suboptimal subgroup joint action with Whose MIS implies a bound of 2. Algorithms for obtaining bounds
respect to its relevant context and trusahnot bek-optimal, i.e. using& will be discussed in Section 6.

if the groupG chosea instead ofag under its relevant context
V(G) \ G for &, then team reward would increase.
Figure 4(a) showss, V(G), andV(G)® for a sample DCOP of 5. APPLICATION TO NASH EQU”—lBRlA
six agents, each with a domain of two actions, white and gray. = Our graph-based bounds can be extended beyond agent teams to
Without Proposition 2a;5, &, andds could all potentially be 2- noncooperative settings. It is possible to employ the same exclusiv-
optimal. However, Proposition 2 guarantees that they are not 2- ity relations for 1-optimal DCOP assignments to bound the number
optimal, leading to a tighter bound on the number of 2-optima that of pure-strategy Nash equilibria in a graphical game (of the same
could exist. To see theffect, note that ifa* is 2-optimal, then graph structure) using any of our bounds [i&(l, 1). Bounds on
G = {1,2}, a subgroup of size 2, must have taken an optimal sub- Nash equilibria [11] are useful for design and analysis of mecha-
group joint action (all white) given its relevant context (all white). nisms as they predict the maximum number of outcomes of a game.
Even thoughay, &, and&; are a distance greater than 2 fram We begin with a set of noncooperative agefits= {1,...1},
they cannot be 2-optimal, since in each of th&@rfaces the same  where thei agent’s utility isU'(a; aryi)) = P Uis‘ (a; aspiy)
relevant context (all white) but is now taking a suboptimal subgroup which is a decomposition into an aggregation of component utili-
joint action (all gray). ties generated from minimal subgroups. Note that the combination
To explain the significance of Proposition 2 to bounds, we intro- of actions taken by any subgroup of agents may generate utility for
duce the notion of aexclusivity relation Ec 7 which captures the any agent, therefore the subgroups are denote8asither thars,

restriction that if deviating group(a, &) = E, then at most one Gf as in the cooperative case, where the utility went to the entire team.
anda can bek-optimal. Anexclusivity relation sefor k-optimality, The notatiorg; anday; refers to thé™ agent’s action and the ac-

& € P(I), is a collection of such relations that limit&(l, K)I, tions of the grous with i removed, respectively. We referaas a

the number of JAs that can lieoptimal in a reward-independent  joint action (JA), with the understanding that it is composed of ac-
setting (otherwise every JA could potentially lbeptimal). In par- tions motivated by individual utilities. Let théew of thei agent

ticular, the se€y defines arexclusivity graph i where each node in a noncooperative setting to B&i) = Us, Si. The deviating
corresponds uniquely to one of @l possible JAs. Edges are de- group with respect t& is: Dg(a,8) = {i € G : a # &}. As-
fined between pairs of JAg andd, if D(a,d) € &. The size of suming every player has a unique optimal response to its context,
the maximum independent set (MIS) Hf, the largest subset of  then if a* is a pure-strategy Nash equilibrium, ad¢*,a) = 1,
nodes such that no pair defines an edge, gives an upper bound oi = D(a", a), we know thatJ'(a;; an) > U'(a; a;;,;) andais not



a pure-strategy Nash equilibrium. However, applying the graph (or Algorithm 1 for Symmetric Region Packing (SRP) bound
hypergraph) structure of the game, captured by the{ggtsve get 1 & = . EUFE
exclusivity relations between JAs with distaned. as follows. L as [O%Eﬁi'lﬁ‘agk Urerveol ]

Al=1
ProposiTion 3. If @* is a pure-strategy Nash equilibriur,e A lB(e|1) = Ug.z f(& E)
Ok

2:
3:
4:
such that da*, &) > 1, and3i € I such that R (a*, &) = i, thena 5: for all b e B(a) do
6
7
8

is nota pure-strategy Nash equilibrium. E(b) — (UEegkf(b’ E)) \ (a U B(a))

Proof. We haveU'(&; &) Hi(b).addNodes(b))
) ) for all by, b, € B(b) do
= Z Ulsi (&; &s\iy) = Z Ulsi (&; a?si\i)) 9: if D(by,by) € gk then
S S | 10: Fik(b).addEdgel, by)
< D Us@as ) = ) Us @ as ) = U@ dn): 11 M, = [cliquePartitionh(b))
Sich Sich, 120 |Ad = 1A+ 1/(1 + Mp)

