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Abstract

We report some group divisible designs with block size five, including
types 6'° and 10'®. As a consequence we are able to extend significantly
the known spectrum for 5-GDDs of type g"“.

1 Introduction
For the purpose of this paper, a group divisible design, K-GDD, of type ¢ g5* . .. g
is an ordered triple (V, G, B) such that:

(i) V is a base set of cardinality uyg; + uags + - - + urgs;
(ii) G is a partition of V into wu; subsets of cardinality ¢;, i« = 1,2,...,r, called
groups;
(iii) B is a non-empty collection of subsets of V' with cardinalities k € K, called
blocks; and
(iv) each pair of elements from distinct groups occurs in precisely one block but no
pair of elements from the same group occurs in any block.

We abbreviate {k}-GDD to k-GDD, and a k-GDD of type ¢* is also called a transver-
sal design, TD(k,q). A pairwise balanced design, (v, K,1)-PBD, is a K-GDD of
type 1°.

A parallel class in a group divisible design is a subset of the block set that parti-
tions the base set. A k-GDD is called resolvable, and is denoted by k-RGDD, if the
entire set of blocks can be partitioned into parallel classes. If there exist k£ mutually
orthogonal Latin squares (MOLS) of side ¢, then there exists a (k + 2)-GDD of type
¢"? and a (k+1)-RGDD of type ¢"!, [4, Theorem I11.3.18]. Furthermore, as is well
known, there exist ¢ — 1 MOLS of side ¢ whenever ¢ is a prime power.
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Because of their widespread use in design theory, especially in the construction of
infinite classes of combinatorial designs by means of the technique known as Wilson’s
Fundamental Construction, [17], [I3| Theorem IV.2.5], group divisible designs are
useful and important structures. The existence spectrum problem for group divisible
designs with constant block sizes, k-GDDs, k > 3, appears to be a long way from
being completely solved. Nevertheless, for k£ € {3,4,5} where all the groups have
the same size, considerable progress has been made.

The necessary conditions for the existence of k-GDDs of type ¢g*, namely

u > k,
glu—1) = 0 (mod k —1), (1)
G*u(u—1) = 0 (mod k(k — 1)),

are known to be sufficient for £ = 3, [14], [9, Theorem IV.4.1], and for k& = 4 except
for types 2% and 6%, [7], [9, Theorem IV.4.6]. For 5-GDDs of type g%, a partial
solution to the design spectrum problem has been achieved, [1I, 2, 5, [6, [9, 10, 1T, 14,
15), [16], 18], and for future reference, we quote the main result concerning 5-GDDs in
the important paper of Wei and Ge, [16], which represents a considerable advance
on [9, Theorem IV.4.16] in the Colbourn-Dinitz Handbook.

Theorem 1.1 (Wei, Ge, 2014) The necessary conditions () for the existence of
a 5-GDD of type g* are sufficient except for types 2°, 211, 35, 6°, and except possibly
for:

g =3 and u € {45,65};

g =2 and u € {15,35,71,75,95, 111, 115, 195, 215}
g =6 and u € {15,35,75,95};

g € {14,18,22,26} and u € {11,15,71,111,115};

g € {34,46,62} and u € {11,15};

g € {38,58} and u € {11,15,71,111};

g =2a, ged(a,30) =1, 33 < o <2443, and u = 15;
g =10 and u € {5,7,15,23,27,33,35,39,47},

g =30 and u = 15;

g =50 and u € {15,23,27};

g =90 and u = 23;

g =10a, a € {7,11,13,17,35,55,77,85,91, 119, 143, 187, 221} and u = 23.

Proof: This is Theorem 2.25 of [16]. O

The objective of this paper is to prove Theorem [[2] below, which improves
Theorem [T by eliminating many possible exceptions.

Theorem 1.2 The necessary conditions () for the ezistence of a 5-GDD of type g
are sufficient except for types 2°, 211, 3%, 65, and except possibly for:
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g =3 and u = 65;

g =2 and u € {15,75,95,115};

g =06 and u € {35,95};

g€ {14,18,22,26,38,58} and u € {11,15};
g € {74,82,86,94} and u = 15;

g =10 and u € {5,7,27,39,47};

g =50 and u = 27.

2 GDDs with block size 5 and type g“

We begin with some directly constructed group divisible designs.

