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Abstract

An orthogonal Latin square graph is a graph whose vertices are Latin
squares of the same order, adjacency being synonymous with orthogo-
nality. We are interested in the orthogonal Latin square graph in which
each square is orthogonal to the Cayley table M of a group G and is
obtained from M by permuting columns. The structure of this graph is
completely determined by the structure of Orth(G), the orthomorphism
graph of G. The structure of Orth(G), for G = Z2 × Z4, D8, or Q8,
has been determined through computer searches only; we will present a
theoretical determination of these structures.

1 Introduction

A Latin square of order n is an n×n matrix in which each symbol from an n-element
set appears exactly once in each row and each column, and two Latin squares of the
same order are orthogonal if each ordered pair of symbols appears exactly once when
the squares are superimposed. A mutually orthogonal set of Latin squares (MOLS)
of order n is a set of Latin squares of order n, each pair of which is orthogonal,
and a set of MOLS is maximal if it is not contained in a larger set of MOLS. An
orthogonal Latin square graph is a graph whose vertices are Latin squares of the
same order, adjacency being synonymous with orthogonality. For more information
on Latin squares see [6].

An orthomorphism of a group G is a bijection θ : G → G for which the mapping
x �→ x−1θ(x) is also a bijection, and two orthomorphisms θ, φ of G are orthogonal,
written θ ⊥ φ, if the mapping x �→ θ(x)−1φ(x) is a bijection: this relation is sym-
metric. For an orthomorphism θ of G, the mapping θa, defined by x �→ θ(x)a, is
also an orthomorphism of G and, if θ and φ are orthomorphisms of G, then θ ⊥ φ
if and only if θa ⊥ φb for a, b ∈ G. Note that, if a = θ(1)−1, then θa(1) = 1: we
say that an orthomorphism θ of G is normalized if θ(1) = 1. The orthomorphism
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graph of G, Orth(G), has as vertices the normalized orthomorphisms of G, adjacency
being synonymous with orthogonality. An r-clique of Orth(G) is a set of r pairwise
orthogonal orthomorphisms in Orth(G), and the clique number of Orth(G), denoted
ω(G), is the largest r for which an r-clique of Orth(G) exists. A pairwise orthogonal
set of orthomorphisms in Orth(G) is maximal if it cannot be extended to a larger
pairwise orthogonal set of orthomorphisms in Orth(G). For more information on
orthomorphisms of groups see [9].

For a group G = {g1, . . . , gn}, the Cayley table of G is the Latin square, M , of
order n, with ijth entry gigj. For θ a mapping G → G, let Mθ denote the n × n
matrix with ijth entry giθ(gj). Then Mθ is a Latin square if and only if θ is a
bijection, and Mθ is orthogonal to M if and only if θ is an orthomorphism of G and,
if θ and φ are orthomorphisms of G, then Mθ is orthogonal to Mφ if and only if
θ ⊥ φ. If θ1, . . . , θr is an r-clique of Orth(G), then M,Mθ1 , . . . ,Mθr is a set of r + 1
MOLS: this r-clique is maximal if and only if the corresponding set of r + 1 MOLS
is maximal. We leave it to the reader to verify that the structure of the Latin square
graph whose vertices are Latin squares, obtained from M by permuting columns, is
completely determined by the structure of Orth(G).

In this paper, we are going to make extensive use of automorphisms and con-
gruences of Orth(G). A bijection A : Orth(G) → Orth(G) is an automorphism of
Orth(G) if A[θ] ⊥ A[φ] if and only if θ ⊥ φ. Known automorphisms are the transla-
tions, Tg, g ∈ G, defined by Tg[θ](x) = θ(xg)θ(g)−1; the homologies, Hf , f ∈ Aut(G),
defined by Hf [θ] = fθf−1; and the reflection, R, defined by R[θ](x) = xθ(x−1). A
bijection C : Orth(G) → Orth(G) is a congruence of Orth(G) if the neighbourhood
of θ is isomorphic to the neighbourhood of C[θ]. A known congruence, that is not
an automorphism, is the inversion, I, defined by I[θ] = θ−1. If θ ∈ Orth(G) and
φ1, . . . , φk are the orthomorphisms in Orth(G) orthogonal to θ, then φ1θ

−1, . . . , φkθ
−1

are the orthomorphisms in Orth(G) orthogonal to I[θ], and φiθ
−1 ⊥ φjθ

−1 if and only
if φi ⊥ φj. Note that I2 = R2 = 1.

The structure of Orth(G) has been theoretically determined for groups of or-
der 7 or less and for two of the abelian groups of order 8 (see Chapter 13 in [9]).
The structures of the remaining groups of order 8, Orth(Z2 × Z4), D8, the dihedral
group of order 8; and Q8, the quaternion group of order 8, have yet to be explained
theoretically.

In 1961, Johnson, Dulmage, and Mendelsohn [10] showed, via a computer search,
that |Orth(Z2 × Z4)| = 48: they found that ω(Z2 × Z4) = 2. In 1964, through
exhaustive computation, Chang, Hsiang, and Tai [4] also found that ω(Z2×Z4) = 2;
and in 1986, via a computer search, Jungnickel and Grams [11] found that the only
maximal cliques in Orth(Z2 ×Z4) are 2-cliques. The structure of Orth(Z2 ×Z4) was
determined by Evans and Perkel using Cayley (a forerunner of the computer algebra
system Magma [3]) and was reported in [7]: they found that Orth(Z2×Z4) consists of
twelve 4-cycles. In 1964, through exhaustive computation, Chang and Tai [5] found
that D8 and Q8 both have 48 normalized orthomorphisms, and ω(D8) = ω(Q8) =
1; and in 1986, via a computer search, Jungnickel and Grams [11] confirmed that
ω(D8) = ω(Q8) = 1: this was further confirmed by Evans and Perkel using Cayley
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(see [7]).

The number of orthomorphisms of Z2 × Z4, D8, and Q8, has been explained
theoretically. In 1991, Bedford [1] established a correspondence between the ortho-
morphisms of Z2 × Z2 × Z2 and Z2 × Z4, and also between the orthomorphisms of
D8 and Q8; and in 1999, Bedford and Whitaker [2] proved that all non-cyclic groups
of order eight have 48 normalized orthomorphisms.

Problem 16.48 in [9] asks for a theoretical proof that ω(D8) = 1, and Problem
16.49 in [9] asks for a theoretical proof that ω(Q8) = 1. Problem 16.70 in [9] asks
for a theoretical determination of the structure of Orth(Z2 × Z4): it is suggested
there that ideas and methods used in this determination might yield insight into the
structure of Orth(Z2×Z8) and, more generally, Orth(Z2×Zq), q = 2n. We will solve
these three problems from [9] in this paper. We will lay the ground work in Section 2.
In Section 3 we will classify the orthomorphisms in Orth(Z2×Z4): this classification
will then be used to theoretically determine the structure of Orth(Z2 × Z4). We
will use the same approach in Section 4 to theoretically determine the structure of
Orth(D8), and in Section 5 to theoretically determine the structure of Orth(Q8).