13: Bsre= (0')/IA

The first and last equalities are by definition. The second and third

equalities are becaus®(a*, &) = i. The inequality is becaus® =11, o, G, 1,3} T

is a pure-strategy Nri\sh equilibrium. The result is 'dqeis_”_no'g an B(000]) ={ [100], 010], 001, o1 T

optimal response ta\; and thus cannot be a Nash eqU|I|br|L._j. Z =1 B(100) [B(@10) JBO1) [B([01)
Proposition 3 states that andd cannot both be Nash equilib- (1 000] [ 10] [01] 001]

ria if 3i, Dyg(a’, &) = i, which is identical to the condition that {2}’ 110 000 011 111

prevents two JAs (in a team setting) from being 1-optimal. The 3 ’ [110] oo o11] (111

commonality is that in both the cooperative and noncooperative set- {i}é O] o1 1] oo 0

tings, agents have optimal actions for any given context, and in both | _ {134 [001] [111] [100] [111)

settings there is a notion of relevant conté4g) \ i, which can be Hy(b)

a subset of other agen( \ i}. The diference is that the views are (exclusivity D) @D D)

generated in dierent mannersV (i) = Uscgins-0S in @ cooperative subgraph)

setting, whileV(i) = Ug, Si in a noncooperative setting. Given = 1 ] ] N

the views, we can generate the exclusivity relation set in the same TETAEER 7 7 7

manner&; = Uier Urepvao)[i U F]. Given the exclusivity relation
set, we can create an exclusivity graph for a noncooperative setting Figure 6: Computation of gsgrpfor Example 1
in a fashion similar to the one in Section 4. Thus, the bound on the
number of Nash equilibria for a noncooperative graphical game is
identical to the bound on 1-optimal JAs for a cooperative DCOP, if

both share the same exclusivity relation &gt
ply &; tofindB(b) forallb € B(a) ={[100],[010],[001],[10 1]}
6. GRAPH-BASED BOUNDS where the grayed out JAs are those discarded for beifa irB(a).

As seen earlier, the graph structure expands the exclusivity rela- To ensure that the region thatlaims is disjoint from the regions
tion set fork-optimality in cooperative (DCOP) settings and Nash claimed by othek-optima,a should only claim a fraction of each
equilibria in noncooperative (graphical-game) settings. This setde-p € B(a). This can be achieved & shares each equally with
fines exclusivity grapfid whose maximum independent set (MIS)  all otherk-optima that might excludb. These additionat-optima
provides a bound for the numberlobptimal JAs (or alternatively, are contained withirB(b). However, not allb € B(b) can actu-
for the number of Nash equilibria). Finding the size of the MIS is  a|ly bek-optimal as they might exclude each other. If we construct
NP-complete in the general case [1], so we investigated heuristic 5 graphH,(b) with nodes for allb € B(b) and edges formed us-
techniques to obtain an upper bound|Ag(l, K)|. We observe that ing &, and we findM,, the size of the MIS, thea can safely
any fully-connected subset (clique) Hf can contain at most one claim '1/(1 + My) of b. \’Ne again use clique p;artitioning to safely
k-optimum. Thus, the number of cliques in any clique partitioning estimateMy. In Figure 6, forb = [0 1 0], B([0 1 ) leads to a
of Hy also provides an upper bound @&(!, k)|, where a partition- three-node, three-edge éxclusivity graHl;\([O 1 0]). By adding
ing yielding fewer cliques will provide a tighter bound. Hence, our the values bf 1(1 + My) for all b € B(a) (plus one for itself), we
first approach is the polynomial-timecique clique-partitioning obtain thata can safely claim a region of size 3, which ir,nplies
algorithm, shown in [7] to outperform several competitors. Bsre = [2%/3] = 2. Algorithm 1's runtime is polyy/nomial in the

Our second heuristic technique to find a graph-based bound isn ; o ;
. i . . - umber of possible JAs, which is a comparatively small cost for a
Algorithm 1, the Symmetric Region Packing bounfibzs which bound that applies to every possible instantiation of rewards to ac-

uses a pack!ng methgd analogous to Proposmqn 1, whereleach tions. An exhaustive search for the MISHf would be exponential
optimum claims a region of the space of all possible JAs (the nodes in this number (doubly exponential in the number of agents).
of Hy). Because these regions are constructed to be disjoint and

have identical volumes, dividing the space of all JAs by this volume

yields a bound. Figure 6 shossrp computed for 1-optima for 7. EXPERIMENTAL RESULTS

showé&, and the seB([0 0 0]). Applying the exclusivity relations
again for eaclb € B(a), and discarding JAs already includedainr