Theorem 2.1 There exist 5-GDDs of types 23°, 271, 2111 345 615 105 102 and
1033,

Proof: For 2%, 2™ and 10?3 see [8, Lemma 4.1].

2111 With the point set {0,1,...,221} partitioned into residue classes modulo 111
for {0,1,...,221}, the design is generated from

{137,73,211,182,50}, {138, 74,212, 183,51}, {148,201, 185,107,206},

{149,202, 186, 108, 207}, {202, 148, 11, 152, 191}, {203, 149, 12, 153, 192},

{119, 166, 168, 153, 212}, {120, 167, 169, 154, 213}, {123,106, 46, 71, 188},
{124,107,47,72,189}, {84, 132,77,65, 156}, {0, 3,12,122, 136},

{0,8,38,126, 154}, {0,7,83, 156,219}, {0, 10, 32,101, 102},

{0,27,55,75,182}, {0,33,51,57,108}, {0, 1,107, 121,204},

{0,79,119, 151,189}, {1,9, 31,97, 123}, {0, 6, 26, 62, 159},

{0,9,71,127,195}

by the mapping: x — x + 25 (mod 222), 0 < j < 111.

345 With the point set {0, 1,...,134} partitioned into residue classes modulo 44 for
{0,1,...,131}, and {132,133, 134}, the design is generated from

{121, 84,8, 48,108}, {82,9, 79,86, 124}, {133, 30, 56, 57, 35},

{131, 80,60, 9,37}, {95,70,122,60,91}, {0,2,8,30,49},

{0,3,18,85,115}, {0,12,75,77,86}, {0, 14,53, 78,93},

{0,16,45,50,119}, {0,9,43,84,95}, {0,7,23,83,131},

{1,7,19, 33,97}, {0, 33,66,99, 134}

by the mapping: x — x + 25 (mod 132) for z < 132, x — (x + j (mod 2)) + 132 for
132 <z <134, 134 — 134, 0 < j < 66 for the first 13 blocks, 0 < 7 < 33 for the last
block.
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6'° With the point set {0, 1,...,89} partitioned into residue classes modulo 15 for
{0,1,...,89}, the design is generated from

{80,41,45,18,25}, {0,1,41,67,88}, {0,21,29,63, 73},

{0,14, 39, 40,71}, {0, 5,34, 81,83}, {0,4,13,16,84},

{0,8,32,52,85}, {0,11,17,42,79}, {0, 18, 36, 54, 72},

{1,19,37,55,73}

by the mapping: z +— z+2j (mod 90), 0 < j < 45 for the first eight blocks, 0 < j < 9
for the last two blocks.

10'® With the point set {0,1,...,149} partitioned into residue classes modulo 15
for {0,1,...,149}, the design is generated from

{101,21,43,132,59}, {12, 85,61, 88,129}, {29, 9, 85,93, 147},

{141, 39, 26, 48, 88}, {7,76,86,25,110}, {0,1,12,108, 137},

{0,14, 32,111,145}, {0,17,57,63,67}, {0, 16,84, 107, 143},

{0,2,21,102,146}, {0,8,86,95,112}, {0,7, 35, 36,130},

{0,11,37,58,109}, {0, 3,5,70,122}

by the mapping: = +— z + 25 (mod 150), 0 < j < 75.

103% With the point set {0,1,...,329} partitioned into residue classes modulo 33
for {0,1,...,329}, the design is generated from

{102, 84,56, 8,268}, {145, 251,217,214, 137}, {57,303, 73,97, 184},

{304, 149, 216, 134, 104}, {203,229, 88,107,278}, {170, 150, 53, 139, 229},

{300,246, 79, 41,278}, {108,129, 65, 133,48}, {0, 13,120, 193, 222},
{0,7,42,65,214}, {0, 1, 148, 153, 162}, {0, 27, 63,110, 201},

{0,10, 62,136,197}, {0,2,55,105, 144}, {0, 6,57, 98,202},

{0,12,56, 151, 229}

by the mapping: = — x + j (mod 330), 0 < j < 330. O

For our proof of Theorem [[.2] we require some definitions and constructions.