2 Some general results

The groups Z2 × Z4, D8, and Q8 can be given similar presentations with generators
p and q as follows

Z2 × Z4 = 〈p, q | p4 = q2 = 1, pq = qp〉,
D8 = 〈p, q | p4 = q2 = 1, pq = qp−1〉, and

Q8 = 〈p, q | p4 = 1, q2 = p2, pq = qp−1〉.
While the multiplicative group 〈p〉 is Z4, in what follows, we will use Z4 to denote

the additive group {0, 1, 2, 3} with the operation addition modulo 4. For G one of
Z2 × Z4, D8, or Q8, any mapping θ : G → G can be written in the form:

θ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
pαθ(i) if x = pi, i ∈ Aθ,

qpβθ(i) if x = pi, i ∈ A′
θ,

pγθ(i) if x = qpi, i ∈ Bθ,

qpδθ(i) if x = qpi, i ∈ B′
θ,

for some partitions {Aθ, A
′
θ} and {Bθ, B

′
θ} of Z4 and some mappings αθ : Aθ → Z4,

βθ : A
′
θ → Z4, γθ : Bθ → Z4, and δθ : B

′
θ → Z4. We will call αθ the 00-mapping for

θ, βθ the 01-mapping for θ, γθ the 10-mapping for θ, and δθ the 11-mapping for θ.
We will call Aθ the 00-set for θ, A′

θ the 01-set for θ, Bθ the 10-set for θ, and B′
θ the

11-set for θ. A characterization of the 00-sets, 01-sets, 10-sets, 11-sets, 00-mappings,
01-mappings, 10-mappings, and 11-mappings that correspond to orthomorphisms of
G is given next: this characterization is adapted from a characterization in [8] of
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these sets and mappings that correspond to strong complete mappings of dihedral
and quaternion groups.

Lemma 2.1 Let G be one of Z2 × Z4, D8, or Q8. Let Aθ be the 00-set, A′
θ the

01-set, Bθ the 10-set, B′
θ the 11-set, αθ the 00-mapping, βθ the 01-mapping, γθ the

10-mapping, and δθ the 11-mapping for θ : G → G.

1. θ is a bijection if and only if

(a) {αθ(i) | i ∈ Aθ} and {γθ(i) | i ∈ Bθ} partition Z4, and

(b) {βθ(i) | i ∈ A′
θ} and {δθ(i) | i ∈ B′

θ} partition Z4.

2. If θ is a bijection and G = Z2 × Z4, then θ is an orthomorphism of G if and
only if the following hold.

(a) {αθ(i)− i | i ∈ Aθ} and {δθ(i)− i | i ∈ B′
θ} partition Z4, and

(b) {βθ(i)− i | i ∈ A′
θ} and {γθ(i)− i | i ∈ Bθ} partition Z4.

3. If θ is a bijection and G = D8, then θ is an orthomorphism of G if and only if
the following hold.

(a) {αθ(i)− i | i ∈ Aθ} and {δθ(i)− i | i ∈ B′
θ} partition Z4, and

(b) {βθ(i) + i | i ∈ A′
θ} and {γθ(i) + i | i ∈ Bθ} partition Z4.

4. If θ is a bijection and G = Q8, then θ is an orthomorphism of G if and only if
the following hold.

(a) {αθ(i)− i | i ∈ Aθ} and {δθ(i)− i | i ∈ B′
θ} partition Z4, and

(b) {βθ(i) + i | i ∈ A′
θ} and {γθ(i) + i+ 2 | i ∈ Bθ} partition Z4.

Further, if θ is an orthomorphism of G, then |Aθ| = |A′
θ| = |Bθ| = |B′

θ| = 2.

Proof: This is a routine adaptation of the proof of Theorem 9 in [8]. �

We will find it useful to represent each orthomorphism of G = Z2×Z4, D8, or Q8

by an array of four tables, an α-table, a β-table, a γ-table, and a δ-table. A 2-element
subset, X = {x1, x2}, of Z4 can be converted to a 2-vector in Z4×Z4 by choosing an
ordering of the elements ofX, and so X can be converted to either (x1, x2) or (x2, x1):
it should become clear that the choice of ordering is of no relevance. By an abuse
of notation we will use X to denote both the set and the vector that X is converted
into. We will call a 2-vector in Z4 × Z4 set-like if its components are distinct, and
we will call two set-like 2-vectors in Z4×Z4 complementary if the union of their sets
of components is Z4. The array of tables representing a mapping θ : G → G is as
follows.
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θ ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aθ

Cθ

Eθ

A′
θ

Dθ

Fθ

Bθ

C ′
θ

F ′
θ

B′
θ

D′
θ

E ′
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

In this array of tables, Cθ = αθ(Aθ), Eθ = Cθ − Aθ, Dθ = βθ(A
′
θ), C

′
θ = γθ(Bθ),

D′
θ = δθ(B

′
θ), and E ′

θ = D′
θ−B′

θ. If G = Z2×Z4, then Fθ = Dθ−A′
θ and F ′

θ = C ′
θ−Bθ.

If G = D8, then Fθ = Dθ + A′
θ and F ′

θ = C ′
θ + Bθ. If G = Q8, then Fθ = Dθ + A′

θ

and F ′
θ = C ′

θ + Bθ + 	2, where 	2 = (2, 2). The table in the top-left is the α-table for
θ, the table in the top-right is the β-table for θ, the table in the bottom-left is the
γ-table for θ, and the table in the bottom-right is the δ-table for θ. It follows from
Lemma 2.1, that θ is an orthomorphism of G if and only if each vector in its array
of tables is set-like, and the pair {X,X ′} is complementary for X = Aθ, Bθ, Cθ, Dθ,
Eθ, and Fθ.

For G = Z2×Z4, D8, or Q8, there are two congruences of Orth(G) that we will use
in the construction of all elements of Orth(G); the inversion I; and the reflection R.
Their effects on θ ∈ Orth(G) are easily described in the array of tables representation
for θ: the effects do depend on the choice of G.