B(a), we generate a s&(b) = Ue.g, f(b, E) which contains all JAs
that potentially excludbe from beingk-optimal. In Figure 6, we ap-

Example 1. We choose an arbitrary 3A= A which we assume We performed five evaluatiorns addition to the experiment de-
to bek-optimal @ = [0 0 0] in Figure 6), around which we will  scribed in Section 2The first evaluates the impact kioptimality
construct a region claimed tay for higher values ok. For each of the three DCOP graphs from

Applying the exclusivity relations frong,, we generate a set  Figure 2(a-c), Figure 7(a-c) shows key properties for 1-, 2- and 3-
B(@) = Ugg, f(a E) wheref(a, E) yields the JA that is excluded  optima. The first column of each table sholg§ the size of the
from beingk-optimal bya andE. The first two rows of Figure 6 neighborhood containing all JAs within a distancekdfom ak-



M| avg. M‘ avg. M avg. No. of agents: 7
reward reward reward ke

1-opt.| 10 | 850 ||[1-opt.| 10 | .809 |[[1-opt.| 9 | .832
2-0pt.| 55 | 964 |||2-opt.| 55 | 961 ||[2-opt.| 45 | .977
3-opt. [175| 993 ||[3-opt.[175] 986 |||3-opt.[129] .982

(a) (b) () ‘ 0 +——
0 6 12 0 6 12 18 0 8 16 24 0 12 24 36
H . H H 4 # links ved i
Figure 7: 1-optima vs. JA sets chosen using other metrics nks remo #links removed # links removed # links removed
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Figure 8: BsrpVS. Busp for DCOP graphs from Figure 2 [N

optimal JAa, and hence of lower reward than For example, in
the joint patrol domain described in Section 2, Figure 7(a) shows R A o“lms‘ks'rism;éd' °;,*““ﬁmﬂmx
that, if agents are arranged as in the DCOP graph from Figure 2 (a)
any 1-optimal joint patrol must have a higher reward than at least 10
other joint patrols. We see thatkmcreases, thie-optimal set con-
tains JAs that each individually dominate a larger and larger neigh-
borhood. The second column shows, for each of the three graphs
the average reward of eakfoptimal JA set found over 20 problem o & 12 0 6 12 18 o 8 16 24 o 12 2 3
instances, generated by assigning rewards to the links from a uni # links removed #links removed # links removed #links removed
form random distribution. We define the reward df-aptimal JA
set as the mean reward of &lbptimal JAs that exist for a particu- : . ;
lar problem instance; each figure in the second column is therefore F'gir? 9: Comparisons OfﬁSRPVS-ﬁkHiZ
a mean of means. Aswas increased, leading to a larger neighbor- 6 agents 0 agents
hood of dominated JAs, the average reward oktoptimal JA sets =
show a significant increase (T-tests showed the increase in average 1\
reward ak increased was significant within 5%.) RS
However ask increases, the number of possild®ptimal JAs -
decreases, and hence the next four evaluations explorefté® e e Sy T ; T
tiveness of the dierent bounds on the numberlebptima. For the finks removed [inks removed finks removed finks remored
three DCOP graphs shown in Figure 2, Figure 8 provides a concrete [—Pusr Borr - --- Breugue |
demonstration of the gains in resource allocation due to the tighter Figure 10: Comparisons 0f8srpa Brs e, BecLioue
bounds made possible with graph-based analysis. xTagis in
Figure 8 shows, and they axis shows th@,sp andBsgrp bounds
on Fhe number ok-optima that can exist. Tolundersta}nd the |mp||j very dense graphgsre provides significant gains for the vast ma-
cations of these results on resource allocation, consMerapatroIhngiority of cases. For example, for the graph with 10 agents, and
problem where the constraints between agents are shown in the 10z

. 24 links removed, and a fixeld = 1, Bysp implies that we must
agent DCOP graph from Figure 2(a), and all agents consume one__ . :
. equip the agents with 512 resources to ensure that all resources are
unit of fuel for each JA taken. Suppose tkat 2 has been chosen, quip 9

) i not exhausted before all 1-optimal actions are executed. However,
and so at runtime, the agents will use MGM-2 [9], repeatedly, to b

. . Bsreindicates a that a 15-fold reduction to 34 resources will suf-
find and execute a se_t O.f 2-optimal JAs. We must allocate er]oughﬁce’ yielding a savings of 478 due to the use of graph structure
fuel to the agents priori so they can execute up to all possible

. . . when computing bounds.