A double group divisible design, k-DGDD, is an ordered quadruple (V,G,H, B)
such that:

(i) V is a base set of points;
(ii) G is a partition of V', the groups;
(iii) # is another partition of V, the holes;
(iv) B is a non-empty collection of subsets of V' of cardinality k, the blocks;
)

(v) for each block B € B, each group G € G and each hole H € H, we have
|IBNG|<1land|BNH|<I;
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(vi) each pair of elements of V' not in the same group and not in the same hole
occurs in precisely one block.

A kE-DGDD of type

(gh hivy“ (927 hél))uQ s (gm hg))uz gi = whi7 L= 17 27 s T
is a double group divisible design where:

(i) there are u; groups of size g;, 1 =1, 2, ..., r;
(ii) there are w holes;

(iii) fori =1, 2, ..., r, each group of size g; intersects each hole in h; points.

A modified group divisible design, k-MGDD, of type g* is a k-DGDD of type (g, 19)".
By interchanging groups and holes we see that a k-MGDD of type g exists if and
only if a k-MGDD of type u¢ exists. See [I] for an extensive treatment of 5-MGDDs.

ul U2

Lemma 2.1 Suppose there exists a 5-GDD of type g\ g5 ... gi™. Then for any pos-
itive integer h ¢ {2,3,6,10}, there exists a 5-GDD of type (g1h)* (g2h)"2 ... (g h)"".

Proof: Inflate each point of the 5-GDD by a factor of h and replace the blocks with
5-GDDs of type h°. By Theorem [[1] there exists a 5-GDD of type h® for h > 1,
h ¢ {2,3,6,10}. O

uy U2

Lemma 2.2 Suppose there exists a K-GDD of type gi'g5*...¢g'", and let w be a
positive integer. Suppose also that for each k € K, there exists a 5-MGDD of type
w®, and for i = 1,2,...,r, there exists a 5-GDD of type g*. Then there exists a
5-GDD of type (u1g1 + uago + -+ - + u,g,)".

Proof: This is a combination of Constructions 2.19 and 2.20 in [I6], and it also
appears (for block size 4) as Constructions 1.8 and 1.10 in [12].

Take the K-GDD and inflate each point by a factor of w. Replace each inflated block
by a 5-MGDD of type w*, k € K to obtain a 5-DGDD of type

(wgr, 97')" (g2, 95)" - - - (g, 9,°)"" -
Then overlay the holes of this 5>-DGDD with 5-GDDs of types ¢/, i =1,2,...,r. O

We can now prove our main result.

Proof of Theorem [I.2]
For types 2%, 271 2111 345 615 1015 10% and 1033, see Theorem 211

For types 219 and 2215 take a 5-GDD of type 68°48! or 68588", [15] (alternatively,
see [B, Theorem 2.1] or [9, Theorem 1V.4.17]), and adjoin two extra points. Overlay
each group together with the new points with a 5-GDD of type 2% or 23° or 2%°, as
appropriate.
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For type 67°, take a 5-GDD of type 90° and overlay the groups with 5-GDDs of
type 61°.

For type ¢*, g € {14,18,22,26,38,58}, t € {71,111}, use Lemma 2.1] with type
2™ or 2" and h = g/2.

For type ¢''5, g € {14,18,22,26}, construct a 5-GDD of type (59)* using
Lemma 2] with a 5-GDD of type 10?® and h = ¢/2; then replace each group with a
5-GDD of type g°.

For types 10%°, 30 and 50'°, use Lemma 2.1 with a 5-GDD of type 2% or 6!° or
10'°, as appropriate, and h = 5.

For type (10a)?, odd o > 5, use Lemma 2] with a 5-GDD of type 10?3 and
h = a.

For type ¢g'!, g € {34,46,62} and ¢'°, g = 2, ged(,30) =1, a > 33, let

G = {34,46,62} U {even g>66: ged (g,:&o) - 1}
\ {74,82,86,94,98, 106, 118, 178}.