If G = Z2 × Z4, then for I[θ]:

θ ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aθ

Cθ

Eθ

A′
θ

Dθ

Fθ

Bθ

C ′
θ

F ′
θ

B′
θ

D′
θ

E ′
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ I[θ] ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cθ

Aθ

−Eθ

C ′
θ

Bθ

−F ′
θ

Dθ

A′
θ

−Fθ

D′
θ

B′
θ

−E ′
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and for R[θ]:

θ ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aθ

Cθ

Eθ

A′
θ

Dθ

Fθ

Bθ

C ′
θ

F ′
θ

B′
θ

D′
θ

E ′
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ R[θ] ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Aθ

Eθ

Cθ

−A′
θ

Fθ

Dθ

−B′
θ

E ′
θ

D′
θ

−Bθ

F ′
θ

C ′
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If G = D8, then for I[θ]:
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θ ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aθ

Cθ

Eθ

A′
θ

Dθ

Fθ

Bθ

C ′
θ

F ′
θ

B′
θ

D′
θ

E ′
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ I[θ] ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cθ

Aθ

−Eθ

C ′
θ

Bθ

F ′
θ

Dθ

A′
θ

Fθ

D′
θ

B′
θ

−E ′
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and for R[θ]:

θ ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aθ

Cθ

Eθ

A′
θ

Dθ

Fθ

Bθ

C ′
θ

F ′
θ

B′
θ

D′
θ

E ′
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ R[θ] ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Aθ

Eθ

Cθ

−A′
θ

Fθ

Dθ

B′
θ

E ′
θ

D′
θ

Bθ

F ′
θ

C ′
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

If G = Q8, then for I[θ]:

θ ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aθ

Cθ

Eθ

A′
θ

Dθ

Fθ

Bθ

C ′
θ

F ′
θ

B′
θ

D′
θ

E ′
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ I[θ] ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cθ

Aθ

−Eθ

C ′
θ

Bθ

F ′
θ +	2

Dθ

A′
θ

Fθ +	2

D′
θ

B′
θ

−E ′
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and for R[θ]:

θ ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aθ

Cθ

Eθ

A′
θ

Dθ

Fθ

Bθ

C ′
θ

F ′
θ

B′
θ

D′
θ

E ′
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒ R[θ] ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Aθ

Eθ

Cθ

−A′
θ

Fθ

Dθ

B′
θ +	2
E ′

θ

D′
θ

Bθ +	2
F ′
θ

C ′
θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

These congruences will prove useful in classifying orthomorphisms as well as in
determining the structure of orthomorphism graphs. We will next consider orthogo-
nality.

Lemma 2.2 Let G = Z2 × Z4, D8, or Q8, and let θ, φ ∈ Orth(G).
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1. If G = Z2 × Z4, then θ ⊥ φ if and only if

(a) {αφ(i)− αθ(i) | i ∈ Aθ ∩ Aφ},
{βφ(i)− βθ(i) | i ∈ A′

θ ∩ A′
φ},

{γφ(i)− γθ(i) | i ∈ Bθ ∩ Bφ}, and
{δφ(i)− δθ(i) | i ∈ B′

θ ∩B′
φ} partition Z4; and

(b) {βφ(i)− αθ(i) | i ∈ Aθ ∩ A′
φ},

{αφ(i)− βθ(i) | i ∈ A′
θ ∩ Aφ},

{δφ(i)− γθ(i) | i ∈ Bθ ∩ B′
φ}, and

{γφ(i)− δθ(i) | i ∈ B′
θ ∩ Bφ} partition Z4.

2. If G = D8, then θ ⊥ φ if and only if

(a) {αφ(i)− αθ(i) | i ∈ Aθ ∩ Aφ},
{βφ(i)− βθ(i) | i ∈ A′

θ ∩ A′
φ},

{γφ(i)− γθ(i) | i ∈ Bθ ∩ Bφ}, and
{δφ(i)− δθ(i) | i ∈ B′

θ ∩B′
φ} partition Z4; and

(b) {βφ(i) + αθ(i) | i ∈ Aθ ∩A′
φ},

{αφ(i) + βθ(i) | i ∈ A′
θ ∩Aφ},

{δφ(i) + γθ(i) | i ∈ Bθ ∩ B′
φ}, and

{γφ(i) + δθ(i) | i ∈ B′
θ ∩ Bφ} partition Z4.

3. If G = Q8, then θ ⊥ φ if and only if

(a) {αφ(i)− αθ(i) | i ∈ Aθ ∩ Aφ},
{βφ(i)− βθ(i) | i ∈ A′

θ ∩ A′
φ},

{γφ(i)− γθ(i) | i ∈ Bθ ∩ Bφ}, and
{δφ(i)− δθ(i) | i ∈ B′

θ ∩B′
φ} partition Z4; and

(b) {βφ(i) + αθ(i) | i ∈ Aθ ∩A′
φ},

{αφ(i) + βθ(i) + 2 | i ∈ A′
θ ∩Aφ},

{δφ(i) + γθ(i) | i ∈ Bθ ∩ B′
φ}, and

{γφ(i) + δθ(i) + 2 | i ∈ B′
θ ∩ Bφ} partition Z4.

Proof: Routine derivation from the possible values of θ(x)−1φ(x). �

The orders of the intersections Aθ ∩Aφ, etc., will prove to be important.

Lemma 2.3 Let G = Z2 × Z4, D8, or Q8, and let θ, φ ∈ Orth(G), θ ⊥ φ.

If k = |Aθ ∩ Aφ|, then k = 1 or 2, and

|Aθ ∩Aφ| = |A′
θ ∩ A′

φ| = |Bθ ∩B′
φ| = |B′

θ ∩ Bφ| = k,

and
|Aθ ∩ A′

φ| = |A′
θ ∩Aφ| = |Bθ ∩Bφ| = |B′

θ ∩ B′
φ| = 2− k.
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Proof: As 0 ∈ Aθ ∩ Aφ, k ≥ 1. As |Aθ ∩ Aφ|+ |Aθ ∩A′
φ| = 2, |Aθ ∩A′

φ| = 2− k.

Similarly |A′
θ ∩ A′

φ| = |Aθ ∩ Aφ| = k, and |A′
θ ∩ Aφ| = |Aθ ∩ A′

φ| = 2 − k; and, for
some u, |Bθ ∩Bφ| = |B′

θ ∩B′
φ| = u, and |B′

θ ∩ Bφ| = |Bθ ∩B′
φ| = 2− u.

Now |Aθ ∩Aφ|+ |A′
θ ∩A′

φ|+ |Bθ ∩Bφ|+ |B′
θ ∩B′

φ| = 4. It follows that 2k + 2u = 4.
Hence u = 2− k and the result follows. �

For G = Z2 ×Z4, D8, or Q8, if θ, φ ∈ Orth(G), θ ⊥ φ, and k = |Aθ ∩Aφ|, we will
say that θ is k-orthogonal to φ, written θ ⊥k φ. The congruences R, and I preserve
k-orthogonality.

Lemma 2.4 Let G = Z2 × Z4, D8, or Q8. If θ, φ ∈ Orth(G), then

1. θ ⊥k φ if and only if R[θ] ⊥k R[φ], and

2. θ ⊥k φ if and only if I[θ] ⊥k φθ−1.

Proof: Let θ, φ ∈ Orth(G), θ ⊥ φ. If θ′ = R[θ], then Aθ′ = −Aθ. It follows that
θ ⊥k φ if and only if R[θ] ⊥k R[φ].