2-optimal JAs. Figure 8(a) shows thatdifisp is used, the agents A fourthpexpegriment comparehsp andgBsreto the bound ob-
would be loaded with 93 units of fuel to ensure enough for all 2- __. ;
optimal JAs. HoweverBsgp reveals that only 18 units of fuel are tained by applying Evique, Sretique 10 DCOP graphs from the

ptm . SRP . y previous experiment. Selected results are shown in Figure 10 for
suficient, a five-fold savings. (For clarity we note that on all three graphs of 8 and 9 agents. Whiecy,que is marginally better for
grz_irphs, btoth bt(.)un”ds.are 1t'WHteEFtIL a’?d 2 Wthe? -3 ﬁ kt< I'z k = 1, Bsrphas clear gains fdt = 4. Identifying the relative #ec-

0 systematically investigate the 1mpact of graph SIucture on o negs of various algorithms that exploit our exclusivity relation

bounds, we generated a large number of DCOP graphs of varying o< is clearly an area for future work
size and density. We started with complete binary graphs (aI_I pairs Finally, Figure 11 compares the constant-time-computable graph-
of agents are connected) where each noo!e (agent) had a unique IDmdependent bounds from Section 3, in particular, showing the im-
Edges were re(piate(zjlyhrerlnoved accorglnghto ahe followw;]g two- provement of3uy over min(By, Bs, Bp} for selected odd values of
step process: (1) Find the lowest-ID node that has more than one; . : ST )
incident edge. (2) If such a node exists, find the lowest-ID node k, given three possible actions for each agant{ 3). The x

that shares an edge with it, and remove this edge. Figure 9 showsaxis showsl, the number of agents and theaxis show s 100
the Busp and Bsre bounds fork-optima fork € {1,2,3,4} and (miniBu, s, e} = Bun)/ MiniBu, Bs, fp). For odd values o > 1,

| € {7.8,9,10}. For each of the 16 plots shown, thexis shows asl increasedByy provided a tighter bound on the numberkef

8 agents 9 agents

=

the bounds and theaxis shows the number of links removed from
the graph according to the above method. Whiler < Bsrpfor
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optima. The most improvement was foe 3; asl increasedBuy
gave a bound 50% tighter than the others,

8. RELATED WORK AND CONCLUSION

This paper provides a theoretical complement to the experimen-
tal analysis of local minima (1-optima) and landscapes in central-
ized constraint satisfaction problems (CSPs) [19] as well as incom-
plete DCOP algorithms [20, 9]. In contrast, we provide catego-
rization and theoretical justification féroptimality, bounds on the
number ok-optima (both graph-independent and dependent), algo-
rithms to compute graph-based bounds, and experimental analysis
We note thak-optimality can also apply to centralized constraint
reasoning as a measure of the relative quality and diversity of so-
lutions in a set. However, examining properties of solutions that
arise from coordinated value changes of small groups of variables
is especially useful in distributed settings, given the computational
and communication expense of large-scale coordination.

Our research on boundirigoptimal solution sets for DCOPs is
related to estimating numbers of local optima in centralized local
search and evolutionary computing [2, 18]. The keffedlence is
in the exploitation of constraint graph structure, not harnessed in
previous work, to bound the number of optima.

Given that counting the number of Nash equilibria in a game
with known paydfs is #°-hard [3], bounds have been investigated
for particular types of games [11]. Graph structure is utilized in
algorithms to expedite finding Nash equilibria for a given graphi-
cal game with known payffs [6]. However, finding tight bounds
on Nash equilibria over all possible games on a given graph (i.e.,
reward-independent bounds) remained an open problem.

In summary, in this paper, (1) we have introdudedptimality
as a metric that captures diversity and relative quality, properties
desirable for evaluating sets of DCOP assignments, where each as
signment represents a JA to be considered or executed. Finding
bounds ork-optimal JA sets is useful for resource allocation prob-

Acquisition Services Division, under Contract No. NBCHD030010.