For g € G, there exists a (g+1,{5,7,9},1)-PBD, [3, Table IV.3.23]. Take this PBD,
remove a point and the blocks containing it to get a {5,7,9}-GDD of type 496°8¢ for
some non-negative integers a, b, ¢ satisfying 4a + 6b + 8¢ = g. Now use Lemma
with this {5,7,9}-GDD and w = 11 or 15 to obtain 5-GDDs of types g'' and ¢'° for
every g € G. For the existence of 5-MGDDs of types w®, w” and w?, see [1]. For the
existence of 5-GDDs of types 4%, 6* and 8, see Theorems [LT] and 2.1

For type 98!° take a TD(9,11), fill in the groups with blocks of size 11 and
remove a point together with the blocks containing it to get a {9, 11}-GDD of type
8110, Now use Lemma 2.2 with this {9,11}-GDD and w = 15 to obtain a 5-GDD
of type 98'°. For the existence of 5-MGDDs of types 15 and 15!, see [1]. For the
existence of 5-GDDs of types 8'° and 10'°, see Theorems [T and .11

For types 106'°, 11815 and 178", we refer the reader to Lemma 3.16 of [11], which
proves that there exists a 5-GDD of type h'! for h = 2 (mod 4), h > 66. By [I1]
Theorem 1.3], there exists a 4-frame of type 6%, i.e. a 4-GDD (V, G, B) of type 6
in which the block set can be partitioned into into 30 partial parallel classes of size
21 each of which partitions V' \ G for some G € G. Also we have the 5-GDD of
type 6'° from Theorem 2.1] as well as 5-GDDs of type h'® for h = 0 (mod 4) from
Theorem [[Jl Then, by a straightforward adaptation of the proof of [11, Lemma
3.16], we obtain 5-GDDs of type g'° for g € {6n,6n +4,...,8n — 2} whenever there
exists a TD(15,n) with odd n. This interval contains 106 and 118 when n = 17, and
178 when n = 23. ([l

3 GDDs with block size 5 and type g“m!

Assuming they might be of some use for future research, we collect together an
assortment of directly constructed 5-GDDs of type g“m! that we have found during
our investigations.
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Theorem 3.1 There exist 5-GDDs of types 23610, 6'221, 720191 81041 81216t
813121 Q18191 82041 820941 12581 168241 gnd 24781

Proof: 2310 With the point set {0,1,...,81} partitioned into residue classes
modulo 36 for {0,1,...,71}, and {72,73,...,81}, the design is generated from

(21,76,30, 35,0}, {38,9,33,7,30}, {65,23,8, 15,4},

(32,79,55,30,61}, {72,63,9,64,54}, {1,35,80, 60, 34},

19,61,28, 21,65}, {6,12,28, 40,60}, {0, 14, 59, 69, 73}

by the mapping: z — x + 25 (mod 72) for x < 72, x — (z — 72+ 5j (mod 10)) + 72
for x > 72,0 < j < 36.

6122! With the point set {0,1,...,73} partitioned into residue classes modulo 12
for {0,1,...,71}, and {72, 73}, the design is generated from
(32,70,25,41, 21}, {14, 31,46, 56,0}, {9, 11,48, 39, 70},

{64, 58,60,41,63), {26,55,21,34, 54}, {57, 72, 32,47, 50},

{0,19,37, 45,51}

by the mapping: © — z + 2j (mod 72) for z < 72, 2 — (x + j (mod 2)) + 72 for
£>72,0<j <36

720191 With the point set {0,1, ..., 158} partitioned into residue classes modulo 19
for {0,1,...,132}, {133,134, ...,139}, and {140, 141, ...,158}, the design is gener-
ated from

(64,48, 14,54, 115}, {39, 2,156, 51,94}, {39,101, 24, 128, 21},
{0,4,91,98,145}, {0,1, 14,22, 147}, {0, 2,25, 30, 88},

(0,17, 48,81, 133}, {0,9,68, 122, 140}, {0, 24,97, 138, 158}

by the mapping: = — = + j (mod 133) for x < 133, x — (x 4+ j (mod 7)) + 133 for
133 <z < 140, z — (z — 140 4+ j (mod 19)) + 140 for z > 140, 0 < j < 133.

81041 With the point set {0,1,...,83} partitioned into residue classes modulo 10
for {0,1,...,79}, and {80, 81, 82,83}, the design is generated from

{56,2,24,70,3}, {80,42,19,60,57}, {14,49, 6, 30,77},

{0,2,6,31,75)

by the mapping: = +— x + j (mod 80) for x < 80, x — (z + j (mod 4)) + 80 for
2 >80,0<j < 80.