If θ ⊥2 φ, then I[θ] ⊥ φθ−1 and AI[θ] = Cθ = Aφθ−1 , and so I[θ] ⊥2 φθ−1. If
I[θ] ⊥2 φθ

−1, then I[θ](φθ−1)−1 ⊥2 I[φθ
−1], i.e., φ−1 ⊥2 θφ

−1. Then I[φ−1] ⊥2 θφ
−1φ,

i.e., φ ⊥2 θ. Hence θ ⊥2 φ if and only if I[θ] ⊥2 φθ
−1. As no pair of orthomorphisms

can be both 2-orthogonal and 1-orthogonal, θ ⊥1 φ if and only if I[θ] ⊥1 φθ
−1. �

In determining the structure of orthomorphism graphs, 1-orthogonalities and 2-
orthogonalities will be dealt with separately.

3 The structure of Orth(Z2 × Z4)

In this section we will derive a classsification of orthomorphisms in Orth(Z2 × Z4).
We will then use this classification to determine the structure of Orth(Z2 × Z4).

Theorem 3.1 If θ is a mapping Z2 ×Z4 → Z2 ×Z4, then θ ∈ Orth(Z2 ×Z4) if and
only if θ can be obtained from one of the orthomorphisms θ1 and θ2 below, using the
congruences I, and/or R. Here a = ±1 and b ∈ Z4.

1. θ1 ∼ ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
0 a
0 −a

a −a
b b+ a

b− a b+ 2

a− b −a− b
2 −a

b+ a b

b b+ 2
b+ 2 b− a

2 a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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2. θ2 ∼ ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
0 a
0 −a

a −a
b b− a

b− a b

−b 2− b
2 −a

b+ 2 b+ a

b+ a b− a
b+ 2 b+ a

a 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof: It is easy to check that the array of tables representations of θ1 and θ2 satisfy
the conditions of Lemma 2.1, and so, θ1, θ2 ∈ Orth(Z2 × Z4).

Let θ ∈ Orth(Z2 × Z4) and let the α-table for θ be⎡
⎣ 0 x

0 y
0 z

⎤
⎦ ,

where z = y − x. Note that x, y, z �= 0. If x, y, z are distinct, then exactly one of x,
y, or z equals 2. If x, y, z are not distinct, then, as none of x, y, or z can be 0, x �= y
and y �= z, and so x = z �= 0 and y = 2x = 0 or 2 and, as y �= 0, it must be that
y = 2. Using I, and R we will ensure that x = 2 and y = a via a two-step algorithm.

Step 1. If y = 2, then I[θ] has α-table⎡
⎣ 0 2

0 x
0 −z

⎤
⎦ .

Step 2. If z = 2, then R[θ] has α-table⎡
⎣ 0 −x

0 2
0 y

⎤
⎦ ,

and we can apply Step 1.

Thus, we may assume that θ ∈ Orth(Z2 × Z4) has α-table⎡
⎣ 0 2

0 a
0 −a

⎤
⎦ .

The β-table for θ must then be ⎡
⎣ a −a

b c
b− a c+ a

⎤
⎦ ,
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for some b, c ∈ Z4. As c �= b, b + 2, there are two cases to consider, c = b + a and
c = b− a.

Case 1. c = b+ a.

The β-table for θ is ⎡
⎣ a −a

b b+ a
b− a b+ 2

⎤
⎦ ,

and the γ-table for θ is ⎡
⎣ x y

2 −a
2− x −a− y

⎤
⎦ ,

for some x, y ∈ Z4. Now (2−x,−a− y) = (b, b+ a) or (b+ a, b). If (2−x,−a− y) =
(b, b+a), then x = 2− b = y which is not possible. Hence (2−x,−a− y) = (b+a, b)
and the γ-table for θ is ⎡

⎣ a− b −a− b
2 −a

b+ a b

⎤
⎦ .

Similarly, we can show that the δ-table for θ is⎡
⎣ b b+ 2

b+ 2 b− a
2 a

⎤
⎦ .

This yields the array of tables representation for θ1.

Case 2. c = b− a.

The derivation of the array of tables representation for θ2 is similar to the derivation
in Case 1. �

Reversing the algorithm in the proof of Theorem 3.1 yields all orthomorphisms
in Orth(Z2 × Z4) and gives us a classification of orthomorphisms in Orth(Z2 × Z4).
In this classification every orthomorphism will belong to one of three classes, class
1, class 2, or class 3; will be of one of two types, type s, or type t; and will have
parameters (a, b), where a = ±1 and b ∈ Z4. The orthomorphisms, θ1 and θ2 in
Theorem 3.1, are in class 1; θ1 is of type s, and θ2 is of type t; and both have
parameters (a, b). The complete classification follows.

Theorem 3.2 (The classification of orthomorphisms in Orth(Z2 × Z4)) Let
θ ∈ Orth(Z2 × Z4) have parameters (a, b), a = ±1, b ∈ Z4. Then θ is one of
the following.
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Class 1, type s

θ1s ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
0 a
0 −a

a −a
b b+ a

b− a b+ 2

a− b −a− b
2 −a

b+ a b

b b+ 2
b+ 2 b− a

2 a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Class 1, type t

θ1t ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
0 a
0 −a

a −a
b b− a

b− a b

−b 2− b
2 −a

b+ 2 b+ a

b+ a b− a
b+ 2 b+ a

a 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Class 2, type s

θ2s ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a
0 2
0 a

2 −a
b b+ 2

b+ 2 b− a

2− b a− b
−a a

b+ a b

−b −a− b
−a− b a− b

−a 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Class 2, type t

θ2t ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a
0 2
0 a

2 −a
b b+ 2

b+ 2 b− a

−b −a− b
a −a

b+ a b

2− b a− b
a− b −a− b
−a 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Class 3, type s

θ3s ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a
0 −a
0 2

−a 2
b b+ a

b+ a b− a

b− a b+ 2
a 2

2− b −b

b b+ a
b− a b+ 2
−a a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Class 3, type t

θ3t ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a
0 −a
0 2

−a 2
b b+ a

b+ a b− a

b+ a b
a 2

−b 2− b

b+ 2 b− a
b− a b+ 2

a −a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof: Let θ1 and θ2 be as in Theorem 3.1. It is clear that θ1s = θ1 and θ1t = θ2

Now θ2s can be obtained from I[θ1s] by replacing b by a− b; θ2t can be obtained from
I[θ1t] by replacing b by −b; θ3s can be obtained from R[θ2s] by replacing a by −a,
and then b by b− a; and θ3t can be obtained from R[θ2t] by replacing a by −a, and
then b by b− a. �

We obtain the following as a corollary.

Corollary 3.1 |Orth(Z2 × Z4)| = 48.

Proof: It is routine to check the orthomorphisms in Theorem 3.2 are all distinct.
The result then follows from the fact that θ ∈ Orth(Z2 × Z4) is in one of 3 classes,
is of one of 2 types, and has one of 8 parameter pairs. �

In each of the arrays of tables in Theorem 3.2, five entries are shown in bold.
In each array, two entries in the second column of the α-table, and two entries in
the first column of the β-table are shown in bold: these entries determine the class
and parameters of an orthomorphism. The fifth entry shown in bold distinguishes
between types.

