
A short-term plan for
Redis

@antirez - Pivotal

Thursday, October 17, 13

Redis is made of pieces

Replication

API
Cluster

Pub/Sub

Sentinel
Networking

Scripting CLI

Transactions

Persistence

Storage

Thursday, October 17, 13

Evolution

• Redis can be analyzed as separated
components. Most of them are modular.

• Evolution: adding or removing components.

• Evolution: altering existing components.

Thursday, October 17, 13

Mem storage

• It organizes data into memory.

• Files: dict.c, ziplist.c, zipmap.c,
adlist.c, intset.c, skiplist
implementation.

• Effects: memory usage, cache locality, API

• Last changes: Redis object embedded string.

What it is.

Thursday, October 17, 13

Mem storage

• Unrolled linked lists.

• Compressed Redis objects (Hi HTML!).

• Key space iterator (Hi Pieter!).

Possible evolution.

Thursday, October 17, 13

Persistence

• Dumps and loads RDB / AOF data on disk.

• Files: rdb.c, aof.c.

• Effects: durability, replication, startup speed,
on-disk space efficiency.

• Last changes: COW memory reporting,
CRC64, verbatim zipped values...

What it is.

Thursday, October 17, 13

Persistence

• AOF and RDB format
(not scope!) unification.

• Gain: Faster AOF
rewrites and reloads,
One format is better
than two.

• dump.rdb, aof.rdb

Possible evolution.

RDB preamble

AOF data

Thursday, October 17, 13

Replication

• Asynchronous replication, finally able to
incrementally resynchronize.

• Files: replication.c.

• Effects: durability, memory usage,
availability, consistency.

• Last changes: PSYNC, Slave ACKs, deny
writes when sensing less than N slaves.

What it is.

Thursday, October 17, 13

Replication

• Synchronous replication.

• Gain: Consistency, a cluster nearest to a
CP system.

Possible evolution.

C S

MULTI
MINREPLICAS 3
SET FOO BAR

EXEC

Thursday, October 17, 13

Replication

• SYNC via AOF.

• In theory, you could avoid to create the
RDB, and feed the AOF file if enabled.

• Discard reason: AOF rewrite requires to
dump anyway. Systems that can’t cope with
slaves? This is the symptom not the illness.

• Also: PSYNC makes full resyncs less likely.

Discarded evolution

Thursday, October 17, 13

Transactions

• Isolated execution of a group of commands.

• Files: multi.c.

• Effects: API, persistence, replication,
scripting.

• Last changes: Refactoring only.

What it is.

Thursday, October 17, 13

Transactions

• Remove MULTI/EXEC since there is
scripting.

• Discard reason: transactions are
composable, don’t need to be fast (only
linearizability, no serializability), good API
building block for new features.

• There are a total of 19 commits on multi.c.

Discarded evolution.

Thursday, October 17, 13

Pub/Sub

• Fire and forget style Publish / Subscribe.

• Used for notification of internal events.

• Files: pubsub.c,notify.c.

• Effects: Events API, external tools bus,
messages reliability.

• Last changes: Pub/Sub in Redis Cluster,
Notification API.

What it is.

Thursday, October 17, 13

Pub/Sub

• HPUBLISH chan msg history_len

• Snowflake-alike unique IDs for every
message.

• API to subscribe & get history.

• Gain: Reliable Pub/Sub.

Possible evolution.

API IS JUST AN EXAMPLE :-)

Thursday, October 17, 13

Cluster

• Automatic partitioning and failover.

• Files: cluster.c.

• Effects: Consistency, Resharding speed,
Usefulness.

• Last changes: Complete implementation.
Use of proper algorithms.

What it is.

Thursday, October 17, 13

Cluster

• Non blocking MIGRATE.

• Semi-automatic resharding (currently it is
assisted by redis-trib for every key
moved).

• Gain: Faster reshardings with less impact on
latency / availability.

Possible evolution #1.

Thursday, October 17, 13

Cluster

• Redis Cluster as an highly available AP
store? (as an optional mode).

• The design is compatible with this idea.

• Type-based merge semantics.

• Gain: Ability to serve different use cases
where availability is the first concern but
values are small.

Possible evolution #2.

Thursday, October 17, 13

API

• The set of exported commands.

• Short term plan: avoid bloating it, no new
data types or command if not very general.

• Except for the iterator.

• Scripting is helping a lot (big adoption!).

What it is.

Thursday, October 17, 13

Scripting

• Server side execution of Lua scripts.

• Files: cluster.c.

• Effects: Speed, Applicability.

• Last changes: Replication of EVALSHA
when possible.

What it is.

Thursday, October 17, 13

Scripting

• Speed!

• Currently we dispatch Redis calls from Lua
via the normal command execution path.

• What we can do: write direct
implementations of notable commands.

• Gain: Reduce the execution time of scripts.

Possible evolution.

Thursday, October 17, 13

CLI

• redis-cli command, basically.

• Files: redis-cli.c.

• Effects: User experience, observability,
debugging.

• Last changes: --stat, --bigkeys, --pipe, --
latency-history.

What it is.

Thursday, October 17, 13

CLI

• Better way to test scripts: multi line
editing, call scripts by name, ...

• Commands expansion. Example:
TYPE `RANDOMKEY`

• Better Redis Cluster support.

• Simplify working with many instances.

Possible evolution.

Thursday, October 17, 13

Stats and reporting

• INFO, Slow log, Watchdog, MONITOR.

• Files: replication.c, slowlog.c,
debug.c, redis.c.

• Effects: Observability, debugging,
monitoring.

• Last changes: None important recently.

What it is.

Thursday, October 17, 13

INFO

• INFO is pretty bad: requires parsing, is
slow. We need backward compatible
changes :-(

• Proposal: tree alike properties.

Possible evolution

INFO memory.used # get single field

INFO replication.slave.0.lag

INFO memory # today output

Thursday, October 17, 13

Redis Doctor?
• Check latency of many operations.

• Store metrics as time series.

• Be able to tell the user if there are
problems.

• redis> DOCTOR
Probably disk is too slow:
45 recently delayed fsync()
RDB saving time 2 mb/sec

Possible evolution

Thursday, October 17, 13

Sentinel

• Automatic failover and monitoring.

• Files: sentinel.c.

• Effects: Availability, durability.

• Last changes: Beta implementation.

What it is.

Thursday, October 17, 13

Sentinel

• Sentinel is here to stay, but needs changes.

• Use Redis Cluster algorithms (versioned
changes).

• Use persistent state like Redis Cluster.

• Or... just use Redis Cluster itself? Only
enabling monitoring and failover.

Possible evolutions.

Thursday, October 17, 13

Thanks!

• Ask any question, there are no stupid ones.

• What changes you like most, what do you
think is a bad idea?

• What changes do you propose?

for your attention

Thursday, October 17, 13