81216 With the point set {0, 1,...,111} partitioned into residue classes modulo 12
for {0,1,...,95}, and {96,97,...,111}, the design is generated from

(34, 42,100, 36,59}, {92, 89, 55,85, 36}, {88, 3,12, 66,103},

{111, 28,66, 56,1}, {43, 4,22, 48,108}, {0, 1, 14, 46, 81}
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by the mapping: =z — z + j (mod 96) for z < 96, = +— (z + j (mod 16)) + 96 for
£>96,0<j <96

813121 With the point set {0, 1,...,115} partitioned into residue classes modulo 13
for {0,1,...,103}, and {104, 105, ...,115}, the design is generated from

{52,16,14, 24,64}, {38,99, 70,95, 79}, {90, 5,0, 109, 87},

{41,103,10, 113,68}, {35,2,17,72,105}, {0,1,7,60,81}

by the mapping: x +— z+j (mod 104) for x < 104, x +— (z—104435 (mod 12))+ 104
for x > 104, 0 < j < 104.

818121 With the point set {0, 1,...,155} partitioned into residue classes modulo 18
for {0,1,...,143}, and {144, 145,...,155}, the design is generated from
{49,57,14,17,15}, {137,122,77,61, 55}, {52, 21, 14,65, 150},

{56,79,60, 23,32}, {6,84,32,11,59}, {53, 12,92, 152, 142},

{2,71,13,83,100}, {0, 10, 30,95, 149}

by the mapping: = — = + j (mod 144) for x < 144, x — (x + j (mod 12)) + 144 for
x> 144, 0 < j < 144.

82041 With the point set {0, 1,...,163} partitioned into residue classes modulo 20
for {0,1,...,159}, and {160, 161,162,163}, the design is generated from
{70,95,117,58,51}, {9, 133,124, 148,61}, {88,99, 57, 3,89},

{67,144,10,136, 14}, {13,117,94, 123,156}, {15, 66, 80, 64, 148},

{56,99, 10, 38,51}, {0, 3,58,93,160}

by the mapping: z +— x + j (mod 160) for 2 < 160, x — (z + 7 (mod 4)) + 160 for
x > 160, 0 < j < 160.

820241 With the point set {0, 1,...,183} partitioned into residue classes modulo 20
for {0,1,...,159}, and {160, 161, ...,183}, the design is generated from

{142, 54,150, 133,40}, {172, 8,137, 115, 2}, {112, 17,6, 69, 153},
{72,114,39,175,129}, {78,137,177,114, 116}, {46, 19,145,170, 108},

{89,40,179, 43,134}, {125, 52,120,42, 174}, {35, 54, 6, 36, 140}, {0, 4, 16, 125, 132}
by the mapping: x +— x+j (mod 160) for x < 160, x — (z—160+9; (mod 24))+160
for x > 160, 0 < 5 < 160.

1258 With the point set {0, 1,...,67} partitioned into residue classes modulo 5 for
{0,1,...,59}, and {60,61,...,67}, the design is generated from

{0,2,49,51,64}, {0,1,7,33,59}, {0,4,38,41,57}, {0, 18,19, 26, 32},
{0,9,13,31,62}, {0,3,6,17,65}, {0,8,22,29,60}, {0,11,42,58,61},
{1,18,22,39,55}, {1,2,30,53,66}, {0, 16,39, 43,67}, {1, 15,34, 43,61},

{0, 12,24, 36, 48}
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by the mapping: x — z + 45 (mod 60) for z < 60, z — (x + j (mod 5)) + 60 for
60 <x <65, x— (r—65+ 7 (mod 3)) + 65 for x > 65, 0 < j < 15 for the first 12
blocks; z +— x + j (mod 60) for x < 60, x — (z + j (mod 5)) + 60 for 60 < z < 65,
xz+— (x — 654 j (mod 3)) + 65 for x > 65, 0 < j < 12 for the last block.

168241 With the point set {0,1,...,151} partitioned into residue classes modulo 8
for {0,1,...,127}, and {128,129, ...,151}, the design is generated from

{62,129,95,9, 19}, {94, 11,93, 55, 146}, {18, 115,0, 15, 148},
{30,77,9,23,96}, {143, 31,22, 81,101}, {3,80, 106, 102, 135},
{40,70,3,5,97}, {0,5, 11,116, 139}

by the mapping: x +— x+j (mod 128) for x < 128, x +— (z—128+9; (mod 24))+ 128
for x > 128, 0 < j < 128.