If θ ∈ Orth(Z2 ×Z4), then we will write θ = xy(a, b), whenever θ is in class x, of
type y, and has parameters (a, b). The actions of I and R are easily described with
the classification of the elements of Orth(Z2 × Z4) given in Theorem 3.2.
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Lemma 3.1 For elements of Orth(Z2 × Z4) in class x, of type y, with parameters
(a, b), the following hold.

1. R[1y(a, b)] = 1y(−a, b− a),

2. R[2y(a, b)] = 3y(−a, b− a),

3. R[3y(a, b)] = 2y(−a, b− a),

4. I[1y(a, b)] =

{
2s(a, a− b) if y = s,

2t(a,−b) if y = t,

5. I[2y(a, b)] =

{
1s(a, a− b) i y = s,

1t(a,−b) if y = t,

6. I[3y(a, b)] =

{
3s(−a, b− a) if y = s,

3t(−a, a + b) if y = t.

Proof: Routine. �

We see that I, and R are all type-preserving, while the precise action of I does
depend on the type.

We will next determine all orthogonalities in Orth(Z2 × Z4). We will begin by
determining the orthogonalities within class 1.

Lemma 3.2 Let θ, φ ∈ Orth(Z2 × Z4) be in class 1. Then θ ⊥ φ if and only if
θ ⊥2 φ, if and only if, without loss of generality, θ = 1s(a, b) and φ = 1t(−a,−b) for
some a = ±1 and some b ∈ Z4.

Proof: Let θ, φ ∈ Orth(Z2 × Z4) be in class 1. Clearly θ ⊥ φ if and only if θ ⊥2 φ.
Suppose that the parameters for θ are (a, b), for some a = ±1 and some b ∈ Z4:
then, as θ(0, 2) �= φ(0, 2), the parameters for φ must be (−a, c), for some c ∈ Z4.

If θ and φ are of the same type, then

β(a)− β(a) = c− d− b = β(−a)− β(−a),

where d = a if the type is s and d = −a if the type is t. Hence, by Lemma 2.2, θ
and φ cannot be orthogonal.

Thus we may assume, without loss of generality, that θ = 1s(a, b) and φ = 1t(−a, c).
In this case, we have

B′
θ = {b, b+ 2} = Bφ = {−c, 2− c}.

Therefore c = 2− b or −b. If c = 2− b, then

γ(b)− δ(b) = −a− b = γ(b+ 2)− δ(b+ 2).



A.B. EVANS/AUSTRALAS. J. COMBIN. 80 (1) (2021), 116–142 129

Hence, by Lemma 2.2, θ and φ cannot be orthogonal.

It follows that, if θ ⊥ φ, then φ = 1t(−a,−b): in this case

{αφ(i)− αθ(i) | i ∈ Aθ = Aφ} ∪ {βφ(i)− βθ(i) | i ∈ A′
θ = A′

φ}

= {0, 2} ∪ {a− 2b,−a− 2b} = Z4,

and
{γφ(i)− δθ(i) | i ∈ Bθ = B′

φ} ∪ {δφ(i)− γθ(i) | i ∈ B′
θ = Bφ}

= {−b, 2− b} ∪ {a− b,−a− b} = Z4,

from which it follows, by Lemma 2.2, that θ ⊥ φ. �

Using Lemma 3.2 and the actions of congruences, we can determine all the 2-
orthogonalities in Orth(Z2 × Z4).

Theorem 3.3 Let a = ±1. The 2-orthogonalities in Orth(Z2×Z4) are the following.

1. 1s(a, b) ⊥2 1t(−a,−b) if b ∈ Z4;

2. 2s(a, b) ⊥2 3s(a, b+ a) if b = 0, 2;

3. 2s(a, b) ⊥2 3t(a, b+ a) if b = ±a;

4. 2t(a, b) ⊥2 3t(a, b+ a) if b = 0, 2; and

5. 2t(a, b) ⊥2 3s(a, b+ a) if b = ±a.

Proof: It follows from Lemmas 3.1 and 3.2 that each orthomorphism in Orth(Z2×Z4)
is 2-orthogonal to exactly one orthomorphism in Orth(Z2 × Z4). By lemma 3.2,
1s(a, b) ⊥2 1t(−a,−b).

Applying Lemma 3.1,

I[1s(a, b)] = 2s(a, a− b) ⊥2 1t(−a,−b)1s(a, b)−1 =

{
3s(a, 2− b) if b = ±a,

3t(a, 2− b) if b = 0, 2.

Substituting a − b for b, and noting that, if b′ ∈ {±a ± b}, then b′ ∈ {a,−a} if
b ∈ {0, 2} and b′ ∈ {0, 2} if b ∈ {a,−a}, we obtain

2s(a, b) ⊥2 3s(a, b+ a) if b = 0, 2,

and
2s(a, b) ⊥2 3t(a, b+ a) if b = ±a.

Now

R[2s(a, b)] = 3s(−a, b− a) ⊥2 R[3s(a, b+ a)] = 2s(−a, b) if b = 0, 2,
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and
R[2s(a, b)] = 3s(−a, b− a) ⊥2 R3t(a, b+ a)] = 2t(−a, b) if b = ±a.

Substituting −a for a yields

2s(a, b) ⊥2 3s(a, b+ a) if b = 0, 2,

and
2t(a, b) ⊥2 3s(a, b+ a) if b = ±a.

The last 2-orthogonality can be obtained similarly, starting with 1t(a, b)⊥2 1s(−a,−b).
�

We will next determine all the 1-orthogonalities in Orth(G).

Theorem 3.4 Let a = ±1. The 1-orthogonalities in Orth(Z2×Z4) are the following.

1. 2x(a, b) ⊥1 3x(−a,−a− b) for b = 0, 2 and x = s, t,

2. 2s(a, b) ⊥1 1s(a, b+ 2) for b = ±a,

3. 2t(a, b) ⊥1 1t(−a, b− a) for b = ±a,

4. 3s(a, b) ⊥1 1s(a, b+ 2) for b = 0, 2, and

5. 3t(a, b) ⊥1 1t(−a, b− a) for b = 0, 2.

Proof: Let θ, φ ∈ Orth(Z2×Z4) be in the union of class 2 and class 3. As |A′
θ∩A′

φ| = 1,
we may assume θ to have parameters (a, b) and φ to have parameters (−a, c) for some
a = ±1 and some b, c ∈ Z4.

If θ and φ are both in class 2, then βφ(2) − βθ(2) = c − b, and so c �= b. Now
|{−b,−a − b} ∩ {−c, a − c}| = 1. We see that −c �= −b and −c �= −a − b as then
a− c = −b. Thus, a− c = −b or −a− b. Further a− c �= −b as then −c = −a− b.
Hence, a− c = −a− b, and so c = b+ 2. But then

θ(pa)−1φ(pa) = qpb+2 �= qp−b = θ(p−a)−1φ(p−a),

from which it follows that b = 0, 2. Therefore

{θ(pi)−1φ(pi) | i ∈ Z4} = {1, p2, q, qp2}.