10. REFERENCES

[1] N. Alon and N. Kahale. Approximating the independence

number via the theta-functioMathematical Programming

80:253-264, 1998.

R. Caruana and M. Mullin. Estimating the number of local

minima in complex search spacesIJdCAl Workshop on

Optimization 1999.

V. Conitzer and T. Sandholm. Complexity results about Nash

equilibria. InIJCAI, 2003.

J. Cox, E. Durfee, and T. Bartold. A distributed framework

for solving the multiagent plan coordination problem. In

AAMAS 2005.

S. Fitzpatrick and L. Meertens. Distributed coordination

through anarchic optimization. In V. Lesser, C. L. Ortiz, and

M. Tambe, editorsDistributed Sensor Networks: A

Multiagent Perspectivepages 257—-295. Kluwer, 2003.

6] M. Kearns, M. Littman, and S. Singh. Graphical models for
game theory. IProc. UAI 2001.

*[7] J. T. Kim and D. R. Shin. NewfBcient clique partitioning
algorithms for register-transfer synthesis of data paths.
Journal of the Korean Phys. S0d0(4):754-758, 2002.

[8] S.Lingand C. XingCoding Theory: A First Course
Cambridge U. Press, 2004.

[9] R. T. Maheswaran, J. P. Pearce, and M. Tambe. Distributed
algorithms for DCOP: A graphical-game-based approach. In
PDCS 2004.

[10] R. Mailler and V. Lesser. Solving distributed constraint
optimization problems using cooperative mediation. In
AAMAS 2004.

[11] A. McLennan and I. Park. Generic 4 x 4 two person games
have at most 15 Nash equilibri@ames and Economic
Behavior 26(1):111-130, 1999.

[12] P.J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt:
Asynchronous distributed constraint optimization with
quality guaranteegrtificial Intelligence 161(1-2):149-180,

2005.

[13] A. Petcu and B. Faltings. A scalable method for multiagent
constraint optimization. IhJCAI, 2005.

f14] S. Ruan, C. Meirina, F. Yu, K. R. Pattipati, and R. L. Popp.
Patrolling in a stochastic environment.160th Intl.

Command and Control Research Syn2005.

(2]

(3]
(4]

(5]

lems associated with executing JA sets in sequence or presenting §15] N. Schurr, J. Marecki, P. Scerri, J. Lewis, and M. Tambe. The

JA set as a set of options. (2) We discover a correspondence to cod-

ing theory that yields boungh;, 8s, andBp, independent of reward
and graph structure and (3) introduce a tighter bggwg for odd

k, all of which are computable in constant time. We introduced (4)
a method to exploit DCOP graph structure to obtain tighter reward-
independent bounds on the numbeikadptima that can exist. (5)

We also show that our method extends to noncooperative settings,
as our bound for 1-optima in a DCOP can be used as a bound on
the number of pure-strategy Nash equilibria in a graphical game of
arbitary payds. Finally, (6) we develop techniques for computing
bounds gsrr BrcLique) Using the graph-based exclusivity relation
sets and (7) illustrate their utility on a diverse collection of graphs.

9. ACKNOWLEDGMENTS

Thanks to Gal Kaminka, Pragnesh Jay Modi, Praveen Paruchuri,
and Paul Scerri for their helpful comments. This material is based

upon work supported by the Defense Advanced Research Projects

Agency (DARPA), through the Department of the Interior, NBC,

DEFACTO system: Training tool for incident commanders.

In IAAI, 2005.

[16] A. Tate, J. Dalton, and J. Levine. Generation of multiple
qualitatively diferent plan options. IRroc. AIPS 1998.

[17] N. Vlassis, R. Elhorst, and J. R. Kok. Anytime algorithms for

multiagent decision making using coordination graphs. In

Proc. Intl. Conf. on Systems, Man and Cyberneta4.

D. Whitley, S. Rana, and R. B. Heckendorn. Representation

issues in neighborhood search and evolutionary algorithms.

In D. Quagliarella, et al., editoGenetic Algs. and Evolution

Strategies in Eng. and Comp. Sg@ages 39-57. Wiley, 1998.

M. Yokoo. How adding more constraints makes a problem

easier for hill-climbing algorithms: Analyzing landscapes of

CSPs. Inint’l Conf. on Constraint Programmindg.997.

[20] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. An analysis

and application of distributed constraint satisfaction and

optimization algorithms in sensor networks AAMAS

2003.

(18]

[19]