248! With the point set {0, 1,...,175} partitioned into residue classes modulo 7
for {0,1,...,167}, and {168,169, ...,175}, the design is generated from

{135, 1,159, 70,81}, {13,63, 15, 54, 32}, {159, 28, 29, 3, 114},
{107,162, 91, 87,55}, {127,17,12, 173,104}, {115, 161, 55, 88, 155},
{90, 16,24, 120, 133}, {0, 3, 18, 47,170}

by the mapping: = — = + j (mod 168) for x < 168, x — (x + j (mod 8)) + 168 for
x > 168, 0 < j < 168. O

The existence of type 12°8! means that we can give the following update of [16]
Theorem 2.27] (also [0, Theorem 5] or [9, Theorem IV.4.17]).

Theorem 3.2 A 5-GDD of type g°m' erists whenever g = m = 0 (mod 4) and
m < 4g/3 except possibly when (g,m) = (12,4).

During the time this paper has been under review, direct constructions for many
more small 5-GDDs have been obtained, the majority of them of type g“m!' for
various g < 48. The results are recorded in Theorem [B.3] below. We save space
here by placing the details of the constructions in a separate supplement, which
is available online at http://arxiv.org/abs/2211.14124. Although the seven
types 81541 121081 1210161, 121241 12138! 16712' and 16%4' are listed in [9, Remark
IV.4.19] as known, the only existence proofs we are aware of appear in an unpublished
manuscript of J. Wang and H. Shen, Embeddings of Near Resolvable Designs with
Block Size Four; therefore we include these 5-GDDs in Theorem and, with our
constructions, in the supplement. Types 4“m! are covered by [5]; delete a point from
the block of size m + 1 of a (4du+m + 1,{5, (m + 1)*},1)-PBD.

Theorem 3.3 There exist 5-GDDs of types

14891 16091 160131 16891 172171 18091 180131 180251 184211 18891 192171 196251
110091 1100’131 1160251 ’1104211’110891 11082’91 1112’171 1154211 ’112891 ’1128291
1132171 1132371 1136251 1144211 1144411 1148291 1152171 1152371 1156251 1156451
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1160331’ 11642117 11644117 1168291’ 1168491’ 11721717 11762517 1176451’ 1184211’ 11844117
1188291’ 1192171’ 1192371’ 1192571’ 1196251’ 1196451’ 232141’ 24061, 248181, 252141’
256101’ 26061, 320111’ 32871’ 332111’ 336151’ 524251’ 528251’ 532251’ 532451’ 536451’
5404517 5442517 544451’ 616101, 88121, 810161, 810201, 814281, 81541, 815161, 815241,
815361, 816201, 817161, 818321, 820441, 821201, 821401, 822161, 822361, 823321, 824281,
82541, 825241, 826201, 827161, 828121, 9811, 9121317 91651’ 916251’ 920171’ 9202917
920371 920491 92811 1010181 102038!, 112019!, 12581, 121081, 121016!, 1210281
1211201, 121241 1212941 121381 1213981 1214321 121581 1215161, 1215281, 1215361,
1215481 1216201, 1216401, 121741, 1217241, 1217441 121881 1218981 1218481 1219321
1219521 122081 1221201 1221401, 1221601, 122241, 1222241, 1222441 1222641, 1223281,
1223481 1223681, 1224321, 1224521 122741 138171, 131211, 1312211, 1312411, 131651
1316251 132011 14861, 16620!, 16712, 1684!, 16936!, 168!, 161020!, 16028,
1619361, 1619401, 161120, 1611401, 1612121, 1612521, 161341, 1613241, 1613441, 1614361,
161781, 16'528', 16120, 16'640', 16'712, 17813, 17833, 171291, 17'229', 171249',
171651 208401, 20°40%, 201°36%, 201°40!, 2011401, 2189, 21829! 211217! 23871,
246201, 24781, 247281 248161, 24836, 24%41, 249441, 241041 2410191 9410321
241201 25851 258451 286201, 286401, 28716, 287361, 288121, 288321, 288521 28981
289481, 281041 2810941 29811 298211 326201 326401, 32741, 327241 327441 3288!
328281, 329121, 365201, 366401, 367121, 367321, 368241, 406201, 445201, 44640!, 44781,
486201, 11695 14653 gnd 458,

Proof: See http://arxiv.org/abs/2211.14124. O
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