As e, f ∈ {±a, 2± a} implies that e− f ∈ {0, 2}, inspection of the potential γ-tables
and δ-tables for θ and φ shows that

θ(qpa)−1φ(qpa) ∈ {1, p2, q, qp2},

and so θ and φ cannot be 1-orthogonal.
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If θ and φ are both in class 3 and θ ⊥1 φ, then R[θ] ⊥1 R[φ]. As R[θ] and R[φ] are
both in class 2, this is not possible, and so θ and φ cannot be 1-orthogonal.

Thus, we may assume that θ is in class 2 and φ is in class 3. Now φ(0, 2)− θ(0, 2) =
(0, c − a − b), and so c �= b + a. Now |{−b,−a − b} ∩ {c, c − a}| = 1. We see that
c �= −b as then c− a = −a − b, and c− a �= −a − b as then c = −b. If c − a = −b,
then c = a− b and

θ(p−a)−1φ(p−a) = qp−a−b = θ(pa)−1φ(pa).

It follows that c − a �= −b and, hence c = −a − b �= b + a, and so 2b �= 2, which
implies that b = 0, 2.

Thus θ = 2x(a, b) and φ = 3y(−a,−a − b) for some x, y = s, t, some a = ±1,
and some b = 0, 2. If x = s and y = t, then θ(q2−b)−1φ(qp2−b) = 1, which is not
possible. Hence θ and φ cannot be 1-orthogonal. As R[2t(a, b)] = 3t(−a, b− a) and
R[3s(−a,−a− b)] = 2s(a,−b), we can conclude that θ and φ cannot be 1-orthogonal
if x = t and y = s. Therefore x = y. The proof that 2s(a, b) ⊥1 3s(−a,−a − b),
for b = 0, 2, follows from Table 1, and the proof that 2t(a, b) ⊥1 3t(−a,−a − b), for
b = 0, 2, follows from Table 2. These are the only 1-orthogonalities within the union
of class 2 and class 3: other 1-orthogonalities can be obtained from these by using
congruences.

As 2s(a, b) ⊥1 3s(−a,−a− b) for b = 0, 2,

1s(a, a− b) = I[2s(a, b)] ⊥1 3s(−a,−a− b)2s(a, b)−1 = 2s(a,−a− b),

for b = 0, 2. Substituting −a− b for b yields 2s(a, b) ⊥1 1s(a, b+ 2) for b = ±a.

As 2t(a, b) ⊥1 3t(−a,−a− b) for b = 0, 2,

1t(a,−b) = I[2t(a, b)] ⊥1 3t(−a,−a− b)2t(a, b)−1 = 2t(−a,−a− b),

for b = 0, 2. Substituting −a−b for b and then −a for a yields 2t(a, b) ⊥1 1t(−a, b−a)
for b = ±a.

As 2s(a, b) ⊥1 1s(a, b+ 2) for b = ±a,

3s(−a, b− a) = R[2s(a, b)] ⊥1 R[1s(a, b+ 2)] = 1s(−a, b+ a),

for b = ±a. Substituting −b+a for b and then −a for a yields 3s(a, b) ⊥1 1s(a, b+2)
for b = 0, 2.

As 2t(a, b) ⊥1 1t(−a, b− a) for b = ±a,

3t(−a, b− a) = R[2t(a, b)] ⊥1 R[1t(−a, b− a)] = 1t(a, b),

for b = ±a. Substituting b+a for b and then −a for a yields 3t(a, b) ⊥1 1t(−a, b−a)
for b = 0, 2.

We will next show that there are no other 1-orthogonalities in Orth(Z2 × Z4). As
all 1-orthogonalities within the union of class 2 and class 3 have been determined,
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and as there can be no 1-orthogonalities within class 1, any excess 1-orthogonality
must be between an orthomorphism in class 1 and an orthomorphism in the union
of class 2 and class 3. Let θ1, . . . , θ16 be the orthomorphisms in class 1, and set
φi = I[θi] and εi = I[φi] for i = 1, . . . , 16. In the subgraph Γ of Orth(Z2 × Z4)
whose edges correspond to 1-orthogonalities, degree(θi) = degree(φi) = degree(εi)
for i = 1, . . . , 16, from which it follows that the average degree of a vertex of Γ in
class 1 is equal to the average degree of a vertex of Γ in the union of class 2 and
class 3. Let e be the number of edges in Γ corresponding to excess 1-orthogonalities.
Then the average degree of a vertex in class 1 is 1 + (e/16) and the average degree
of a vertex in the union of class 2 and class 3 is 1 + (e/32). Hence, e = 0 and the
result follows. �

Table 1: Proof that 2s(a, b) ⊥1 3s(−a,−a− b), a = ±1, b = 0, 2

x φ(x) θ(x) φ(x)− θ(x)
1 1 1 1
p−a pa qpb+2 qp−a−b

pa qp−a−b p2 qpa−b

p2 qp2−b qpb p2

qp−b p−a qp−a−b qpb

qpa−b p2 pa pa

qp−a−b qp−b qpa−b p−a

qp2−b qpa−b p−a qp2−b

Table 2: Proof that 2t(a, b) ⊥1 3t(−a,−a− b), a = ±1, b = 0, 2

x φ(x) θ(x) φ(x)− θ(x)
1 1 1 1
p−a pa qpb+2 qp−a−b

pa qp−a−b p2 qpa−b

p2 qp2−b qpb p2

qp2−b p−a qpa−b qpb+2

qp−a−b p2 p−a p−a

qpa−b qp−b qp−a−b pa

qp−b qpa−b pa qp−b

The structure of Orth(Z2 × Z4) is shown in Figure 1: the 2-orthogonalities are
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represented by horizontal lines, and the 1-orthogonalities are represented by vertical
lines.

� �

��

3s(−a,−a− b) 2s(−a,−b)

3s(a, b+ a)2s(a, b)

2

2
11

� �

��

3t(−a,−a − b) 2t(−a,−b)

3t(a, b+ a)2t(a, b)

2

2
11

� �

��

3s(a, b) 2t(a, b− a)

1t(−a, b+ 2)1s(a, b+ 2)

2

2
11

� �

��

3t(a, b) 2s(a, b− a)

1s(a, a− b)1t(−a, b− a)

2

2
11

Figure 1: The structure of Orth(Z2 × Z4), a = ±1, b = 0, 2

From the structure of Orth(Z2×Z4), shown in Figure 1, we can easily determine
ω(Z2 × Z4) and the maximal cliques in Orth(Z2 × Z4).

Corollary 3.2 The maximal cliques in Orth(Z2 ×Z4) are all 2-cliques, and ω(Z2 ×
Z4) = 2.

4 The structure of Orth(D8)

In this section we will construct and classify the orthomorphisms in Orth(D8) and
use this classification to prove that ω(D8) = 1.

Analogous to the classification of orthomorphisms in Orth(Z2 ×Z4), we will give
a complete classification of orthomorphisms in Orth(D8). In this classification, just
as in the classification of orthomorphisms in Orth(Z2 × Z4), every orthomorphism
will belong to one of three classes, class 1, class 2, or class 3; will be of one of two
types, type s, or type t; and will have parameters (a, b), where a = ±1 and b ∈ Z4.
We will write θ = xy(a, b), whenever θ is in class x, of type y, and has parameters
(a, b).

Theorem 4.1 (The classification of orthomorphisms in Orth(D8))
Let θ ∈ Orth(D8) have parameters (a, b), a = ±1, b ∈ Z4. Then θ is one of the
following.
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Class 1, type s

1s(a, b) ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
0 a
0 −a

a −a
b b+ a

b+ a b

b− a b+ a
−a 2

b+ 2 b− a

b b+ 2
b+ 2 b− a

2 a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Class 1, type t

1t(a, b) ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
0 a
0 −a

a −a
b b− a

b+ a b+ 2

b+ 2 b
2 −a
b b− a

b− a b+ a
b+ a b+ 2

2 a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Class 2, type s

2s(a, b) ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a
0 2
0 a

2 −a
b b+ 2

b+ 2 b+ a

b− a b
a −a
b b− a

b+ a b+ 2
b− a b+ a

2 −a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Class 2, type t

2t(a, b) ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a
0 2
0 a

2 −a
b b+ 2

b+ 2 b+ a

b+ a b+ 2
−a a
b b− a

b b− a
b− a b+ a
−a 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Class 3, type s

3s(a, b) ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a
0 −a
0 2

−a 2
b b− a

b− a b+ a

b− a b
a 2
b b+ 2

b+ a b+ 2
b+ 2 b+ a

a −a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Class 3, type t

3t(a, b) ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a
0 −a
0 2

−a 2
b b− a

b− a b+ a

b+ a b+ 2
a 2

b+ 2 b

b− a b
b+ 2 b+ a
−a a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof: Similar to the proof of Theorems 3.1 and 3.2. �

As in the classification of orthomorphisms in Orth(Z2×Z4), in each of the arrays
of tables in Theorem 3.2, five entries are shown in bold. In each array, two entries
in the second column of the α-table, and two entries in the first column of the β-
table are shown in bold: these entries determine the class and parameters of an
orthomorphism. The fifth entry shown in bold distinguishes between types.

We obtain the following as corollaries.

Corollary 4.1 |Orth(D8)| = 48.

Proof: This is the same as the proof of Corollary 3.1. �

Corollary 4.2 Let Sxy denote the set of orthomorphisms in Orth(D8), in class x
and of type y. For y = s, t, I is a bijection S1y → S2y and R is a bijection S2y → S3y.

Proof: Routine. �

Using the classification in Theorem 4.1 we can determine ω(D8).

Theorem 4.2 ω(D8) = 1.
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Proof: We will first show that there are no 2-orthogonalities in Orth(D8).

Let θ and φ be in class 1, and let θ ⊥ φ. Then θ ⊥2 φ, and θ = 1x(a, b) and
φ = 1y(−a, c) for some x, y ∈ {s, t}, some a = ±1, and some b, c ∈ Z4. If x = y = s,
then

βφ(a)− βθ(a) = c− a− b = βφ(−a)− βθ(−a)

and so θ and φ are not 2-orthogonal by Lemma 2.2. If x = y = t, then

βφ(a)− βθ(a) = c+ a− b = βφ(−a)− βθ(−a)

and so θ and φ are not 2-orthogonal by Lemma 2.2. Hence, x �= y. Without loss of
generality θ = 1s(a, b) and φ = 1t(−a, c). Now B′

θ = {b, b + 2} = {c, c + 2} = Bφ.
Therefore c = b, b+ 2. If c = b, then

δφ(b+ a) + γθ(b+ a) = b+ a = δφ(b− a) + γθ(b− a)

and so θ and φ are not 2-orthogonal. If c = b+ 2, then

γφ(b) + δθ(b) = b = γφ(b+ 2) + δθ(b+ 2)

and so θ and φ are not 2-orthogonal by Lemma 2.2. It follows from Lemma 2.4 that
there are no 2-orthogonalities in Orth(D8).

We will next show that there are no 1-orthogonalities in Orth(D8) within the union
of class 2 and class 3.

Let θ, φ be in the union of class 2 and class 3, θ ⊥1 φ. Then we may assume that
θ has parameters (a, b) and φ has parameters (−a, c), a = ±1, b, c ∈ Z4. Now
|{b, b − a} ∩ {c, c + a}| = 1. As c = b − a if and only if c + a = b, it must be that
c = b or b+ 2.

If θ, φ are both in class 3, then βφ(2) − βθ(2) = c − b + 2 �= 0 and so c = b. If
x = y = s, then

γφ(b)− γθ(b) = 0 = αφ(0)− αθ(0)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal. If x = y = t, then

γφ(b+ 2)− γθ(b+ 2) = 0 = αφ(0)− αθ(0)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal. Hence x �= y. Without loss of
generality θ = 3s(a, b) and φ = 3t(−a, b). Then

γφ(b− a)− γθ(b− a) = 2 = βφ(2)− βθ(2)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal.

If θ, φ are both in class 2, then R[θ] and R[φ] are both in class 3, and so R[θ] and
R[φ] are not 1-orthogonal and, hence, by Lemma 2.2, θ and φ are not 1-orthogonal.

Thus we may assume without loss of generality that θ = 2x(a, b) and φ = 3y(−a, c)
for some x, y = s, t, some a = ±1, and some b, c ∈ Z4. If x = t, y = s and c = b,
then

γφ(b+ a)− γθ(b+ a) = 0 = αφ(0)− αθ(0)
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and so, by Lemma 2.2, θ and φ are not 1-orthogonal. If x = t, y = s and c = b+ 2,
then

βφ(a) + αθ(a) = b = γφ(b− a) + δθ(b− a)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal. If x = s and y = t, then R[θ]
and R[φ] are not 1-orthogonal, and so θ and φ are not 1-orthogonal by Lemma 2.4.

Hence x = y. If x = y = s and c = b, then

γφ(b+ a) + δθ(b+ a) = b+ 2 = βφ(a) + αθ(a)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal.

If x = y = s and c = b+ 2, then

γφ(b+ 2) + δθ(b+ 2) = b− a = αφ(−a) + βθ(−a)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal.

If x = y = t and c = b, then

δφ(b)− δθ(b) = 0 = αφ(0)− αθ(0)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal.

If x = y = t and c = b+ 2, then

γφ(b+ a)− γθ(b+ a) = 0 = αφ(0)− αθ(0)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal.

The proof that there are no other 1-orthogonalities in Orth(D8) is the same as the
proof in Theorem 3.2 that there are no excess 1-orthogonalities between orthomor-
phisms in the union of class 2 and class 3, and orthomorphisms in class 1. The result
follows. �

5 The structure of Orth(Q8)

In this section we will construct and classify the orthomorphisms in Orth(Q8) and
use this classification to prove that ω(Q8) = 1.

Analogous to the classification of orthomorphisms in Orth(Z2×Z4) and the clas-
sification of orthomorphisms in Orth(D8), we will give a complete classification of
orthomorphisms in Orth(Q8). In this classification, just as in the classification of
orthomorphisms in Orth(Z2 × Z4), every orthomorphism will belong to one of three
classes, class 1, class 2, or class 3; will be of one of two types, type s, or type t; and
will have parameters (a, b), where a = ±1 and b ∈ Z4. We will write θ = xy(a, b),
whenever θ is in class x, of type y, and has parameters (a, b).

Theorem 5.1 (The classification of orthomorphisms in Orth(Q8)) Let θ ∈
Orth(Q8) have parameters (a, b), a = ±1, b ∈ Z4. Then θ is one of the follow-
ing.
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Class 1, type s

1s(a, b) ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
0 a
0 −a

a −a
b b+ a

b+ a b

b+ a b− a
−a 2

b+ 2 b− a

b b+ 2
b+ 2 b− a

2 a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Class 1, type t

1t(a, b) ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2
0 a
0 −a

a −a
b b− a

b+ a b+ 2

b b+ 2
2 −a
b b− a

b+ a b− a
b+ 2 b+ a

a 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Class 2, type s

2s(a, b) ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a
0 2
0 a

2 −a
b b+ 2

b+ 2 b+ a

b+ a b+ 2
a −a
b b− a

b− a b
b+ a b− a

2 −a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Class 2, type t

2t(a, b) ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a
0 2
0 a

2 −a
b b+ 2

b+ 2 b+ a

b b− a
a −a

b− a b

b+ 2 b+ a
b+ a b− a
−a 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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Class 3, type s

3s(a, b) ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a
0 −a
0 2

−a 2
b b− a

b− a b+ a

b b− a
2 a
b b+ 2

b+ 2 b+ a
b+ a b+ 2
−a a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Class 3, type t

3t(a, b) ∼

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a
0 −a
0 2

−a 2
b b− a

b− a b+ a

b+ a b+ 2
a 2
b b+ 2

b b− a
b+ a b+ 2

a −a

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Proof: Similar to the proofs of Theorems 3.1 and 3.2. �

As in the classification of orthomorphisms in Orth(Z2×Z4) and Orth(D8), in each
of the arrays of tables in Theorem 3.2, five entries are shown in bold. In each array,
two entries in the second column of the α-table, and two entries in the first column
of the β-table are shown in bold: these entries determine the class and parameters
of an orthomorphism. The fifth entry shown in bold distinguishes between types.

We obtain the following as corollaries.

Corollary 5.1 |Orth(Q8)| = 48.

Proof: This is the same as the proof of Corollary 3.1. �

Corollary 5.2 Let Sxy denote the set of orthomorphisms in Orth(D8), in class x
and of type y. For y = s, t, I is a bijection S1y → S2y and R is a bijection S2y → S3y.

Proof: Routine. �

Using the classification in Theorem 5.1 we can determine ω(Q8).

Theorem 5.2 ω(Q8) = 1.
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Proof: We will first show that there are no 2-orthogonalities in Orth(Q8).

Let θ and φ be in class 1, and let θ ⊥ φ. Then θ ⊥2 φ, and θ = 1x(a, b) and
φ = 1y(−a, c) for some x, y ∈ {s, t}, some a = ±1, and some b, c ∈ Z4. If x = y = s,
then

βφ(a)− βθ(a) = c− a− b = βφ(−a)− βθ(−a)

and so θ and φ are not 2-orthogonal by Lemma 2.2. If x = y = t, then

βφ(a)− βθ(a) = c+ a− b = βφ(−a)− βθ(−a)

and so θ and φ are not 2-orthogonal by Lemma 2.2. Hence, x �= y. Without loss of
generality θ = 1s(a, b) and φ = 1t(−a, c). Now B′

θ = {b, b + 2} = {c, c + 2} = Bφ.
Therefore c = b, b+ 2. If c = b, then

δφ(b+ a) + γθ(b+ a) = b+ 2 = γφ(b) + δθ(b) + 2

and so θ and φ are not 2-orthogonal. If c = b+ 2, then

βφ(a)− βθ(a) = −a = βφ(−a)− βθ(−a)

and so θ and φ are not 2-orthogonal by Lemma 2.2. It follows from Lemma 2.4 that
there are no 2-orthogonalities in Orth(Q8).

We will next show that there are no 1-orthogonalities in Orth(Q8) within the union
of class 2 and class 3.

Let θ, φ be in the union of class 2 and class 3, θ ⊥1 φ. Then we may assume that
θ has parameters (a, b) and φ has parameters (−a, c), a = ±1, b, c ∈ Z4. Now
|{b, b − a} ∩ {c, c + a}| = 1. As c = b − a if and only if c + a = b, it must be that
c = b or b+ 2.

If θ, φ are both in class 2, then βφ(2) − βθ(2) = c − b �= 0 and so c = b + 2. If
x = y = s, then

δφ(b− a)− δθ(b− a) = 0 = αφ(0)− αθ(0)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal. If x = y = t, then

γφ(b− a)− γθ(b− a) = 2 = βφ(2)− βθ(2)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal. If x �= y, then, without loss of
generality, θ = 2s(a, b) and φ = 2t(−a, b+ 2). As

γφ(b+ 2)− γθ(b+ 2) = 0 = αφ(0)− αθ(0)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal.

If θ, φ are both in class 3, then R[θ] and R[φ], then R[θ] and R[φ] are both in class
2, and so R[θ] and R[φ] are not 1-orthogonal and, hence, by Lemma 2.4, θ and φ are
not 1-orthogonal.
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Thus we may assume without loss of generality that θ = 2x(a, b) and φ = 3y(−a, c)
for some x, y = s, t, some a = ±1, and some b, c ∈ Z4. If x = t, y = s and c = b,
then

βφ(2)− βθ(2) = a = γφ(b)− γθ(b)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal. If x = t, y = s and c = b+ 2,
then

γφ(b− a)− γθ(b− a) = 0 = αφ(0)− αθ(0)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal. If x = s and y = t, then R[θ]
and R[φ] are not 1-orthogonal, and so θ and φ are not 1-orthogonal by Lemma 2.4.

Hence x = y. If x = y = s and c = b, then

δφ(b− a)− δθ(b− a) = a = βφ(2)− βθ(2)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal.

If x = y = s and c = b+ 2, then

γφ(b+ 2)− γθ(b+ 2) = −a = βφ(2)− βθ(2)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal.

If x = y = t and c = b, then

γφ(b− a)− γθ(b− a) = 0 = αφ(0)− αθ(0)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal.

If x = y = t and c = b+ 2, then

δφ(b+ 2)− δθ(b+ 2) = 0 = αφ(0)− αθ(0)

and so, by Lemma 2.2, θ and φ are not 1-orthogonal.

The proof that there are no other 1-orthogonalities in Orth(Q8) is the same as the
proof in Theorem 3.2 that there are no excess 1-orthogonalities between orthomor-
phisms in the union of class 2 and class 3, and orthomorphisms in class 1. The result
follows. �
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